
Exact Analysis of ZSRM Mixed-Criticality
Scheduling of Sporadic Tasks

Björn Andersson, Dionisio de Niz, Hyoseung Kim, Mark Klein, and Ragunathan (Raj) Rajkumar
Carnegie Mellon University

Abstract—Zero-Slack Rate-Monotonic (ZSRM) is a family of
mixed-criticality schedulers which are based on fixed-priority
preemptive scheduling. One scheduler (which we call ZSRM-
S) [5] works as follows: a job J is suspended at time t if
at time t there is a higher-criticality job J ′ that has not
finished and t minus the arrival time of J ′ exceeds a per-
task configurable parameter (which we call zero-slack offset).
ZSRM-S has two advantages compared to other mixed-criticality
schedulers: (i) adaptation is local; i.e., there is no system-wide
mode change needed and (ii) resumption is simple and natural.
ZSRM-S has one drawback [7]: a high-criticality job J ′ can suffer
from interference from a low-criticality job J that resumed after
being suspended by another high-criticality job J ′′ (carry-in).
Therefore, a variant of ZSRM (which we call ZSRM-SE) has been
proposed [6]; it uses an enforcement mechanism to avoid carry-in.
With ZSRM-SE, if a high-criticality job causes a low-criticality
job to suspend and the high-criticality job has performed more
execution than a certain bound then the low-criticality job shall
not resume. We consider constrained-deadline sporadic tasks
scheduled by ZSRM-S and present an exact schedulability test
which solves a Mixed-Integer Linear Program (MILP). We also
present that result for ZSRM-SE.

I. INTRODUCTION

The problem of scheduling real-time tasks with different
criticalities is not new [9, 11] but the trend towards the
increasing use of embedded computers and consolidating
multiple functionalities onto a single computer platform has
increased the importance of this problem. For this reason, re-
searchers have, during recent years, developed more advanced
schedulers and analysis methods for systems with tasks of
different criticalities. The literature is extensive — see [3]
for an excellent survey. Today, most schedulers for mixed
criticality systems (MCS) rely on three ideas:

I1. A task is assigned a criticality level;
I2. If it is impossible to meet all deadlines and the scheduler

has to let one task miss a deadline then the scheduler should
let a lower criticality task miss a deadline;

I3. The execution time of a task is characterized by multiple
numbers; each number is believed to be an upper bound on
the execution time of the task but the confidence one has in
this belief is different for different numbers.

The research community has used these ideas in different
ways. One way is to extend schedulability analysis for classic
fixed-priority or Earliest-Deadline-First so that when perform-
ing schedulability analysis to determine if task τi meets its
deadlines then execution times of other tasks must be selected
to be on the same confidence level as the criticality of task τi.
It was found that many of the optimality results in non-MCS
scheduling do not apply to MCS scheduling [12, 2]. Other

works use run-time monitoring and adaptation; check if a low
criticality task has executed for more than it should and if so,
the system switches to a high-critical mode where only high-
critical tasks are allowed to execute [1]. Such an approach has
two drawbacks: (i) it uses a system-wide mode and hence a
system-wide mode-change is needed and (ii) it specifies how
to switch from normal mode to an overload mode but typically
does not specify how to switch back. We believe an alternative
should be sought and hence, we consider the following idea:

I4. Before run-time, for each task τi, compute a parameter
Zi and at run-time, if a job of task τi has not finished at time
Zi after its arrival then take action to adapt.

This idea has been used for non-MCS and for this context,
the action taken at Zi is to change priorities; such use is
called dual-priority scheduling [4]. This idea has been used
for MCS and for this context, the action taken is to suspend
jobs; such a scheduler was called ZSRM [5]. Later papers have
discussed different sematics for it [7]; therefore, we let ZSRM
denote a family of schedulers rather than a specific scheduler.
ZSRM has been useful as witnessed by the following facts:
previous work has made available implementations of a ZSRM
scheduler in the Linux kernel and in VxWorks, as well as a
sufficient schedulability test for it and this schedulability test
is available to software practitioners in the OSATE AADL
workbench. And a modification of it was used in a UAV
system to ensure that an overload in vision processing does
not jeopardize deadline guarantees of flight-control software
[6]. Hence, we believe ZSRM is one of the most practical
ideas in mixed-criticality scheduling. One scheduler (which
we call ZSRM-S) [5] works as follows: a job J is suspended
at time t if at time t there is a higher-criticality job J ′ that
has not finished and t minus the arrival time of J ′ exceeds Zi.
Hence, the S in the name ZSRM-S means suspend. ZSRM-
S has one drawback [7]: a high-criticality job J ′ can suffer
from interference from a low-criticality job J that resumed
after being suspended by another high-criticality job J ′′ (carry-
in). Therefore, a variant of ZSRM (which we call ZSRM-SE)
has been proposed [6]; it uses an enforcement mechanism to
avoid carry-in. With ZSRM-SE, if a high-criticality job causes
a low-criticality job to suspend and the high-criticality job has
performed more execution than a certain bound then the low-
criticality job shall not resume. Hence, the E in the name
ZSRM-SE means execution-time monitoring. Unfortunately,
no exact analysis was known for these schedulers.

Therefore, in this paper, we consider constrained-deadline
sporadic tasks scheduled by ZSRM-S and present an exact

1

|τ | = 2
T1 = 4 D1 = 4 C1 = 2 Co1 = 2 ζ1 = 1 prio1 = 2 Z1 = 2
T2 = 10 D2 = 8 C2 = 2.5 Co2 = 5 ζ2 = 2 prio2 = 1 Z2 = 5

Fig. 1: An example of a taskset in our model.
nj1(R) = 2
A1,1(R) = 0 c1,1(R) = 2 A1,2(R) = 4 c1,2(R) = 2
nj2(R) = 1
A2,1(R) = 0 c2,1(R) = 2.5

(a) An assignment R for the taskset in Fig. 1.
time0 5

𝜏𝜏1,1 𝜏𝜏2,1 𝜏𝜏1,2 𝜏𝜏2,1 𝜏𝜏1,2

(b) ZSRM-S schedule of the assignment R for the taskset in Fig. 1.

Fig. 2: An assignment for the taskset in Fig. 1 and its ZSRM-S schedule. At time 5, the zero-slack instant of τ2,1 occurs so
at this time, jobs from tasks with lower criticality get suspended; specifically, τ1,2 is suspended at this time. In (a), c2,1(R) is
small so that when τ2,1 finishes, there is still time for τ1,2 to finish execution by its deadline (see (b)). For another assignment
where c2,1 is five, τ1,2 would miss its deadline.

schedulability test which solves a Mixed-Integer Linear Pro-
gram (MILP). We also present that result for ZSRM-SE.

The rest of the paper is organized as follows. Section II
presents the system model. Section III presents the new
schedulability test for ZSRM-S. Section IV presents the new
schedulability test for ZSRM-SE. Section V presents tools
that perform the calculations of these schedulability tests.
Section VI concludes.

II. SYSTEM MODEL

Throughout this paper, we let s.t. mean “such that” and
we let : mean “it holds that” and we let {x|f(x)} denote a set
of elements so that an element x is in the set if and only if
f(x) is true. We let 〈a, b〉 indicate a tuple with two elements
a and b. We let [a, b] indicate an interval of real numbers. We
let {a..b} indicate the set of integers that are ≥ a and ≤ b.

