Award Number: W81XWH-12-1-0346

TITLE: Targeting PRMT5 as a Novel Radiosensitization Approach for Primary and Recurrent Prostate Cancer Treatment

PRINCIPAL INVESTIGATOR: Chang-Deng Hu

CONTRACTING ORGANIZATION: Purdue University
West Lafayette, IN 47907-2040

REPORT DATE: October 2016

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Prostate cancer is the second leading cause of cancer death in the United States. Although radiotherapy (RT) is one of the two curative treatments for prostate cancer patients, approximately 10% of low-risk cancer patients and 30-60% of high-risk prostate cancer patients experience biochemical recurrence within five years, among them 20% die in 10 years. The proposed research is based on the hypothesis that targeting protein arginine methyltransferase 5 (PRMT5) can sensitize primary and recurrent prostate cancer cells to RT. During the grant period, we have made significant progress in our understanding of how PRMT5 overexpression contributes to both intrinsic and acquired radioresistance in prostate cancer. First, PRMT5 is overexpressed in prostate cancer and its expression correlates positively with the expression of the androgen receptor (AR). Mechanistically PRMT5 epigenetically activates transcription of AR. Second, we have discovered two potential regulatory mechanisms that may account for PRMT5 overexpression in prostate cancer patients. One is the transcriptional regulation of PRMT5 by NF-κB, which is negatively regulated by the PKC-cFos signaling, and the other is the E3 ligase CHIP-mediated ubiquitination and degradation. Third, targeting PRMT5 by either knockdown or inhibition with our novel inhibitor BLL3.3 sensitizes prostate cancer cells to radiation. However, targeting PRMT5 does not sensitize prostate cancer cells to three chemotherapeutic agents examined. Contrary to our hypothesis, targeting PRMT5 does not radiosensitize isolated radiation-resistant sublines derived from LNCaP and DU145. Fourth, ionizing radiation induces PRMT5 expression via transcriptional regulation, which mediates radiation-induced neuroendocrine differentiation (NED) by methylating and activating CREB, a critical transcription factor mediating radiation-induced NED. Finally, RNA-Seq analysis has revealed that PRMT5 regulates a large set of genes involved in DNA double-strand break (DSB) via homologous recombination and non-homologous end joining. Given that AR, DSB repair and NED all contribute to radioresistance, our findings provide evidence that targeting PRMT5 is an effective radiosensitization approach for prostate cancer RT.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>2. Keywords</td>
<td>5</td>
</tr>
<tr>
<td>3. Overall Project Summary</td>
<td>6</td>
</tr>
<tr>
<td>4. Key Research Accomplishments</td>
<td>17</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td>18</td>
</tr>
<tr>
<td>7. Inventions, Patents and Licenses</td>
<td>20</td>
</tr>
<tr>
<td>8. Reportable Outcomes</td>
<td>20</td>
</tr>
<tr>
<td>9. Other Achievements</td>
<td>20</td>
</tr>
<tr>
<td>10. References</td>
<td>22</td>
</tr>
<tr>
<td>11. Appendices</td>
<td>25-</td>
</tr>
</tbody>
</table>
1. Introduction

Prostate cancer remains the number one cancer diagnosed in men (except skin cancer), and it is estimated that there will be 180,890 new cases diagnosed and 26,120 deaths in the US in 2016 according to the American Cancer Society report. Radiotherapy (RT) is an important primary treatment for old patients with low-risk prostate cancer, the standard primary treatment for high-risk prostate cancer when combined with androgen deprivation therapy (ADT), and the major salvage therapy for local recurrence after surgery [1-5]. In addition, surgery plus adjuvant RT also demonstrates survival benefits when compared with surgery alone [1, 6, 7]. Despite that the majority of patients can be cured by RT, approximately 10% of patients with low-risk cancer and up to 30-60% of patients with high-risk cancer experienced biochemical recurrence within five years after RT, and among them 20% of patients died in 10 years [8-11]. Similar rate of recurrence was observed after surgery [12, 13]. Given that 96% of prostate cancer patients are present as localized disease in the US [14] and that most recurrent tumors are local recurrence [15], failure in controlling these localized primary and recurrent prostate cancers eventually leads to disease progression and contributes to the majority of prostate cancer deaths. Thus, developing effective primary and salvage RT for prostate cancer patients will have a huge impact on reducing prostate cancer mortality.

