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Abstract
This paper addresses speaker verification domain adaptation
with inadequate in-domain data. Specifically, we explore the
cases where in-domain data sets do not include speaker labels,
contain speakers with few samples, or contain speakers with
low channel diversity. Existing domain adaptation methods are
reviewed, and their shortcomings are discussed. We derive an
unsupervised version of fully Bayesian adaptation which re-
duces the reliance on rich in-domain data. When applied to
domain adaptation with inadequate in-domain data, the pro-
posed approach yields competitive results when the samples per
speaker are reduced, and outperforms existing supervised meth-
ods when the channel diversity is low, even without requiring
speaker labels. These results are validated on the SRE16, which
uses a highly inadequate in-domain data set.
Index Terms: speaker verification, unsupervised domain adap-
tation, Bayesian adaptation.

1. Introduction
In recent years, i-vectors have become the dominant represen-

tation of speech signals for speaker verification, since they allow
the mapping of utterances of arbitrary duration to a single low-
dimensional vector [1]. Due to their low dimensionality, sophis-
ticated techniques can be used to model i-vectors and generate
verification scores. One such scoring method is probabilistic
linear discriminant analysis (PLDA) [2], which provides a sta-
tistical tool for emphasizing speaker information while compen-
sating for undesired sources of variability.

Statistical approaches to i-vector speaker verification often
require explicit modeling of across-class and within-class vari-
abilities. Commonly, these sources of variability are modeled as
Gaussian distributions, and their means and covariance matrices
are trained on large sets of speech data. Typically, such data sets
may include tens of thousands of utterances, with thousands of
individual labeled speakers.

It has been widely shown that the performance of speaker
verification systems degrades when facing unseen types of data
[3, 4, 5, 6, 7]. This is caused in part by a mismatch between the
out-of-domain data used to train system hyperparameters, and
the in-domain data encountered during enrollment and testing.
However, such performance degradation can be mitigated via
domain adaptation of system parameters using in-domain devel-
opment data. Typically, in-domain sets are inadequate in some
respect, and we focus on three such properties. First, speaker
labels may not be included, making supervised approaches un-
usable. Secondly, the data may include speakers with few sam-
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ples. Finally, the data may include speakers with low chan-
nel diversity, where samples may exhibit similar channel types.
In the case of inadequate in-domain data, thoughtful strategies
must be employed to successfully leverage this data.

In [3], the authors treat across-class and within-class co-
variance matrices as random variables, and propose using max-
imum a posteriori (MAP) estimates of these parameters con-
ditioned on the in-domain data. In this work, point estimate
approximations are used for speaker means for the sake of com-
putational efficiency. However, such methods may suffer if the
in-domain set includes individual speakers with few samples
or low channel diversity. In [5], the authors present a fully
Bayesian framework to domain adaptation. This approach ex-
plicitly models the uncertainty due to speakers with few sam-
ples, and is therefore less sensitive to such data. However, it
still does not address the low channel diversity problem.

In this paper, we derive an unsupervised version of fully
Bayesian domain adaptation. We assume in-domain data sam-
ples to be independent, which implies that each sample was pro-
duced by a unique speaker, leading to a reduced reliance on a
rich in-domain data set. It follows that the proposed method
does not require speaker labels for the in-domain data. When
applied to domain adaptation with inadequate in-domain data,
the proposed technique provides competitive results for data
with few samples per speaker, and outperforms existing super-
vised methods for data with low channel diversity.

This paper is organized as follows. In Sec. 2, we present
a statistical framework for i-vector domain adaptation. Sec. 3
includes a discussion of existing techniques for supervised do-
main adaptation. In Sec. 4 we derive unsupervised Bayesian
adaptation. Experimental results are presented in Sec. 5, and
conclusions are provided in Sec. 6.