Static parameters. We consider a system comprising a
taskset τ and a computer platform comprising a single pro-
cessor. A task τi in τ is characterized by Ti, Di, Ci, Coi ,
ζi, prioi, and Zi with the interpretation that τi generates a
sequence of jobs with two consecutive jobs of τi having arrival
times separated by at least Ti and each job of τi must finish
within Di time units. ζi indicates the criticality of τi. (If ζi
is high then the criticality of τi is high.) prioi indicates the
priority of τi. (If prioi is high then the priority of τi is high.)
We assume ∀τi ∈ τ : Ci ≤ Coi and Di ≤ Ti. The symbol Zi
means zero-slack offset of τi and it is used by the scheduler
to determine the time instant when jobs of lower criticality
should be adapted (e.g. suspended). The symbols Ci and Coi
are upper bounds on the execution time of a job of τi; the
reason for having two upper bounds will be explained later in
this section. For historical reasons, we refer to Ci as nominal
execution time and Coi as overload execution time. Fig. 1
shows an example of a taskset in our model.

Run-time behavior of ZSRM-S. Let τi,q denote the qth job
of τi. Let R denote an assignment, for each task, the number
of jobs it generates and for each of the jobs, an arrival time
and execution time. Certain quantities that we define will be
a function of the schedule and then we let sc be a schedule.
Let nji(R) denote the number of jobs that τi generates. Let
Ai,q(R) denote the arrival time of τi,q . Let ci,q(R) denote the
execution time of τi,q . Let fi,q(sc, R) denote the finishing time
of τi,q . Let donexi,q(t, sc, R) denote the cumulative duration

of execution of τi,q before time t. Fig. 3 shows predicates
that we use. elig(i, q, t, τ, R, sc) is a predicate that is true if,
at time t, the job τi,q has arrived but not finished and τi,q
is not suspended at time t because of higher-criticality jobs.
eligZSRMS(i, q, t, τ, R, sc) indicates that τi,q is eligible for
execution (i.e., it is in the ready queue or it is running) at time
t. Clearly, because of priority-based scheduling, an eligible job
will only execute if there is no other eligible job with higher
priority. We use the predicate candZSRMS(i, q, t, τ, R, sc) to
indicate that τi,q is a candidate for execution; i.e., τi,q is
eligible and there is no eligible job of higher priority. An
instant is a ZSRMSschedinst if there is a job that arrives
at this instant or there is a job that finishes at this instant or
there is a job that has its zero-slack instant at this instant —
see Fig. 3. At each instant t such that t is a ZSRMSschedinst,
the scheduler does the following: if there is at least one job τi,q
such that candZSRMS(i, q, t, τ, R, sc), then arbitrarily choose
a job τi,q such that candZSRMS(i, q, t, τ, R, sc) and execute it
on the processor at time t and let it continue to execute until
the next ZSRMSschedinst; if there is no job τi,q such that
candZSRMS(i, q, t, τ, R, sc), then keep the processor idle at
time t until the next schedinst. Fig. 2 shows a schedule that
the taskset in Fig. 1 can generate.

Run-time behavior of ZSRM-SE. The run-time behavior
of ZSRM-SE differs from ZSRM-S only in that with
ZSRM-SE, a job J is terminated if there was a time now
or in the past such that at that time, there was a higher-
criticality job J ′ that has reached its zero-slack instant
and not finished and executed for more than its nominal
execution time. We specify this formally with predicates
in Fig. 3. The predicate candZSRMSE(i, q, t, τ, R, sc
indicates that τi,q is a candidate for execution. The predicate
eligZSRMSE(i, q, t, τ, R, sc) indicates that τi,q is eligible
for execution; if terminatedZSRMSE(i, q, t, τ, R, sc)
is true then τi,q is not eligible for execution. The
predicate terminatedZSRMSE(i, q, t, τ, R, sc) is
true if there is a time t′ such that t′ ≤ t and
terminatednowZSRMSE(i, q, t′, τ, R, sc). The predicate
terminatednowZSRMSE(i, q, t′, τ, R, sc) is true if there is
job τi′,q′ such that ζi′ > ζi and τi′,q′ has arrived but not
finished and τi′,q′ has executed for more than Ci′ time units.

Schedulability and schedulability test of ZSRM-S. We
say that a job τi,q is success if its finishing time is at most

2

ZSRMSschedinst(t, τ, R, sc) =(∃〈i, q〉 s.t. (τi ∈ τ) ∧ (q ∈ 1..nji(R)) ∧ ((Ai,q(R) = t) ∨ (fi,q(R, sc) = t) ∨ (Ai,q(R) + Zi = t)))

ZSRMSEschedinst(t, τ, R, sc) =(∃〈i, q〉 s.t. (τi ∈ τ) ∧ (q ∈ 1..nji(R)) ∧ ((Ai,q(R) = t) ∨ (fi,q(R, sc) = t) ∨ (Ai,q(R) + Zi = t)∨
(donexi′,q′(t, sc, R) = Ci′)))

arrived(i, q, t, τ, R, sc) =(Ai,q(R) ≤ t)
Zd(i, q, t, τ, R, sc) =(Ai,q(R) + Zi ≤ t)

finZSRMS(i, q, t, τ, R, sc) =(fi,q(sc, R) ≤ t)
finZSRMSE(i, q, t, τ, R, sc) =((fi,q(sc, R) ≤ t) ∨ (terminated(i, q, t, τ, R, sc)))

arrivednotfinZSRMS(i, q, t, τ, R, sc) =((arrived(i, q, t, τ, R, sc)) ∧ (¬finZSRMS(i, q, t, τ, R, sc)))

arrivednotfinZSRMSE(i, q, t, τ, R, sc) =((arrived(i, q, t, τ, R, sc)) ∧ (¬finZSRMSE(i, q, t, τ, R, sc)))

ZdnotfinZSRMS(i, q, t, τ, R, sc) =((Zd(i, q, t, τ, R, sc)) ∧ (¬finZSRMS(i, q, t, τ, R, sc)))

ZdnotfinZSRMSE(i, q, t, τ, R, sc) =((Zd(i, q, t, τ, R, sc)) ∧ (¬finZSRMSE(i, q, t, τ, R, sc)))

lowexZSRMSE(i, q, t, τ, R, sc) =(donexi,q(t, sc, R) ≤ Ci)
ZdnotfinlowexZSRMSE(i′, q′, t, τ, R, sc) =((ZdnotfinZSRMSE(i, q, t, τ, R, sc)) ∧ (lowexZSRMSE(i, q, t, τ, R, sc)))

ZdnotfinhiexZSRMSE(i′, q′, t, τ, R, sc) =((ZdnotfinZSRMSE(i, q, t, τ, R, sc)) ∧ (¬lowexZSRMSE(i, q, t, τ, R, sc)))

suspendednowZSRMS(i, q, t, τ, R, sc) =(∃τi′,q′ s.t. (ζi′ > ζi) ∧ (ZdnotfinZSRMS(i′, q′, t, τ, R, sc)))

suspendednowZSRMSE(i, q, t, τ, R, sc) =((∃τi′,q′ s.t. (ζi′ > ζi) ∧ (ZdnotfinZSRMSE(i′, q′, t, τ, R, sc)))∧
(∀τi′,q′ s.t. (ζi′ > ζi) : (ZdnotfinZSRMSE(i′, q′, t, τ, R, sc))⇒