Protein arginine methyltransferases (PRMTs) are a family of proteins involved in post-translational modifications of histones and non-histone protein substrates [16, 17], mRNA splicing, nuclear-cytoplasmic shuttling, DNA damage response, and signal transduction [18]. Recent studies have further demonstrated that PRMT5 is involved in the DNA damage response by regulating the function of proteins that are involved in the DNA damage response [19-21]. However, it remains uninvestigated how PRMT5 is involved in prostate cancer development, progression, and therapeutic responses. Based on the findings in the literature and the preliminary studies, it was hypothesized that radiation-induced or pre-existing PRMT5 overexpression contributes to the resistance of prostate cancer cells to RT in both primary and recurrent prostate cancer. The objective of the proposed research was to determine whether targeting PRMT5 can sensitize primary prostate cancer to RT, and can reprogram therapy-resistant recurrent prostate cancer to therapy-sensitive prostate cancer. Three specific aims were proposed in this project. **Aim 1** was to determine that targeting PRMT5 can sensitize prostate cancer cells and prostate cancer xenograft tumors to fractionated ionizing radiation (IR) *in vitro* and in nude mice; **Aim 2** was to determine that targeting PRMT5 can sensitize radiation-resistant prostate cancer cell sublines and recurrent xenograft tumors to radiation and chemotherapy *in vitro* and in nude mice; and **Aim 3** was to establish the clinical correlation between the expression level of PRMT5 and radioresistance and tumor recurrence in human prostate cancer patients. Under the support of this award, we have made the following progress during the grant period (Aug 1, 2012 – July 30, 2016).
2. Keywords

Prostate cancer, LNCaP, DU145, PC-3, PRMT5, CREB, ionizing radiation, NF-Y, AR, C4-2
3. Overall Project Summary

Task 1. Aim 1: To determine that targeting PRMT5 can sensitize prostate cancer cells and prostate cancer xenograft tumors to radiation in vitro and in nude mice (Months 1-18)

1a. Generate lentivirus for making doxycycline-inducible cell lines using LNCaP, DU145 and PC-3 cells (Months 1-6).

We constructed four short-hairpin RNA (shRNA) expressing vectors using the Tet-pLKO-puro vector to knock down PRMT5 and screened for the best one for making lentivirus. We identified two shRNA constructs (#1577 and #1832) showed a better knockdown effect after transient induction of the shRNAs for 72 h. We also verified that knockdown of PRMT5 by the #1577 construct successfully inhibited 10 Gy of fractionated ionizing radiation (FIR)-induced CREB phosphorylation (pCREB) as reported in the 2011-2012 report. Thus, we chose PRMT5 shRNA#1577 and #1832 for proposed experiments. As shown in Fig. 1A, transient transfection of the #1577 shRNA construct into all three cell lines for 96 h efficiently reduced the expression of PRMT5.

We used both knockdown constructs to establish stable cell lines for doxycycline-induced knockdown of PRMT5 to perform proposed in vivo experiments. During the course of our work, we learned that established pools of stable cell lines cannot be used for in vivo studies. This is likely due to the overgrowth of cells that do not have PRMT5 knockdown. As reported in the 2013-2014 report, knockdown of PRMT5 did not result in any inhibition of xenograft tumor growth. To overcome this problem, we isolated individual cells for establishment of stable cell lines. We successfully used this approach to establish stable cell lines using LNCaP and DU145 (Fig. 1B). We also established stable cell lines using C4-2 and RWPE-1 cells. As presented in section of Additional Accomplishments and published in Oncogene, these stable cell lines not only allowed us to evaluate the effect of PRMT5 knockdown on cell growth but also allowed us to evaluate the effect of PRMT5 knockdown on xenograft tumor growth [22].

In summary, we successfully identified two potent shRNA constructs to inducibly knock down PRMT5. These two shRNA constructs enabled us to investigate the role of PRMT5 expression in cell growth and radiation response in prostate cancer cells.
1b. Perform radiosensitization experiments by using the knockdown cell lines and by using PRMT5 small molecule inhibitor BLL3.3 (months 7-12).