2. Statistical Framework

In this paper, we assume the additive noise model for i-
vectors:

xmn = ym + cmn, (1)

where xmn denotes the nth sample from the mth speaker, ym

is the latent speaker component, and cmn is the channel com-
ponent. Speaker components are assumed Gaussian i.i.d.:

p (ym) = N (ym;µ,Σa) , (2)

and are collectively denoted by Y . Channel components are
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assumed Gaussian i.i.d.:

p (cmn) = N (cmn; 0,Σw) . (3)

Domain adaptation involves using a limited set of in-
domain data to adapt hyperparameters trained in a more
resource-rich domain. Specifically, in the context of i-vector-
based speaker verification, domain adaptation refers to es-
timation of the set {µ,Σa,Σw} based on a set of in-
domain samples, X , and out-of-domain hyperparameter esti-
mates {µout,Σout

a ,Σout
w }. Let X contain NT samples from

M speakers. We seek a probabilistic solution to domain adap-
tation, and so we encode knowledge of the out-of-domain data
in prior distributions, which can be designed to reflect the out-
of-domain parameter estimates. We model Σa and Σw with
inverse-Wishart distributions, as:

p (Σa) = IW
(
Σa; νaΣout

a , νa
)
, (4)

and:
p (Σw) = IW

(
Σw; νwΣout

w , νw
)
. (5)

In this way, Σout
a and Σout

w approximate the modes of the re-
spective prior distributions, and νaand νw reflect the certainty
of the priors, as discussed in [3].

3. Supervised Domain Adaptation
3.1. Parameter Estimation

A popular approach for the estimation of across-class and
within-class covariance matrices is to use point estimates for
speaker components:

ỹm =
1

Nm

Nm∑
n=1

xmn. (6)

where Nm denotes the number of samples provided by the mth

speaker. Maximum likelihood parameter estimation leads to:

Σa =
1

NT

M∑
m=1

Nm (ỹm − µ̃) (ỹm − µ̃)T , (7)

Σw =
1

NT

M∑
m=1

Nm∑
n=1

(xmn − ỹm) (xmn − ỹm)T , (8)

where µ̃ is the sample mean of X . Note that these equations
can be manipulated slightly to normalize the effect of individual
speakers. It can be observed from (6)-(8) that modeling speaker
components plays a vital role in parameter estimation, and inac-
curate speaker component estimates may lead to poor estimates
for Σa and Σw.

The approximation in (6) is valid when each speaker pro-
vides a large number of samples and includes rich channel di-
versity, but may otherwise result in inaccurate estimates. If (1)
is substituted into (6), the speaker estimate can be expressed as:

ỹm = ym +
1

Nm

Nm∑
n=1

cmn, (9)

If channel components are truly distributed according to (3), it is
clear from (9) that the speaker component estimate is unbiased
with a variance of Σw/Nm. Thus, the estimate is highly vari-
able for speakers with few samples, but will approach the un-
derlying speaker component, ym, as the number of samples in-
creases. Additionally, if a speaker provides samples from simi-
lar channels, so that the channel components are not zero-mean,

the estimate from (9) will not approach the underlying speaker
component regardless of the value of Nm.

3.2. Adaptation Using Speaker Point Estimates

In [3], the authors find approximated MAP estimates of the in-
domain parameters assuming (6):

Σa =
α

NT

M∑
m=1

Nm (ỹm − µ̃) (ỹm − µ̃)T (10)

+ (1− α) Σout
a

+ α (1− α)
(
µ̃− µout

) (
µ̃− µout

)T
,

Σw =
α

NT

M∑
m=1

Nm∑
n=1

(xmn − ỹm) (xmn − ỹm)T (11)

+ (1− α) Σout
w .

where α is a function of the number of samples in the in-domain
set, and approaches 1 as the data set grows. However, α can
also be tuned manually to control the emphasis placed on the
in-domain data during adaptation. The technique was applied to
the 2013 domain adaptation challenge (DAC13) [8], where the
in-domain set was limited with respect to the number of speak-
ers, and showed graceful degradation as the speaker diversity
was made increasingly scarce. However, such domain adapta-
tion methods can suffer for in-domain sets containing limited
numbers of samples per speaker, or containing speakers with
low channel diversity.