(ZdnotfinlowexZSRMSE(i′, q′, t, τ, R, sc))))

terminatednowZSRMSE(i, q, t, τ, R, sc) =(∃τi′,q′ s.t. (ζi′ > ζi) ∧ (ZdnotfinhiexZSRMSE(i′, q′, t, τ, R, sc)))

terminatedZSRMSE(i, q, t, τ, R, sc) =(∃t′ s.t. (t′ ≤ t) ∧ (terminatednowZSRMSE(i, q, t′, τ, R, sc)))

eligZSRMS(i, q, t, τ, R, sc) =((arrivednotfinZSRMS(i, q, t, τ, R, sc)) ∧ (¬suspendednowZSRMS(i, q, t, τ, R, sc)))

eligZSRMSE(i, q, t, τ, R, sc) =((arrivednotfinZSRMSE(i, q, t, τ, R, sc)) ∧ (¬suspendednowZSRMSE(i, q, t, τ, R, sc))∧
(¬terminated(i, q, t, τ, R, sc)))

candZSRMS(i, q, t, τ, R, sc) =((eligZSRMS(i, q, t, τ, R, sc)) ∧ (∀τi′,q′ s.t. prioi′ > prioi : ¬eligZSRMS(i′, q′, t, τ, R, sc)))

candZSRMSE(i, q, t, τ, R, sc) =((eligZSRMSE(i, q, t, τ, R, sc)) ∧ (∀τi′,q′ s.t. prioi′ > prioi : ¬eligZSRMSE(i′, q′, t, τ, R, sc)))

legMCS(R, sc, τ, iD, qD) =((∀〈i, q〉 s.t. (τi ∈ τ) ∧ (q ∈ 2..nji(R)) : Ai,q(R)−Ai,q−1(R) ≥ Ti) ∧
(∀〈i, q〉 s.t. (τi ∈ τ) ∧ (q ∈ 1..nji(R)) ∧ (ζi > ζiD) : ci,q(R) ∈ [0, Ci])∧
(∀〈i, q〉 s.t. (τi ∈ τ) ∧ (q ∈ 1..nji(R)) ∧ (ζi ≤ ζiD) : ci,q(R) ∈ [0, Coi]))

successZSRMS(i, q, τ, R, sc) =(fi,q(sc, R) ≤ Ai,q(R) +Di)

successZSRMSE(i, q, τ, R, sc) =((¬terminated(i, q, Ai,q(R) +Di, τ, R, sc)) ∧ (fi,q(sc, R) ≤ Ai,q(R) +Di))

ZSRMSsch(τ) =(∀〈iD, qD, R, sc〉 s.t. (τiD ∈ τ) ∧ (qD ∈ {1..njiD(R)})∧
(legMCS(R, sc, τ, iD, qD)) ∧ (legZSRMSsch(sc, R, τ)) : successZSRMS(iD, qD, τ, R, sc))

ZSRMSEsch(τ) =(∀〈iD, qD, R, sc〉 s.t. (τiD ∈ τ) ∧ (qD ∈ {1..njiD(R)})∧
(legMCS(R, sc, τ, iD, qD)) ∧ (legZSRMSEsch(sc, R, τ)) : successZSRMSE(iD, qD, τ, R, sc))

Fig. 3: Predicates that we will use.

its deadline. The predicate successZSRMS(i, q, τ, R, sc)
indicates that. The predicate legMCS(R, sc, τ, iD, qD) is true
if R satisfies certain constraints (expressing arrival times and
execution times of jobs) — see Fig. 3. Note that compared
to the definition of a legal assignment used in classic fixed-
priority scheduling without mixed criticalities, our definition
of legal assignment differs in two ways (i) our definition takes
a schedule as input whereas the classic definition does not and
(ii) our definition takes a task and job index as input whereas
the classic does not. The predicate legZSRMSsch(sc, R, τ)
indicates that schedule sc can be generated by ZSRM-
S for assignment R for taskset τ . The predicate
ZSRMSsch(τ) indicates that for each 〈R, iD, qD, sc〉 such
that legMCS(R, sc, τ, iD, qD) and legZSRMSsch(sc, R, τ),
it holds that successZSRMS(iD, qD, τ, R, sc). Intuitively, the
meaning of ZSRMSsch(τ) is that ZSRMSsch(τ) is true if

each job J meets its deadline for the case that jobs of higher
criticality than J have execution times that are bounded
by the nominal execution times (not overload execution
times). If ZSRSMsch(τ) is true then we say that the taskset
is schedulable. Conversely, if ZSRMSsch(τ) is false then
we say that the taskset is unschedulable. A schedulability
test for ZSRM-S is a function that takes τ as input and
outputs a boolean. For schedulability test ST associated with
ZSRM-S, we say that ST is an exact schedulability test if
ST (τ)⇔ ZSRMSsch(τ).

Schedulability and schedulability test of ZSRM-SE. The
concepts for ZSRM-SE are analogous.

III. NEW SCHEDULABILITY TEST FOR ZSRM-S
Our goal in this section is to present an exact schedula-

bility test for ZSRM-S. Traditional analysis of fixed-priority
preemptive scheduling on a single processor relies on a con-

3

Sets :

TS = {i′|(τi′ ∈ τ) ∧ ((prioi′ ≥ prioiD) ∨ (ζi′ ≥ ζiD))},TSHC(i) = {i′|(τi′ ∈ τ) ∧ (ζi′ > ζi)},

TSHP(i) = {i′|(τi′ ∈ τ) ∧ (prioi′ > prioi)},QS(i′) = {1..d t
Ti′
e},PS = {1..3×

∑
i′∈TS

d t
Ti′
e}

Constraints :

t1 = 0 ∀p ∈ (PS \ {|PS|}) : tp ≤ tp+1

∀〈i, q〉 s.t. (i ∈ TS) ∧ (q ∈ (QS(i) \ {1})) : Ai,q −Ai,q−1 ≥ Ti
∀〈i, q〉 s.t. (i ∈ TS) ∧ (q ∈ QS(i)) : ∑

p′∈PS

arrivesp
′

i,q = 1
∑
p′∈PS

finishesp
′

i,q = 1
∑
p′∈PS

ZSp
′

i,q = 1

∀〈i, q, p〉 s.t. (i ∈ TS) ∧ (q ∈ QS(i)) ∧ (p ∈ PS) :

(arrivespi,q = 1)⇒ (donexpi,q = 0) (arrivespi,q = 1)⇒ (Ai,q = tp) arrivedpi,q =
∑

p′∈{1..p}

arrivesp
′

i,q

(finishespi,q = 1)⇒ (donexpi,q = ci,q) (finishespi,q = 1)⇒ (fi,q = tp) finZSRMSpi,q =
∑

p′∈{1..p}

finishesp
′

i,q

(ZSpi,q = 1)⇒ (Ai,q + Zi = tp) Zdpi,q =
∑

p′∈{1..p}

ZSp
′

i,q

(arrivednotfinZSRMSpi,q = 1)⇔ ((arrivedpi,q = 1) ∧ (finZSRMSpi,q = 0))

(ZdnotfinZSRMSpi,q = 1)⇔ ((Zdpi,q = 1) ∧ (finZSRMSpi,q = 0))

(suspendednowZSRMSpi,q = 1)⇒ (
∑

i′∈TSHC(i)

∑
q′∈QS(i′)

ZdnotfinZSRMSpi′,q′ ≥ 1)

(suspendednowZSRMSpi,q = 0)⇒ (
∑

i′∈TSHC(i)

∑
q′∈QS(i′)

ZdnotfinZSRMSpi′,q′ ≤ 0)