Since radiosensitization experiments do not require long-time maintenance, we performed transient expression of PRMT5 shRNAs to see if knockdown of PRMT5 increases radiation-induced cell death. As shown in Fig. 2, knockdown of PRMT5 by two different clones of the #1577 increased ionizing radiation (IR)-induced cell death. To determine whether knockdown or inhibition of PRMT5 can radiosensitize prostate cancer cells, we performed clonogenic assays in LNCaP, DU145 and PC-3 cells. Note that we initially proposed to use MTT and apoptosis assays to determine whether knockdown or inhibition of PRMT5 can radiosensitize prostate cancer cells in the proposal. However, we realized that clonogenic assay, rather than MTT or apoptosis assay, is a standard method to determine radiosensitivity of cancer cells. In fact, this assay was also suggested by the Scientist B. Thus, we performed clonogenic assays instead. As shown in Fig. 3A, knockdown of PRMT5 significantly sensitized LNCaP cells to IR. Although DU145 and PC-3 cells are relatively resistant to radiation, knockdown of PRMT5 also sensitized these cells to IR, albeit to a lesser extent (Fig. 3B and 3C). Further, inhibition of PRMT5 by the inhibitor BLL3.3 similarly sensitized LNCaP cells to IR (Fig. 3D). Thus, our results demonstrated that knockdown or inhibition of PRMT5 can radiosensitize prostate cancer cells to radiation.

Figure 2. Knockdown of PRMT5 increases IR-induced cell death. LNCaP cells were transfected with the PRMT5 shRNA#1577 (clone #1 and #3) or the vector control (Con) for 48 h, followed by IR (2 Gy/day) for three days (IR+). Similar control experiment was performed without irradiation (IR-). Phase contrast images shown were taken 24 h after the third irradiation.

Figure 3. Knockdown or inhibition of PRMT5 sensitizes prostate cancer cells to radiation. A-C. The indicated prostate cancer cells were transiently transfected with the PRMT5 shRNA#1577 for 48 h, and then subjected to the indicated dose of IR. Cells were immediately trypsinized and counted, and various numbers of cells were seeded in 6-well plates for the formation of colonies for 14 days. The number of colony was counted and surviving fraction was calculated. D. LNCaP cells were treated with 10 μM of BLL3.3 for 48 h, followed by similar procedures for the clonogenic assays described above. Results are from three independent experiments (Mean±SD). * P<0.05; **P<0.01
1c. Submit animal protocols for approval from Purdue University and USAMRMC.

We submitted an original animal protocol in 2012 and an updated protocol in 2015 due to the expiration of our university animal protocol. Both protocols were approved by the USAMRMC.

1d. Perform in vivo radiosensitization experiments using prostate cancer cell xenograft tumors (LNCaP and DU-145) and analyze data (months 7-12).

Because we were limited by the lack of access to the Linear Accelerator in the Veterinary School at Purdue as we proposed in the original submission, we approached Purdue University Center for Cancer Research, the College of Pharmacy and the department for the support of purchasing an X-Ray irradiator. With their generous support, we acquired a XRD-320 from Precision in October 2015. The X-ray irradiator is housed in our new lab in the cancer center, to which we only relocated in April. Unfortunately, we encountered a few problems with the irradiator and the repair was finally completed. As discussed below, our finding that PRMT5 also epigenetically regulates AR expression in prostate cancer cells. As ADT is clinically used as a radiosensitizer, we reasoned that AR positive cells would be the best candidate for radiosensitization by targeting PRMT5. For this purpose, we inoculated LNCaP-shRNA stable cells into NRG mice for radiosensitization experiments by our co-investigator Dr. Ben Elzey in the Cancer Center Animal Facility in June. Unfortunately, the tumor take rate was too low and only two mice showed tumor growth out of 24 mice. We are currently retrying this radiation treatment experiment in xenograft tumors, which is the only data left for our manuscript submission. We anticipate that the experiments will be completed by the end of November and the manuscript will be submitted by the end of this year. To overcome this challenge, we indeed tried to evaluate the impact of PRMT5 knockdown itself on LNCaP xenograft tumor growth and surprisingly found that knockdown of PRMT5 completed suppressed LNCaP xenograft tumor growth. This result was presented as Fig. 5 in our recently accepted Oncogene paper [22].

e. Analyze tumor tissues by immunohistochemistry (months 13-18).

This will be completed once we finish up the radiation experiment above.

Task 2.

Aim 2: To determine that targeting PRMT5 can sensitize recurrent (regrown) xenograft tumors to radiation and chemotherapy (Months 19-36)

2a. Isolate radiation-resistant prostate cancer sublines from DU-145 and PC-3 cells (months 19-24)

We performed 40 Gy of fractionated IR to DU145 and PC-3 cells, and waited for cell regrowth. We successfully isolated 3 radiation-resistant sublines from DU145. Interestingly, radioresistant PC-3 cells after 40 Gy of fractionated IR remained dormant and no regrowth was observed after more than 3-month observation. This suggests that PC-3 cell cannot be reprogrammed to proliferate.