3.3. Bayesian Adaptation

In [5], the authors propose Bayesian adaptation of hyperparam-
eters, where speaker components are assumed to be latent ran-
dom variables, as in (2). The joint posterior distribution of the
set {µ,Σa,Σw,Y} is approximated by a factorized form using
variational Bayes (VB) [9]:

p (µ,Σa,Σw,Y |X ) ≈ q (Y) q (µ,Σa) q (Σw) . (12)

MAP parameter estimates are then found for each factoring dis-
tribution, and used during scoring. According to variational
Bayes, the optimal factoring distributions are found iteratively.
The update equation for the distribution of speaker components
is given by [9]:

log q (Y) = Eµ,Σa,Σw{log p (X ,Y,µ,Σa,Σw)}+ const,
(13)

with analogous expressions for the other hidden variables. Cen-
tral to the variational Bayes approach is the total data log-
likelihood, which for our statistical framework is given by:

log p (X ,Y,µ,Σa,Σw) = log p (X |Y,Σw ) (14)
+ log p (Y |µ,Σa )

+ log p (µ,Σa) + log p (Σw) ,

where:

log p (X |Y,Σw ) =

M∑
m=1

Nm∑
n=1

N (xmn; ym,Σw) . (15)

Applying the variational Bayes method, and using the statistical
framework described in Sec. 2, the optimal factors are deter-



mined via the iterative equations (see [5] for details):

µ =αȳ + (1− α)µout, (16)

Σa =α

(
1

M

M∑
m=1

〈ymyT
m〉 − ȳȳT

)
+ (1− α) Σout

a (17)

+ α (1− α)
(
ȳ − µout

) (
ȳ − µout

)T
,

Σw =
α

NT

M∑
m=1

Nm∑
n=1

(
xmnxT

mn − 〈ym〉xT
mn (18)

− xmn〈ym〉T + 〈ymyT
m〉
)

+ (1− α) Σout
w ,

where:

ȳ =
1

M

M∑
m=1

〈ym〉, (19)

〈ym〉 =Σa

(
Σa +

1

Nm
Σw

)−1
1

Nm

Nm∑
n=1

xmn (20)

+ Σw (NmΣa + Σw)−1 µ,

〈ymyT
m〉 =Σw (NmΣa + Σw)−1 Σa + 〈ym〉〈ym〉T . (21)

As previously mentioned, Bayesian adaptation models speaker
means as posterior distributions, taking into account the uncer-
tainty resulting from parameter estimation with finite data, and
is therefore less sensitive to in-domain data sets with few sam-
ples per speaker.

However, Bayesian adaptation may still suffer from in-
domain data with low channel diversity. If (1) is substituted
into (20), the mean of the posterior distribution of ym is:

〈ym〉 =Σa

(
Σa +

1

Nm
Σw

)−1

ym

+ Σw (NmΣa + Σw)−1 µ

+ Σa

(
Σa +

1

Nm
Σw

)−1
1

Nm

Nm∑
n=1

cmn. (22)

The expected value of ym in (22) includes an additive noise
term due only to channel effects. If channel components are
zero-mean, which can be expected in the case of high channel-
diversity, the noise term will also be zero-mean. Conversely,
for low channel diversity, the noise term will not be zero-mean,
introducing distortion to 〈ym〉. Furthermore, the posterior co-
variance of ym, given by Σw (NmΣa + Σw)−1 Σa, shrinks as
Nm increases, causing the model to become increasingly confi-
dent in this inaccurate estimate.

4. Unsupervised Bayesian Adaptation
In the case of low channel diversity, speaker labels can be ad-
justed to keep Bayesian adaptation from becoming overly con-
fident. For example, sets of samples from individual speakers
can be limited so that Nm does not exceed a certain value. In
the extreme case, all in-domain data can be assumed to be in-
dependent, implying that each sample is provided by a unique
speaker. Note that this assumption eliminates the requirement
for speaker labels for the in-domain data set.