(eligZSRMSpi,q = 1)⇔ ((arrivednotfinZSRMSpi,q = 1) ∧ (suspendednowZSRMSpi,q = 0))

(candZSRMSpi,q = 1)⇔ ((eligZSRMSpi,q = 1) ∧ (∧i′∈TSHP(i) ∧q′∈QS(i′) (eligZSRMSpi′,q′ = 0)))

∀p ∈ (PS \ {|PS|}) :

(busyZSRMSp = 1)⇒ (
∑
τi′∈τ

∑
q′∈QS(i′)

candZSRMSpi′,q′ ≥ 1) (busyZSRMSp = 0)⇒ (
∑
τi′∈τ

∑
q′∈QS(i′)

candZSRMSpi′,q′ ≤ 0)

∀〈i, q, p〉 s.t. (i ∈ TS) ∧ (q ∈ QS(i)) ∧ (PS \ {|PS|}) :

(xZSRMSpi,q = 1)⇒ (donexp+1
i,q = donexpi,q + tp+1 − tp) xpi,q ≤ candZSRMSpi,q

∀p ∈ (PS \ {|PS|}) :
∑

τi′∈TS

∑
q′∈QS(i′)

xZSRMSpi′,q′ = busyZSRMSp

∀p ∈ PS : (finishespiD,qD = 1)⇒ (
∑

p′∈{1..p−1}

busyZSRMSp
′
≥ p− 1)

∀〈i, q〉 s.t. (i ∈ TS) ∧ (q ∈ QS(i)) ∧ (ζi > ζiD) : ci,q ≤ Ci
∀〈i, q〉 s.t. (i ∈ TS) ∧ (q ∈ QS(i)) ∧ (ζi ≤ ζiD) : ci,q ≤ Coi

Domains of variables :tp ∈ R≥0,Ai,q ∈ R≥0, ci,q ∈ R≥0, fi,q ∈ R≥0, donexpi,q ∈ R≥0, arrivespi,q ∈ {0, 1}, arrivedpi,q ∈ {0, 1},
finishespi,q ∈ {0, 1}, finZSRMSpi,q ∈ {0, 1},ZSpi,q ∈ {0, 1},Zdpi,q ∈ {0, 1}, arrivednotfinZSRMSpi,q ∈ {0, 1},ZdnotfinZSRMSpi,q ∈ {0, 1},

suspendednowZSRMSpi,q ∈ {0, 1}, eligZSRMSpi,q ∈ {0, 1}, candZSRMSpi,q ∈ {0, 1},busyZSRMSpi,q ∈ {0, 1}, xZSRMSpi,q ∈ {0, 1}
Fig. 4: Constraints we use for exact schedulability analysis of ZSRM-S.

dition for critical instant [10] or the concept busy period [8].
Unfortunately, these concepts cannot be used directly for exact
schedulability analysis of ZSRM-S because in ZSRM-S, a job
may be suspended. Thus, we will develop new ideas and put
them together into an exact schedulability test for ZSRM-S.

For this discussion, let feas(X) denote a predicate that is
true if and only if X (a set of constraints) is feasible. Let
max{myobj|X} denote the largest value of myobj subject
to the constraints X . Also, let ct(t, iD, qD) denote the set of
constraints in Fig. 4 where (i) t in Fig. 4 is a constant which is
equal to the 1st parameter of ct, (ii) iD in Fig. 4 is a constant

which is equal to the 2nd parameter of ct, and (iii) qD in
Fig. 4 is a constant which is equal to the 3rd parameter of ct.

Our first lemma states certain properties of a time interval
for an unschedulable taskset.

Lemma 1.

(¬ZSRMSsch(τ))⇒
(∃〈iD, qD, R, sc〉 s.t. (τiD ∈ τ) ∧ (qD ∈ {1..njiD(R)})∧
(legMCS(R, sc, τ, iD, qD)) ∧ (legZSRMSsch(sc, R, τ))∧

(fiD,qD(sc, R)−AiD,qD > DiD)∧

4

(for schedule sc, it holds that at all times

before time 0, the processor is idle)∧
(for schedule sc, it holds that at all times

in [0, fiD,qD(sc, R)], the processor executes

a job with priority ≥ prioiD or criticality ≥ ζiD))

Proof: Assume that the left-hand side of the lemma is
true. Then, from the definition of ZSRMSsch, it holds that:

∃〈iD, qD, R, sc〉 s.t. (τiD ∈ τ) ∧ (qD ∈ {1..njiD(R)})∧
(legMCS(R, sc, τ, iD, qD)) ∧ (legZSRMSsch(sc, R, τ))∧

(¬successZSRMS(iD, qD, τ, R, sc))

From the definition of successZSRMS we obtain an inequality,
which applied on the above yields that:

∃〈iD, qD, R, sc〉 s.t. (τiD ∈ τ) ∧ (qD ∈ {1..njiD(R)})∧
(legMCS(R, sc, τ, iD, qD)) ∧ (legZSRMSsch(sc, R, τ))∧

(fiD,qD(sc, R)−AiD,qD > DiD)
(1)

In the schedule sc above, we can form a time interval that
(i) ends at time fiD,qD(sc, R) and (ii) begins at the earliest
time such that in this time interval, only jobs with priority
≥ prioiD or criticality ≥ ζiD execute. One can delete all jobs
arriving before this time interval. We can also set the origin of
the time axis to be such that time zero is the time when this
time interval begins. Applying this reasoning on (1) yields:

∃〈iD, qD, R, sc〉 s.t. (τiD ∈ τ) ∧ (qD ∈ {1..njiD(R)})∧
(legMCS(R, sc, τ, iD, qD)) ∧ (legZSRMSsch(sc, R, τ))∧

(fiD,qD(sc, R)−AiD,qD > DiD)∧
(for schedule sc, it holds that at all times

before time 0, the processor is idle)∧
(for schedule sc, it holds that at all times

in [0, fiD,qD(sc, R)], the processor executes

a job with priority ≥ prioiD or criticality ≥ ζiD)

This is the right-hand side of the lemma.

Our second lemma states that if the taskset is unschedulable
then there exists a tuple 〈iD, qD, t〉 such that a certain problem
is infeasible and t is at most a certain bound. When expressing
this bound, we need to compute

max
qD′∈{1..d t′

TiD
e}∧(feas(ct(t′,iD,qD′)))

max{fiD,qD′ |ct(t′, iD, qD′)}

(2)

This expression means the folllowing: (i) iterate over all
qD′ (which may be different from qD), (ii) check if the
current qD′ is such that ct(t′, iD, qD′) is feasible, (iii) if
the answer to the preceding question is yes, then evaluate
max{fiD,qD′ |ct(t′, iD, qD′)}, and (iv) take the maximum of
the computed values. One can see that for qD′ = 1, it holds
that ct(t′, iD, qD′) is feasible. Hence, the evaluation in step (ii)
is true for at least one iteration. And hence, the expression in

(2) is well defined. With this, we can state our second lemma.

Lemma 2.