2b. Perform radiosensitization and chemosensitization experiments using radiation-resistant sublines (Months 25-36).

We examined whether inhibition of PRMT5 by BLL3.3 can sensitize radioresistant sublines to three chemotherapeutic agents. We used two LNCaP radioresistant sublines LNCaP-IRR3 and LNCaP-IRR6 and one DU145 radioresistant subline DU145-IRR1. Contrary to our
hypothesis, inhibition of PRMT5 did not sensitize any of these radioresistant sublines to three chemotherapeutic agents (docetaxel, cisplatin and etoposide) (Figs 4 and 5). As etoposide also induces DNA double strand breaks, these results suggest that PRMT5 may utilize different mechanisms to sensitize prostate cancer cells to radiation.

We next tested whether inhibition of PRMT5 by BLL3.3 can sensitize both parental and radioresistant prostate cancer cells to radiation. As shown in Fig. 6, inhibition of PRMT5 by BLL3.3 dramatically increased IR-induced cell death in LNCaP cells and to a lesser extent in DU145 cells. However, BLL3.3 did not alter the response of isolated radioresistant sublines significantly (Fig. 6A and 6B). These results suggest that the radioresistance mechanism in these

Figure 4. Effect of PRMT5 inhibition on the chemosensitivity of LNCaP and its radiation-resistant sublines LNCaP-IRR3 and LNCaP-IRR6. LNCaP or the isolated radiation-resistant sublines LNCaP-IRR3 and LNCaP-IRR6 after 40 Gy of fractionated ionizing radiation (FIR) were seeded in 48-well plate in 200 µl medium at a density of 1x10^4 for 24 hours, and then treated with various concentrations of the indicated chemotherapeutic agents with or without a PRMT5 inhibitor BLL3.3 (10 µM). Forty-eight hours after the treatment, 70 µl of MTT working solution (0.5 mg/ml) was added into each well. After incubation at 37°C for 4 hours, 200 µl of DMSO was added into each well and incubated for 10 min, followed by reading of the absorption at 560 nm with Take 3 plate reader (BioTek). Shown are mean ± SD from three independent experiments. Statistical analysis was performed with Two-way ANOVA, and there was no statistical significance between BLL3.3 treated and untreated groups with all three chemotherapeautic agents tested.
isolated radioresistant prostate cancer sublines may not involve PRMT5. Further research is needed to elucidate the underlying radioresistance mechanism.

Figure 5. Effect of PRMT5 inhibition on the chemosensitivity of DU145 and its radiation-resistant cells. DU145 or the isolated radiation-resistant subline DU145-IRR1 after 40 Gy of fractionated ionizing radiation (FIR) were seeded in 48-well plate in 200 μl medium at a density of 1x10^4 for 24 hours, and then treated with various concentrations of the indicated chemotherapeutic agents with or without a PRMT5 inhibitor BLL3.3 (10 μM). Forty-eight hours after the treatment, 70 μl of MTT working solution (0.5 mg/ml) was added into each well. After incubation at 37°C for 4 hours, MTT solution and the medium were aspirated, and 200 μl of DMSO was added into each well and incubated for 10 min, followed by reading of the absorbance at 560 nm with Take 3 plate reader (BioTek). Shown are mean ± SD from three independent experiments. Statistical analysis was performed with Two-way ANOVA, and there was no statistical significance between BLL3.3 treated and untreated groups with all three chemotherapeutic agents tested.

Figure 6. Effect of PRMT5 inhibition on radiation response of prostate cancer cells. A. Parental LNCaP cells and its derived radiation-resistant sublines IRR6 and IRR233 were seeded in 48-well plates and treated with the PRMT5 inhibitor BLL3.3 (10 μM) or DMSO while subjecting cells to fractionated ionizing radiation (FIR, 2 Gy/day) for 5 days. The inhibitor was freshly replaced every two days. Cell viability was measured using the MTT assay 24 hours after the last irradiation. B. Similar experiments were performed for parental DU145 and its derived radiation-resistant subline IRR121.
2c. Perform in vivo radiosensitization of recurrent xenograft tumors (Months 19-30).

Since our in vitro experiments revealed that inhibition of PRMT5 did not sensitize radioresistant LNCaP and DU-145 sublines, we did not perform the proposed radiosensitization experiments in vivo. To search for additional mechanisms that may be involved, our future research will be focused on the identification of differentially expressed genes using both RNA-Seq analysis and miRNA PCR array.

2d. Analyze tumor tissues by immunohistochemistry (Months 31-36).