If data samples in X are assumed independent, implying
that each speaker contributed a single sample, the conditional
likelihood from (15) reduces to:

log p (X |Y,Σw ) =

NT∑
n=1

N (xn; yn,Σw) . (23)

where subscripts can be changed to omit speaker label, and NT

denotes the number of samples in X . If (23) is substituted into
(14), the VB solution from (16)-(21) becomes:

µ =αȳ + (1− α)µout, (24)

Σa =α

(
1

NT

NT∑
n=1

〈ynyT
n 〉 − ȳȳT

)
+ (1− α) Σout

a (25)

+ α (1− α)
(
ȳ − µout

) (
ȳ − µout

)T
,

Σw =
α

NT

NT∑
n=1

(
xnxT

n − 〈yn〉xT
n (26)

− xn〈yn〉T + 〈ynyT
n 〉
)

+ (1− α) Σout
w ,

where:

ȳ =
1

NT

NT∑
n=1

〈yn〉, (27)

〈yn〉 =Σa (Σa + Σw)−1 xn (28)

+ Σw (Σa + Σw)−1 µ,

〈ynyT
n 〉 =

(
Σ−1

a + Σ−1
w

)−1
+ 〈yn〉〈yn〉T . (29)

It may provide insight to substitute (27)-(29) into (24)-(26) to
obtain update equations for Σa and Σw. If Σt denotes the
global covariance of X (and the sample means of X and the
out-of-domain sets are assumed to be zero for illustrative pur-
poses), the update equations become:

Σa ⇐ α
(
HaΣtH

T
a +

(
Σ−1

a + Σ−1
w

)−1
)

(30)

+ (1− α) Σout
a ,

Σw ⇐ α
(
HwΣtH

T
w +

(
Σ−1

a + Σ−1
w

)−1
)

(31)

+ (1− α) Σout
w ,

where Ha=Σa (Σa + Σw)−1 and Hw=Σw (Σa + Σw)−1.
The proposed adaptation technique can then be interpreted as it-
eratively designing Wiener filters to extract the across-class and
within-class variabilities from the total variability of the data
set. Furthermore, the out-of-domain hyperparameter estimates
serve both to provide initial estimates of these filters, and to
constrain the across-class and within-class variabilities during
optimization. It should be noted that the adaptation coefficient
can not be set too close to 1, since the out-of-domain estimates
are required to constrain the optimization.

It is of interest to note that the update equations for Σa and
Σw show strong similarity to iterative Wiener filters (IWFs).
Specifically, in the trivial case of α=1, the update equations are
each identical to the IWF with an additive correction factor pro-
posed in [10], where the term

(
Σ−1

a + Σ−1
w

)−1 ensures that the
property Σt=Σa+Σw holds at the stationary point.

5. Experimental Results
5.1. System Description

This section presents experimental results for domain adapta-
tion with inadequate in-domain data. The baseline system uses
600-dimensional i-vectors, with global centering and whitening
applied prior to length normalization [11]. The system uses 40-
dimensional cepstral features including deltas, with mean and
variance normalization. All speaker verification results are pre-
sented for PLDA scoring, in terms of equal error rate (EER) and



minimum decision cost function (mindcf), and pooled across
gender. For all adaptation methods, an adaptation coefficient of
α=0.5 was used. As baseline methods, we use MAP adaptation
with point estimates [3] and supervised Bayesian adaptation [5].

5.2. Domain Adaptation with Few Samples Per Speaker

Table 1 provides speaker verification results for a variety of do-
main adaptation strategies, when applied to the DAC13 [8]. The
out-of-domain system was trained on the Switchboard-I and
Switchboard-II corpora, and the in-domain data included tele-
phone calls from SRE04-SRE08. The in-domain data was re-
duced to contain only 2 randomly drawn samples per speaker.
Five random draws of the in-domain set were tested, and results
represent the average of these. In Table 1, none refers to the
unadapted out-of-domain system, and whitening refers to using
in-domain data solely to adapt i-vector whitening and center-
ing prior to length normalization. In Table 1, MAP adaptation
with point estimates [3] suffers degradation since speaker com-
ponents estimated with (6) are highly variable for small values
of Nm, as discussed in Sec. 3.2. However, Bayesian adap-
tation from [5] and the proposed unsupervised Bayesian adap-
tation perform well since they take into account the uncertainty
present when estimating speaker components from limited data.