(¬ZSRMSsch(τ))⇒

(∃〈iD, qD, t〉 s.t. (t > 0) ∧ (τiD ∈ τ) ∧ (qD ∈ {1..d t

TiD
e})∧

(feas({fiD,qD −AiD,qD > DiD} ∪ ct(t, iD, qD)))∧
(t ≤

min{t′|t′ = max
qD′∈{1..d t′

TiD
e}∧(feas(ct(t′,iD,qD′)))

max{fiD,qD′ |ct(t′, iD, qD′)}}))

Proof: Assume that the left-hand side of the lemma is
true. Then, using Lemma 1 yields that:

∃〈iD, qD, R, sc〉 s.t. (τiD ∈ τ) ∧ (qD ∈ {1..njiD(R)})∧
(legMCS(R, sc, τ, iD, qD)) ∧ (legZSRMSsch(sc, R, τ))∧

(fiD,qD(sc, R)−AiD,qD > DiD)∧
(for schedule sc, it holds that at all times

before time 0, the processor is idle)∧
(for schedule sc, it holds that at all times

in [0, fiD,qD(sc, R)], the processor executes

a job with priority ≥ prioiD or criticality ≥ ζiD)
(3)

Clearly, in the schedule sc above, the rules of dispatching
(expressed in Fig. 3) applies and the assignment R is legal. Let
us consider the part of schedule sc during [0, fiD,qD(sc, R)]
and let us introduce t as t = fiD,qD(sc, R). We can en-
code this schedule with variables and constraints — indeed
ct(t, iD, qD), expressed in Fig. 4 does that. One can under-
stand this encoding as follows: Clearly, for each task τi′ , there
are at most d t

Ti′
e jobs of τi′ . Then we introduce variables that

are direct analogs of the assignment R. The variable Ai′,q′

in Fig. 4 is the arrival time of τi′,q′ and ci′,q′ in Fig. 4 is
the execution time of τi′,q′ . In Fig. 4, TS denotes the set of
task that can generate jobs that can execute in the time interval
[0, t]. In Fig. 4, QS(i′) denotes the set of indices of jobs of task
τi′ that can execute in the time interval [0, t]. Recall that an
instant is a schedinst if there is a job that arrives at this instant
or there is a job that finishes at this instant or there is a job
that has its zero-slack instant at this instant. Since we consider
a time interval of duration t, and no jobs arrive before the time
interval, it holds that there are at most 3×

∑
i′∈TSd

t
Ti′
e instants

that are schedinst. We can divide time into sub-time-intervals
that are non-intersecting and that these instants separate the
sub-time-intervals. This gives us that (i) a sub-time-interval
begins at an instant that is a schedinst and (ii) if a sub-time-
interval is not the last one, then it ends at an instant that is
a schedinst and (iii) within a sub-time-interval, there is no
instant that is a schedinst. We call these sub-time-intervals
positions and we let tp denote the time when the pth position
starts. There are at most 3 ×

∑
i′∈TSd

t
Ti′
e − 1 positions. We

let PS denote the set PS = {1..3 ×
∑
i′∈TSd

t
Ti′
e}, i.e., if

5

p′ ≤ |PS| − 1 then tp
′

is the beginning of the p′th position
and if p′ = |PS| then tp

′
is the end of the p′ − 1

th position
(the last position). Since we consider the time interval [0, t],
it holds that the first position starts at time 0, that is, t1 = 0.
For each position that is not the first position, it holds that
its starting time is constrained to be at least as large as the
starting time of its predecessor position; we express it as
∀p ∈ (PS \ {1}) : tp−1 ≤ tp.

We can then express whether an event occurs in the
beginning of a position. arrivespi,q is a variable in {0, 1};
if arrivespi,q = 1 then it means that τi,q arrives in the
beginning of position p. arrivedpi,q is a variable in {0, 1}; if
arrivedpi,q = 1 then it means that τi,q arrives in the beginning
of position p or in an earlier position. finishespi,q is a variable
in {0, 1}; if finishespi,q = 1 then it means that τi,q finishes
in the beginning of position p. finZSRMSpi,q is a variable in
{0, 1}; if finZSRMSpi,q = 1 then it means that τi,q finishes
in the beginning of position p or in an earlier position. ZSpi,q
is a variable in {0, 1}; if ZSpi,q = 1 then it means that τi,q
arrives exactly Zi before the beginning of position p. Zdpi,q is
a variable in {0, 1}; if Zdpi,q = 1 then it means that there
is a position p′ ≤ p such that ZSp

′

i,q = 1. Fig. 3 shows
predicates and these predicates describe dispatching. We can
introduce variables that describe if a predicate is true for
a job at a time which is the beginning of a position. For
example, arrivednotfinZSRMSpi,q is a variable in {0, 1}; if
arrivednotfinZSRMSpi,q = 1 then it means that τi,q arrives in
the beginning of position p or earlier and τi,q finishes in the
beginning of a position later than p. In Fig. 4, we express
this as (arrivednotfinZSRMSpi,q = 1) ⇔ ((arrivedpi,q =
1) ∧ (finZSRMSpi,q = 0)). Other variables in Fig. 4 describe
predicates in Fig. 3 analogously. In the end, we obtain a vari-
able candZSRMSpi,q which describes that τi,q is a candidate
for execution in the beginning of position p. Recall that a job
is a candidate for execution if it is eligible and there is no other
eligible job with higher priority at this time. We then introduce
xZSRMSpi,q which is a variable in {0, 1}; if xZSRMSpi,q = 1
then it means that τi,q executes in position p. Clearly, a job
can only execute if it is a candidate. In Fig. 4, we express
this as xZSRMSpi,q ≤ candZSRMSpi,q . The above reasoning
yields:

∃〈iD, qD, t〉 s.t. (t > 0) ∧ (τiD ∈ τ) ∧ (qD ∈ {1..d t

TiD
e})∧

(feas({fiD,qD −AiD,qD > DiD} ∪ {fiD,qD = t}∪
ct(t, iD, qD)))

(4)

Let us now discuss the length of the busy period mentioned in
(3). It can be seen that if τiD,qD misses its deadline in a time
interval where only jobs with priority ≥ prioiD or criticality
≥ ζiD, then

fiD,qD(sc, R) ≤ min{t′|t′ = max{fiD,qD|ct(t′, iD, qD)}}

Clearly, since t = fiD,qD(sc, R), we obtain:

t ≤ min{t′|t′ = max{fiD,qD|ct(t′, iD, qD)}}

The right-hand side of this expression contains the symbol
qD. We would like to find an upper bound that does not depend
on qD. It can be seen that:

t ≤ min{t′|t′ = max
qD′∈{1..d t′

TiD
e}

max{fiD,qD′ |ct(t′, iD, qD′)}}

Combining it with (4) yields:

∃〈iD, qD, t〉 s.t. (t > 0) ∧ (τiD ∈ τ) ∧ (qD ∈ {1..d t

TiD
e})∧

(feas({fiD,qD −AiD,qD > DiD} ∪ {fiD,qD = t}∪
ct(t, iD, qD)))∧

(t ≤
min{t′|t′ = max

qD′∈{1..d t′
TiD
e}∧(feas(ct(t′,iD,qD′)))

max{fiD,qD′ |ct(t′, iD, qD′)}})

Dropping one constraints cannot cause infeasibility. Hence, by
dropping {fiD,qD = t} from the above, we have:

∃〈iD, qD, t〉 s.t. (t > 0) ∧ (τiD ∈ τ) ∧ (qD ∈ {1..d t

TiD
e})∧

(feas({fiD,qD −AiD,qD > DiD} ∪ ct(t, iD, qD)))∧
(t ≤

min{t′|t′ = max
qD′∈{1..d t′

TiD
e}∧(feas(ct(t′,iD,qD′)))

max{fiD,qD′ |ct(t′, iD, qD′)}})

This is the right-hand side of the lemma.
Our third lemma states how a change in t impacts certain

inequalities.