This subaim was not pursued as we did not perform in vivo radiosensitization experiments with radioresistant sublines.

Task 3. Aim 3: To establish the clinical correlation between the expression level of PRMT5 and radioresistance and tumor recurrence (Months 1-36)

a. Submit IRB protocols to Purdue University, London Health Science Centre of the University of Ontario and USAMRMC (Months 1-6).

We completed the submission of IRB protocols and we received approvals.

b. Retrieve and review specimens for the proposed research (Months 7-12)

Dr. Chin and Dr. Moussa at the University of Western Ontario encountered some difficulties to retrieve recurrent prostate cancer specimens archived many years ago. They also found that many primary specimens were not available in their hospital. To solve this problem, I contacted Dr. Richard Cho at Mayo Clinic Department of Radiation Oncology based on a published paper from Mayo Clinic [23]. Unfortunately, Dr. Herrera Hernandex (pathologist) encountered the same difficulty to retrieve some specimens from their archived samples.

3c. Prepare two slides from each specimens for IHC analysis (Months 13-18). See details in 3e.

3d. perform IHC analysis and analyze data to establish the clinical correlation between PRMT5 expression and radioresistance and tumor recurrence (Months 19-36). See details in 3e.

3d. Perform IHC analysis and analyze data to establish the clinical correlation between PRMT5 expression and radioresistance and tumor recurrence (Months 19-36) See details in 3e

To overcome the challenge in retrieving recurrent prostate cancer specimens from patients who failed radiotherapy, we decided to examine the expression level of PRMT5 in primary prostate cancer specimens. In collaboration with Dr. Jiaoti Huang at UCLA, we examined the expression level of PRMT5 in a tissue microarray that consists of tissues derived from 32 benign prostatic hyperplasia (BPH), 20 prostate cancer with Gleason score 6 and 20 with Gleason score 7 and above. We found that 60% of intermediate- and high-risk prostate cancer patients show moderate-to-strong expression whereas 40% of low-risk and 20% of normal control show similar extent of expression (Fig. 4 in Oncogene paper) [22]. These results strongly suggest that higher expression of PRMT5 may indeed contribute to radioresistance. As this finding is very significant and clinically significant, we have tried to understand whether PRMT5 overexpression may contribute to radioresistance at the molecular level.

Currently, ADT is used as a radiosensitization approach for the treatment of intermediate-high-risk prostate cancer. Although it was unclear for a long time why ADT can be used as a
radiosensitizer, recent studies have suggested that the androgen receptor (AR) signaling may regulate the expression of Ku70 that is involved in the repair of DNA double strand break (DSB) by non-homologous end joining (NHEJ) [24, 25]. Because we also observed that PRMT5 knockdown inhibits prostate cancer growth in an AR-dependent manner (see results below and included Oncogene paper), we hypothesized that PRMT5 may epigenetically regulate the transcription of AR. Indeed, PRMT5 is an epigenetic activator of AR transcription. Significantly, PRMT5 expression also correlates with AR expression in prostate cancer tissues (Fig. 4 in Oncogene paper) [22]. We also retrieved data from Oncomine Database and found that PRMT5 expression also correlates with AR at the transcript level (Fig. 4 in Oncogene paper). Taken together, our findings strongly support our hypothesis that PRMT5 overexpression confers radioresistance, particularly in high-risk prostate cancer and that RT-induced PRMT5 overexpression is also responsible for at least a subset of recurrent prostate cancer.

Additional accomplishments relevant to proposed research

1. **PRMT5 regulates prostate cancer cell growth via epigenetic activation of AR transcription.** Because AR is the critical driver of prostate cancer development and progression and is the therapeutic target of ADT, we believe investigating the role of PRMT5 in regulation of AR expression may provide evidence that PRMT5 is not only a therapeutic target for prostate cancer radiosensitization but also is a therapeutic target for development of novel treatment for castration resistant prostate cancer (CRPC). Thus, we invested our effort on this and confirmed that PRMT5 indeed epigenetically regulates AR transcription. The major findings reported in the Oncogene paper are as follow [22]:

 (1) PRMT5 regulates prostate cancer cell growth in an AR-dependent manner.
 (2) PRMT5 binds to the AR promoter and epigenetically regulates AR transcription.
 (3) PRMT5 is recruited to the AR proximal promoter region by its interaction with Sp1, and Brg1, an ATP dependent chromatin remodeler, is involved in epigenetic regulation of AR transcription.
 (4) PRMT5 is overexpressed in prostate cancer tissues, and its expression correlates positively with AR expression.
 (5) PRMT5 knockdown completely suppressed the growth of LNCaP xenograft tumors in mice.