Table 1: Speaker verification results on the DAC13 task, using
an in-domain set with 2 samples per speaker

adaptation method EER (%) mindcf
none 6.41 0.471

whitening 5.25 0.412
MAP with point estimates [3] 3.18 0.296

Supervised Bayesian [5] 2.74 0.271
Unsupervised Bayesian 2.92 0.270

5.3. Domain Adaptation with Low Channel Diversity

Realistic in-domain data sets may also be inadequate due to lim-
ited channel diversity. Table 2 provides results for the DAC13
task when the in-domain set only includes samples from the
dominant phone number for each speaker, so that the in-domain
set consisted of ∼24k samples from ∼3800 speakers. In this
case, the baseline methods suffer degradation since both will
produce distorted speaker component estimates when channel
components have non-zero mean, as discussed in Sec. 3.3. The
proposed method, however, does not rely on channel diversity
per speaker, and suffers no such degradation.

Table 2: Speaker verification results on the DAC13 task, using
an in-domain set with a single phone number from each speaker

adaptation method EER (%) mindcf
none 6.41 0.471

whitening 5.17 0.413
MAP with point estimates [3] 5.51 0.424

Supervised Bayesian [5] 5.47 0.422
Unsupervised Bayesian 3.07 0.278

5.4. Domain Adaptation with Resource-rich Data

Table 3 provides verification results for the DAC13 task for the
full in-domain set, consisting of ∼36k samples from ∼3800

speakers, with an average of 9.6 samples per speaker and 2.8
phone numbers per speaker. This can be considered a resource-
rich adaptation set, and the systems from [3] and [5] can both
be expected to perform well. However, we wish to verify that
the proposed method remains competitive, even though it is not
able to leverage the rich information provided by speaker labels.
It can be observed in Table 3 that the baseline methods provide
excellent results, and that the proposed technique suffers only a
slight degradation.

Table 3: Speaker verification results on the DAC13 task, using
the full in-domain set

adaptation method EER (%) mindcf
none 6.41 0.471

whitening 5.20 0.413
MAP with point estimates [3] 2.54 0.254

Supervised Bayesian [5] 2.40 0.245
Unsupervised Bayesian 2.96 0.269

5.5. Domain Adaptation on the SRE16

To verify that the observations made from Tables 1-3 general-
ize to other data sets, we performed experiments on the 2016
Speaker Recognition Evaluation (SRE16) [12] fixed task. In
this case, the out-of-domain system was was trained using data
from SRE04-SRE12. The SRE16 included trials in two non-
English languages and from unseen channels. An inadequate
in-domain set was provided, which consisted of 2272 samples
from 1164 speakers, and spanned both unseen languages. An
adaptation coefficient of α=0.1 was used. In the set, speakers
provided an average of 1.9 samples from 1.1 different phone
numbers, making this data deficient with respect to both sam-
ples per speaker and channel diversity. It can be observed in
Table 4 that the baseline technique from [3] provides benefit in
terms of mindcf, and supervised Bayesian adaptation [5] pro-
vides improvements in terms of both EER and mindcf. The un-
supervised Bayesian approach provides results which are com-
petitive with [5], even though speaker labels are not required for
the in-domain data.

Table 4: Speaker Verification Results on the SRE16 Fixed Task

adaptation method EER (%) mindcf
none 19.35 0.999

whitening 16.70 0.972
MAP with point estimates [3] 18.26 0.775

Supervised Bayesian [5] 15.49 0.776
Unsupervised Bayesian 15.32 0.723

6. Conclusions
We have proposed a technique for unsupervised Bayesian do-
main adaptation for i-vector speaker verification. The method
shows improved effectiveness for inadequate in-domain data.
Specifically, the method performs well even when in-domain
sets include speakers with few samples or low channel diversity.
The proposed technique provides competitive results on a range
of domain adaptation experiments with inadequate data, even
when compared to supervised systems which require speaker
labels for the in-domain set.
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