Lemma 3. If ta < tb then it holds that:

(∃〈iD, qD〉 s.t. (τiD ∈ τ) ∧ (qD ∈ {1..d ta
TiD
e}) ∧

(feas({fiD,qD −AiD,qD > DiD} ∪ ct(ta, iD, qD))))

⇒

(∃〈iD, qD〉 s.t. (τiD ∈ τ) ∧ (qD ∈ {1..d tb
TiD
e}) ∧

(feas({fiD,qD −AiD,qD > DiD} ∪ ct(tb, iD, qD))))

Proof: Assume that the left-hand side is true. Since the
left-hand side is true, we know that there is a solution to
the constraints. We can copy that solution to use it to satisfy
the constraints on the right-hand side and then for the new
variables that only exists on the right-hand side but not on the
left-hand side, we can set them to zero. This yields a solution
to the constraints on the right-hand side. And hence the right-
hand side is true.

Our fourth lemma states certain inequalities for an un-
schedulable taskset (it differs from the second lemma only
in that it uses = instead of ≤) on the right-hand side.

6

Lemma 4.

(¬ZSRMSsch(τ))⇒

(∃〈iD, qD, t〉 s.t. (t > 0) ∧ (τiD ∈ τ) ∧ (qD ∈ {1..d t

TiD
e})∧

(feas({fiD,qD −AiD,qD > DiD} ∪ ct(t, iD, qD)))∧
(t =

min{t′|t′ = max
qD′∈{1..d t′

TiD
e}∧(feas(ct(t′,iD,qD′)))

max{fiD,qD′ |ct(t′, iD, qD′)}}))

Proof: Follows from applying Lemma 3 on Lemma 2.
We will now discuss another direction of implication; we

will discuss ⇐ instead of ⇒. Our fifth lemma states that if
certain inequalities are true then the taskset is unschedulable.

Lemma 5.

(¬ZSRMSsch(τ))⇐

(∃〈iD, qD, t〉 s.t. (t > 0) ∧ (τiD ∈ τ) ∧ (qD ∈ {1..d t

TiD
e})∧

(feas({fiD,qD −AiD,qD > DiD} ∪ ct(t, iD, qD))))

Proof: Assume that the right-hand side of the lemma is
true. Then there exists a 〈iD, qD, t〉 such that the right-hand
side is true. Since the constraints on the right-hand side are
feasible, we have an assignment of values to the variables in
ct(t, iD, qD) and with this assignment of values to variables
we obtain an assignment R and can (based on the discussion
in Lemma 2 and using R), construct a schedule during [0, t]
such that τiD,qD misses its deadline. Hence, it holds that

∃〈iD, qD, R, sc〉 s.t. (τiD ∈ τ) ∧ (qD ∈ {1..njiD(R)}) ∧
(legMCS(R, sc, τ, iD, qD)) ∧ (legZSRMSsch(sc, R, τ))∧

(fiD,qD −AiD,qD > DiD)

This can be rewritten as :

(¬ZSRMSsch(τ))

This is the left-hand side of the lemma.
We can consider Lemma 5 but add additional constraints on

the right-hand side.

Lemma 6.

(¬ZSRMSsch(τ))⇐

(∃〈iD, qD, t〉 s.t. (t > 0) ∧ (τiD ∈ τ) ∧ (qD ∈ {1..d t

TiD
e})∧

(feas({fiD,qD −AiD,qD > DiD} ∪ ct(t, iD, qD)))∧
(t =

min{t′|t′ = max
qD′∈{1..d t′

TiD
e}∧(feas(ct(t′,iD,qD′)))

max{fiD,qD′ |ct(t′, iD, qD′)}}))

Proof: Follows from Lemma 5.
We then present an exact condition for unschedulability.

1. allOK := true
2. for each τiD ∈ τ , as long as allOK do
3. t := −1; newt := CoiD
4. while (t < newt) do
5. t := newt
6. flag := false
7. for each qD′ ∈ {1..d t

TiD
e} do

8. < fe, va >:= solve(max{fiD,qD′ |ct(t, iD, qD′)})
9. if fe then

10. if flag then newt := max(newt, va)
11. else newt := va; flag := true
12. end if
13. end if
14. end for
15. end while
16. for each qD ∈ {1..d t

TiD
e}, as long as allOK do

17. if feas({fiD,qD −AiD,qD > DiD}∪
ct(t, iD, qD)) then

18. allOK := false
19. end if
20. end for
21. end for
22. return allOK

Fig. 5: An algorithm for ZSRM-S schedulability testing.
Lemma 7.

(¬ZSRMSsch(τ))⇔

(∃〈iD, qD, t〉 s.t. (t > 0) ∧ (τiD ∈ τ) ∧ (qD ∈ {1..d t

TiD
e})∧

(feas({fiD,qD −AiD,qD > DiD} ∪ ct(t, iD, qD)))∧
(t =

min{t′|t′ = max
qD′∈{1..d t′

TiD
e}∧(feas(ct(t′,iD,qD′)))

max{fiD,qD′ |ct(t′, iD, qD′)}}))

Proof: Follows from Lemma 4 and Lemma 6
We then present an exact conditions for schedulability.

Theorem 1.

ZSRMSsch(τ)⇔
(∀iD s.t. (τiD ∈ τ) :

for t =

min{t′|t′ = max
qD′∈{1..d t′

TiD
e}∧(feas(ct(t′,iD,qD′)))

max{fiD,qD′ |ct(t′, iD, qD′)}} :

∀qD ∈ {1..d t

TiD
e} :

¬feas({fiD,qD −AiD,qD > DiD} ∪ ct(t, iD, qD))

)

Proof: Follows from rewriting Lemma 7.
Evaluating the right-hand side of The-

orem 1 requires calculating min{t′|t′ =
maxqD′∈{1..d t′

TiD
e}max{fiD,qD′ |ct(t′, iD, qD′)}}

— let tmin denote this. It can be seen that
maxqD′∈{1..d t′

TiD
e}max{fiD,qD′ |ct(t′, iD, qD′)} is non-

increasing with increasing t′ (follows from reasoning

7

1. allOK := true
2. for each τiD ∈ τ , as long as allOK do
3. t := −1; newt := CoiD
4. while (t < newt) and allOK do
5. t := newt
6. for each qD ∈ {1..d t

TiD
e}, as long as allOK do

7. if feas({fiD,qD −AiD,qD > DiD}∪
ct(t, iD, qD)) then

8. allOK := false
9. end if

10. end for
11. if allOK then
12. flag := false
13. for each qD′ ∈ {1..d t

TiD
e} do

14. < fe, va >:= solve(max{fiD,qD′ |ct(t, iD, qD′)})
15. if fe then
16. if flag then newt := max(newt, va)
17. else newt := va; flag := true
18. end if
19. end if
20. end for
21. end if
22. end while
23. end for
24. return allOK

Fig. 6: An algorithm for ZSRM-S schedulability testing; it is
optimized for detecting clearly unschedulable tasksets quickly.

analogous to the reasoning in the proof of Lemma 3).
Therefore, we can evaluate tmin with standard iterative
procedure. Fig. 5 is an algorithm that uses such an
iterative procedure to perform the schedulability test
as expressed by Theorem 1. We use the notation
< fe, va >:= solve(max{PROB}) to state that the
optimization problem PROB should be solved and fe is a
boolean which is true if the problem is feasible and false
otherwise; if the problem is feasible then ve is the value of
the objective function for an optimal solution.