2. **PRMT5 is required for the repair of DNA double strand breaks.** The effect of radiotherapy is largely determined by the induction of DNA DSB. Because our preliminary observations show that FIR dose-dependently induces PRMT5 expression and because PRMT5 was also reported to regulate the function of p53 and Rad9, both of which are involved the repair of DNA damages [19, 20], we examined whether PRMT5 regulates the repair of DSB. We transfected LNCaP cells with PRMT5 shRNA or the SC control for three days and then subjected cells to different doses of radiation. As γH2AX is a hallmark of DSB, we performed immunocytochemical staining and Western blotting analysis of γH2AX (Fig. 7A and 7B). Indeed, a significant induction of γH2AX foci formation and expression level was observed. Consistent with this, Comet Assay also indicates the increased induction of DSB when compared with SC (Fig. 7). These results together suggest that PRMT5 is required for the repair of radiation-induced DSB.
3. PRMT5 epigenetically regulates expression of genes required for DSB repair. Although it is known that PRMT5 regulates DNA damage by post-translational modification of p53, our results showed that knockdown of PRMT5 also sensitized PC-3 cells, which is deficient in p53, to IR. In addition, the posttranslational modification of Rad9 by PRMT5 is not involved in the repair of DSB induced by IR [20]. As PRMT5 is an epigenetic regulator, we reasoned that PRMT5 may regulate IR-induced DSB repair by epigenetic regulation of target genes involved in DSB repair. To this end, we performed RNA-seq analysis in the presence or absence of PRMT5 knockdown to identify target genes in response to IR treatment. As shown in Fig. 8A, we have identified 121 genes that are differentially expressed. Interestingly, 85% (103) of genes are down-regulated when PRMT5 is knocked down, suggesting that PRMT5 mainly activates transcription of these genes

Figure 7. Knockdown of PRMT5 increases IR-induced DNA double-strand break. A. LNCaP cells transiently transfected with scrambled control (SC) or PRMT5 shRNA (KD) plasmids for 48 h were irradiated with 1 Gy, and γH2AX staining was performed 2 h after the irradiation. B. Similar treatment was performed as in A and total cell lysate was prepared for immunoblotting analysis of γH2AX. C. LNCaP cells were transfected with SC or PRMT5 shRNA plasmids for 48 h, followed by irradiation of the indicated dose for Comet assay.

Figure 8. PRMT5 regulates many genes involved in the DNA damage response. A. Identification of 121 genes differentially expressed upon PRMT5 knockdown induced by doxycycline. LNCaP-shPRMT5 cells were incubated in the presence or absence of Doxycycline (Dox) for three days followed 2 Gy of ionizing radiation. RNA was isolated 24 h after the radiation treatment. Three independent experiments were performed and the total RNA samples were subjected to Illumina next-generation sequencing in Purdue Genome Core facility, and the data was analyzed by the Purdue University Bioinformatics Core facility. B. Percent expression of selected genes including four involved in HR and NHEJ that are down-regulated upon doxycycline (Dox) treatment to induce PRMT5 knockdown when compared with Dox-(100%).
target genes in LNCaP cells. Note that the majority of identified genes are involved in DNA damage response. To confirm several genes that are involved in DNA damage response, we further performed qPCR and confirmed that RAD51AP1, RAD51D, RAD51 and NHEJ1 are down-regulated by PRMT5 knockdown (Fig. 8B). These results suggest that PRMT5 may contribute to both homologous recombination (HR) and NHEJ by epigenetically activating transcription of these target genes.