For many tasksets that are unschedulable, it holds that
there is a job that misses its deadline at an early time in
a busy period. Unfortunately, Fig. 5 requires that we obtain
t ≥ newt before we can even start checking the existence
of deadline misses. We would like to get early termination
for such tasksets. By using Lemma 5, we can check a given
〈iD, qD, t〉 to see if it satisfies certain conditions and if this is
the case, we know that the taskset is unschedulable. We can
apply this condition for the t after line 5 in Fig. 5. By adding
such a check, we know that lines 16 to 20 in Fig. 5 are not
needed. With these observations, we can rewrite the algorithm
Fig. 5 into the algorithm in Fig. 6.

IV. NEW SCHEDULABILITY TEST FOR ZSRM-SE

In this section, we present an exact schedulability test for
ZSRM-SE. Note that ZSRM-SE differs from ZSRM-S in only
two ways. First, the definition of success of a job is different;
a job can be not-success if the job misses its deadline (just
like in ZSRM-S) but a job can also be not-success if it is
terminated. Second, the schedules that can be generated by
ZSRM-SE are different from the ones that can be generated

by ZSRM-S. Hence, use the constraints in Fig. 4 as a starting
point and observe that ZSRM-SE is impacted by termination
condition and hence, we add constraints for that and this
results in the constraints in Fig. 7. Note that in Fig. 7, we have
a variable terminatednowp

i,q with the interpretation that if
terminatednowp

i,q = 1 then τi,q is terminated at the beginning
of position p. There is also a predicate terminatedpi,q with the
interpretation that if terminatedpi,q = 1 then τi,q is terminated
at the beginning of position p or earlier. With these variables,
we can define eligZSRMSEpi,q that describe whether τi,q is
eligible at the beginning of position p; it is calculated based
on terminatedpi,q . Therefore, if τiD,qD is a not-success job
then it holds that the there is a t such that the following
constaints are feasible: {((terminatedPS

iD,qD = 1) ∨ (fiD,qD >
AiD,qD + DiD))} ∪ ct2(t, iD, qD), where ct2 is the set of
constraints in Fig. 7 and PS is the last position. We also
introduce fti,q — meaning failure time — which is a variable
that states the time that τi,q generated a failure. If τi,q is
terminated then fti,q is the time when it got terminated. If
τi,q is not terminated then fti,q is the time when it finished.
Our formulation here also differ from the one in the previous
section in that the number of scheduling instants is greater;
here each job can generate four scheduling instants — the time
when a job has executed exactly its nominal execution time
can be a scheduling instant as well (because job termination
can happen at such an instant).

Theorem 2.

ZSRMSEsch(τ)⇔
(∀iD s.t. (τiD ∈ τ) :

for t =

min{t′|t′ = max
qD′∈{1..d t′

TiD
e}

max{ftiD,qD′ |ct2(t′, iD, qD′)}} :

∀qD ∈ {1..d t

TiD
e} :

¬feas({(terminatedPS
iD,qD = 1) ∨ (fiD,qD −AiD,qD > DiD)}∪

ct2(t, iD, qD))

)

Proof: This is a direct extension of Theorem 1.
Fig. 8 is an algorithm that uses such an iterative procedure

to perform the schedulability test as expressed by Theorem 2.

V. OUR TOOL

Recall Fig. 5 presented an algorithm for performing ex-
act schedulability analysis of ZSRM-S and Fig. 7 presented
an algorithm for performing exact schedulability analysis of
ZSRM-SE. These algorithms have in common that they check
if a set of constraints is feasible and they also solve a
problem of maximizing an objective function subject to certain
constaints. Some of the constraints mentioned are not MILP —
they have binary variables and logical operators. We will now
discuss how to convert them to MILP. In our problems, we can
add, for each real variable a the constraint: a ≤ BIG where
BIG is a constant computed as BIG =

∑
τi∈τd

t
Ti
e × Coi .

8

Sets :

TS = {i′|(τi′ ∈ τ) ∧ ((prioi′ ≥ prioiD) ∨ (ζi′ ≥ ζiD))},TSHC(i) = {i′|(τi′ ∈ τ) ∧ (ζi′ > ζi)},

TSHP(i) = {i′|(τi′ ∈ τ) ∧ (prioi′ > prioi)},QS(i′) = {1..d t
Ti′
e},PS = {1..4×

∑
i′∈TS

d t
Ti′
e}

Constraints :

t1 = 0 ∀p ∈ (PS \ {|PS|}) : tp ≤ tp+1 :

∀〈i, q〉 s.t. (i ∈ TS) ∧ (q ∈ (QS(i) \ {1})) : Ai,q −Ai,q−1 ≥ Ti
∀〈i, q〉 s.t. (i ∈ TS) ∧ (q ∈ QS(i)) :

∑
p′∈PS

arrivesp
′

i,q = 1
∑
p′∈PS

ZSp
′

i,q = 1

∀〈i, q, p〉 s.t. (i ∈ TS) ∧ (q ∈ QS(i)) ∧ (p ∈ (PS \ {|PS|})) :
∑
p′∈PS

finishesp
′

i,q = 1− terminatedpi,q

(arrivespi,q = 1)⇒ (donexpi,q = 0) (arrivespi,q = 1)⇒ (Ai,q = tp) arrivedpi,q =
∑

p′∈{1..p}

arrivesp
′

i,q

(finishespi,q = 1)⇒ (donexpi,q = ci,q) (finishespi,q = 1)⇒ (fi,q = tp) finpi,q =
∑

p′∈{1..p}

finishesp
′

i,q

(ZSpi,q = 1)⇒ (Ai,q + Zi = tp) Zdpi,q =
∑

p′∈{1..p}

ZSp
′

i,q

(doneexactlypi,q = 1)⇒ (donexpi,q = Ci)
∑

p′∈{1..}

doneexactlyp
′

i,q = highexeandnotterminatedpi,q

(highexeandnotterminatedpi,q = 1)⇔ ((arrivedpi,q = 1) ∧ (atmostnomp
i,q = 0) ∧ (terminatedpi,q = 0))

(arrivednotfinpi,q = 1)⇔ ((arrivedpi,q = 1) ∧ (finpi,q = 0))

(Zdnotfinpi,q = 1)⇔ ((Zdpi,q = 1) ∧ (finpi,q = 0))

(atmostnomp
i,q = 1)⇐ (donexpi,q ≤ Ci)

(atmostnomp
i,q = 0)⇐ (donexpi,q > Ci)

(Zdnotfinandnotatmostnomp
i,q = 1)⇔ ((Zdpi,q = 1) ∧ (finpi,q = 0) ∧ (atmostnomp

i,q = 0))

terminatedpi,q =
∑

p′∈{1..p}

terminatednowp′

i,q

(suspendednowp
i,q = 1)⇒ (

∑
i′∈TSHC(i)

∑
q′∈QS(i′)

Zdnotfinpi′,q′ ≥ 1)

(suspendednowp
i,q = 0)⇒ (

∑
i′∈TSHC(i)

∑
q′∈QS(i′)

Zdnotfinpi′,q′ ≤ 0)

(terminatednowp
i,q = 1)⇒ (

∑
i′∈TSHC(i)

∑
q′∈QS(i′)

Zdnotfinandnotatmostnomp
i′,q′ ≥ 1)

(terminatednowp
i,q = 0)⇒ (

∑
i′∈TSHC(i)

∑
q′∈QS(i′)

Zdnotfinandnotatmostnomp
i′,q′ ≤ 0)