4. PRMT5 mediates radiation-induced neuroendocrine differentiation (NED) via activation of CREB. Although multiple mechanisms may underlie the intrinsic or acquire radioresistance, our findings that radiation can induce NED represents an emerging mechanism (Fig. 3 in the review article included) [26]. Mechanistically, we identified the transcription factor as a critical mediator of radiation-induced NED and targeting CREB sensitizes prostate cancer cells to radiation in both AR positive and AR negative cells [27]. To search for upstream regulators, we performed a mass spectrometry analysis to identify interacting proteins of CREB. Interestingly, one of the putative interacting proteins was PRMT5. Immunoprecipitation further confirmed their interaction (Fig. 9A). To know where they interact in cells, we performed bimolecular fluorescence complementation (BiFC) analysis and found that PRMT5 interacts with CREB in both cytoplasm and nucleus (Fig. 9B). To determine their functional relationship, we performed FIR in the presence or absence of PRMT5 knockdown and observed that knockdown of PRMT5 significantly inhibited FIR-induced CREB activation (Fig. 9C). To determine whether PRMT5 has any impact on CREB methylation, we performed immunoprecipitation with an anti-mono and dimethyl arginine antibody 7E6 from FIR-treated and non-irradiated LNCaP cells and blotted for CREB. Indeed, CREB was specifically co-immunoprecipitated with 7E6 (Fig. 9D). These results strongly suggest that PRMT5 likely mediates FIR-induced NED via methylation and activation of CREB. To test this, we used our Dox-inducible PRMT5 knockdown stable cell lines and performed FIR to evaluate how PRMT5 knockdown may impact FIR-induced NED. We knocked down PRMT5 during the second two weeks (acquisition of NED) and during the entire four weeks. Consistent with our hypothesis, knockdown of PRMT5 during the entire four weeks killed almost all cells. Significantly, knockdown of PRMT5 during the second two weeks is sufficient to inhibit FIR-induced NED (Fig. 9E). Thus, FIR-induced PRMT5 overexpression may also confer radioresistance by mediating radiation-induced NED.

5. Regulation of PRMT5 expression by NF-Y in prostate cancer cells

To understand how PRMT5 expression is regulated in prostate cancer cells, we have made a significant progress in this direction, and confirmed that NF-Y is a key transcription factor for PRMT5 transcription in prostate cancer cells. Importantly, we also discovered that the PKC signaling is a negative regulator of PRMT5. This is a significant finding given the recent finding that PKC mainly plays a negative role in controlling the growth of cancer cells [28]. In fact, we also found an inverse correlation between the expression level of several isoforms of PKC and PRMT5 in prostate cancer and lung cancer. A research article entitled “Transcriptional activation of PRMT5 by NF-Y is required for cell growth and negatively regulated by the PKC/c-Fos signaling in prostate cancer cells” published in Biochimica et Biophysica Acta [29] is included in this report as Appendix.
5. The E3 ligase CHIP regulates PRMT5 expression in prostate cancer cells. Since PRMT5 is
overexpressed in some prostate cancer patients, we performed a mass spectrometry analysis by immunoprecipitating PRMT5 from LNCaP cells. We identified 3 E3 ligases with the most peptides identified by the E3 CHIP ligase. We have confirmed their physical interaction and their interaction in prostate cancer cells. Our results showed that CHIP is an E3 ligase for PRMT5 in prostate cancer cells. Given that CHIP is down-regulated in several cancers including prostate cancer, we also established the inverse correlation between CHIP and PRMT5. We propose that CHIP down-regulation may lead to PRMT5 overexpression in a subset of prostate cancer patients. This work has been published in Biochimica et Biophysica Acta (included in this final report) [30].

6. Radiation-induced PRMT5 expression is via transcriptional activation. As presented in the preliminary studies in the proposal that FIR also induces PRMT5 expression in a dose-dependent manner. We have examined whether FIR-induced PRMT5 expression is via transcriptional regulation. To this end, we performed FIR treatment (10 Gy), and observed an increase of PRMT5 at both mRNA and protein levels (Fig. 10). Thus, FIR-induced PRMT5 expression is at least via transcriptional activation. Currently, we are examining how FIR increases PRMT5 transcription and whether this is through activation of the transcription factor NF-YA, which was demonstrated to activate PRMT5 transcription by us previously [29].

Figure 10. Ionizing radiation induces PRMT5 expression at both protein and mRNA levels. A. FIR significantly upregulates PRMT5 protein expression. LNCaP cells were treated with FIR (2 Gy IR/day) for a total of 10 Gy and harvested 24 hours after last IR treatment for Western blot analysis. FIR-treated samples from 4 independent experiments are shown as well as one representative control (untreated). B. The quantified expression level from A is shown. Results are mean ± SD from 4 independent experiments, and student’s t test with Welch’s correction was used for statistical analysis (P = 0.0027). C. FIR significantly upregulates PRMT5 mRNA expression. LNCaP cells were treated the same as A and prepared for qPCR analysis. Results are mean ± SD from 3 independent experiments, and student’s t test with Welch’s correction was used for statistical analysis (P = 0.0243).
4. Key Research Accomplishments