(eligZSRMSEpi,q = 1)⇔ ((arrivednotfinpi,q = 1) ∧ (suspendednowp
i,q = 0) ∧ (terminatedpi,q = 0))

(candZSRMSEpi,q = 1)⇔ ((eligZSRMSEpi,q = 1) ∧ (∧i′∈TSHP(i) ∧q′∈QS(i′) (eligZSRMSpi,q = 0)))

(busyp = 1)⇒ (
∑
τi′∈τ

∑
q′∈QS(i′)

candZSRMSEpi′,q′ ≥ 1) (busyp = 0)⇒ (
∑
τi′∈τ

∑
q′∈QS(i′)

candZSRMSEpi′,q′ ≤ 0)

(xpi,q = 1)⇒ (donexp+1
i,q = donexpi,q + tp+1 − tp) xpi,q ≤ candZSRMSEpi,q

∀p ∈ (PS \ {|PS|}) :
∑
τi′∈τ

∑
q′∈QS(i′)

xpi′,q′ = busyp

∀p ∈ PS : (finishespiD,qD = 1)⇒ (
∑

p′∈{1..p−1}

busyp
′
≥ p− 1)

∀〈i, q〉 s.t. (i ∈ TS) ∧ (q ∈ QS(i)) ∧ (ζi > ζiD) : ci,q ≤ Ci ∀〈i, q〉 s.t. (i ∈ TS) ∧ (q ∈ QS(i)) ∧ (ζi ≤ ζiD) : ci,q ≤ Coi
(terminatediD,qD = 0)⇒ (ft = fiD,qD) ∀p ∈ PS : (terminatednowp

iD,qD = 1)⇒ (ft = tp)

Domains of variables :tp ∈ R≥0,A
p
i,q ∈ R≥0, arrivespi,q ∈ {0, 1}, arrivedpi,q ∈ {0, 1}, fi,q ∈ R≥0, finishespi,q ∈ {0, 1},

finpi,q ∈ {0, 1},ZSpi,q ∈ {0, 1},Zdpi,q ∈ {0, 1}, donexpi,q ∈ R≥0, ci,q ∈ {0, 1}, arrivednotfinpi,q ∈ {0, 1},Zdnotfinpi,q ∈ {0, 1},
suspendednowp

i,q ∈ {0, 1}, eligZSRMSEpi,q ∈ {0, 1}, candZSRMSEpi,q ∈ {0, 1}, busyp ∈ {0, 1}, xpi,q ∈ {0, 1}, ft ∈ R≥0

Fig. 7: Constraints we use for exact schedulability analysis of ZSRM-SE.

9

1. allOK := true
2. for each τiD ∈ τ , as long as allOK do
3. t := −1; newt := CoiD
4. while (t < newt) and allOK do
5. t := newt
6. for each qD ∈ {1..d t

TiD
e}, as long as allOK do

7. if feas({(terminatedPS
iD,qD = 1)∨

(fiD,qD−AiD,qD > DiD)}∪ ct2(t, iD, qD)) then
8. allOK := false
9. end if

10. end for
11. if allOK then
12. flag := false
13. for each qD′ ∈ {1..d t

TiD
e} do

14. < fe, va >:=
solve(max{ft|ct2(t, iD, qD′)})

15. if fe then
16. if flag then newt := max(newt, va)
17. else newt := va; flag := true
18. end if
19. end if
20. end for
21. end if
22. end while
23. end for
24. return allOK

Fig. 8: An algorithm for ZSRM-SE schedulability testing; it is
optimized for detecting clearly unschedulable tasksets quickly.

And this does not change feasibility. A constraint of the form
(x = 1) ⇒ (a = b) can be rewritten as: ((x = 1) ⇒ (a ≤
b)) ∧ ((x = 1) ⇒ (a ≥ b)). Note that if x is a variable with
the domain {0, 1} and a and b are non-negative real variables
and BIG is a constant selected so that a ≤ BIG and b ≤ BIG,
then a constraint (x = 1)⇒ (a ≤ b) can be rewritten as

a− b+ BIG× x ≤ BIG (5)

Also, a constraint of the form (a = 1) ⇔ (b = 1) ∧ (c = 1)
can be rewritten as (b + c − a ≤ 1) ∧ (b + c − 2a ≥ 0).
Consider the constraint: (suspendednowZSRMSpi,q = 1) ⇒
(
∑
i′∈TSHC(i)

∑
q′∈QS(i′) ZdnotfinZSRMSpi′,q′ ≥ 1). When

we rewrite it, we use BIG = 1 + (
∑
i′∈TSHC(i) |QS(i′)|).

With these techniques, we can rewrite the optimization
problems and feasibility checking problems are MILP. Indeed,
we have done so and implemented a tool that performs these
computations. Our implementation uses Gurobi 6.0.3 — a
state-of-the-art MILP solver.

VI. CONCLUSIONS

Zero-Slack Rate-Monotonic (ZSRM) is a mixed-criticality
scheduler which suspends a low-criticality tasks when a high-
criticality tasks has not finished at a certain time. Previous
work has made available implementations of a ZSRM sched-
uler in the Linux kernel and in VxWorks, as well as a sufficient
schedulability test for it and this schedulability test is available
to software practitioners in the OSATE AADL workbench.
And a modification of it was used in a UAV system to ensure
that an overload in vision processing does not jeopardize
deadline guarantees of flight-control software [6]. Hence, we

believe ZSRM is one of the most practical ideas in mixed-
criticality scheduling. Unfortunately, no exact schedulability
analysis was available for ZSRM schedulers. Therefore, in this
paper, we presented exact schedulability tests for two ZSRM
schedulers.

ACKNOWLEDGMENT

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-
C-0003 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research
and development center. This material has been approved for
public release and unlimited distribution. DM-0002431

REFERENCES

[1] S. K. Baruah, A. Burns, and R. I. Davis. Response-time
analysis for mixed criticality systems. In RTSS’11.

[2] S. K. Baruah and S. Vestal. Schedulability analysis of
sporadic tasks with multiple criticality specifications. In
ECRTS’08.

[3] A. Burns and R. I. Davis. Mixed criticality systems
— a review. Technical report, Department of Computer
Science, University of York, 2015. www-users.cs.york.
ac.uk/burns/review.pdf.

[4] R. I. Davis and A. J. Wellings. Dual priority scheduling.
In RTSS’95.

[5] D. de Niz, K. Lakshmanan, and R. Rajkumar. On the
scheduling of mixed-criticality real-time task sets. In
RTSS’09.

[6] D. de Niz, L. Wrage, A. Rowe, and R. Rajkumar. Utility-
based resource overbooking for cyber-physical systems.
In RTCSA’13.

[7] H.-M. Huang, C. Gill, and C. Lu. Implementation and
evaluation of mixed criticality scheduling approaches for
periodic tasks. In RTAS’12.

[8] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: Exact characterization and average
case behavior. In RTSS’90.

[9] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced
aperiodic responsiveness in hard real-time environments.
In RTSS’87.

[10] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J.
ACM, 20(1):46–61, 1973.

[11] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions
for some practical problems in prioritized preemptive
scheduling. In RTSS’86.

[12] S. Vestal. Preemptive scheduling of multi-criticality sys-
tems with varying degrees of execution time assurance.
In RTSS’07.

10

www-users.cs.york.ac.uk/burns/review.pdf
www-users.cs.york.ac.uk/burns/review.pdf

	Introduction
	System model
	New Schedulability Test for ZSRM-S
	New Schedulability Test for ZSRM-SE
	Our tool
	Conclusions