- PRMT5 is overexpressed in high-risk prostate cancer.
- Radiation induces PRMT5 overexpression in prostate cancer via transcriptional regulation.
- NF-Y is a transcriptional activator of PRMT5 expression in prostate cancer cells.
- The E3 ligase CHIP promotes PRMT5 ubiquitination and degradation in prostate cancer cells.
- PRMT5 epigenetically activates the transcription of androgen receptor and promotes prostate cancer cell growth.
- PRMT5 regulates transcription of a large set of target genes involved in DNA damage response and targeting PRMT5 increases radiation-induced DNA double strand breaks.
- Targeting PRMT5 sensitizes prostate cancer cells to ionizing radiation.
- Targeting PRMT5 does not sensitizes radiation-resistant prostate cancer sublines to radiation.
- Targeting PRMT5 does not sensitizes prostate cancer cells to chemotherapeutic agents.
- PRMT5 mediates fractionated ionizing radiation (FIR)-induced neuroendocrine differentiation via activation of CREB and targeting PRMT5 inhibits FIR-induced neuroendocrine differentiation.

In summary, we have demonstrated that PRMT5 overexpression confers radiation resistance by increasing AR expression, facilitates DNA double strand break repair and promotes radiation-induced neuroendocrine differentiation. Thus, targeting PRMT5 can lead to co-targeting of three distinct pathways that contribute to the intrinsic (in PRMT5 overexpressing cells) and acquired radiation resistance (Fig. 11). Taken together, our results provide convincing evidence that targeting PRMT5 can be used as a radiosensitization approach for primary prostate cancer radiotherapy.

Figure 11: PRMT5 overexpression confers radiation resistance in prostate cancer cells by activating three distinct pathways. PRMT5 epigenetically activates AR transcription and the expression of genes involved the repair of DNA double-strand break by homologous recombination (HR) and non-homologous end joining (NHEJ), and mediates FIR-induced NED by activating CREB. Because all of these three pathways contribute to the acquisition of radioresistance, targeting PRMT5 represents a novel approach for prostate cancer radiosensitization.
5. Conclusion

Under the support of this prostate cancer idea development award, we have made significant progress in our understanding of how PRMT5 functions in prostate cancer cells. **First**, PRMT5 is overexpressed in high-risk human prostate cancer tissues and its expression correlates positively with the expression AR at both protein and mRNA levels. Although the detailed mechanisms remain to be elucidated, we have demonstrated that NF-YA positively regulates PRMT5 transcription, which is negatively regulated by the PKC/c-Fos signaling and that the E3 ubiquitin ligase CHIP promotes PRMT5 ubiquitination and proteasomal degradation. Given the inverse correlation between the expression level of PKC or CHIP and PRMT5 in prostate cancer tissues, our findings strongly suggest that the down-regulation of PKC isoforms and CHIP in prostate cancer tissues may lead to PRMT5 overexpression in human prostate cancer patients. **Second**, our observations that ionizing radiation (IR) induces PRMT5 overexpression in prostate cancer cells and that the established LNCaP and DU-145 radiation-resistant sublines maintain a high level of PRMT5 led us to investigate the molecular mechanisms by which IR induces PRMT5 expression. Our finding that fractionated IR (FIR) significantly induces PRMT5 expression at both the protein and mRNA levels provides evidence that IR induces PRMT5 expression at least via transcriptional activation of PRMT5. **Third**, using established doxycycline-induced PRMT5 knockdown prostate cancer cell lines and a novel PRMT5 inhibitor BLL3.3, we have demonstrated that targeting PRMT5 can sensitize prostate cancer cells to radiation. However, targeting PRMT5 does not sensitize radiation-resistant sublines to radiation nor to chemotherapeutic agents. These findings suggest that targeting PRMT5 can be used to sensitize primary prostate cancer to radiation. Future studies are needed to elucidate the underlying mechanism of radiation resistance in radiation-resistant sublines and recurrent prostate cancer. **Fourth**, we have demonstrated that PRMT5 promotes prostate cancer cell growth by epigenetic activation of AR. This finding is very significant and clinical important as AR is the only validated therapeutic target for prostate cancer treatment and androgen deprivation therapy (ADT) is used as the only effective radiosensitizing approach via regulation of target genes involved in non-homologous end joining (NHEJ). This unexpected finding may also explain partially why PRMT5 targeting can sensitize prostate cancer cells to radiation. **Fifth**, our RNA-seq and qPCR analysis have revealed that PRMT5 may activate a large number of target genes involved in cell cycle control, cell proliferation, and more importantly, DNA damage repair including homologous recombination (HR) and NHEJ, in response to IR. Thus, PRMT5 may act as a master epigenetic regulator of DNA damage response. **Sixth**, we have also demonstrated that PRMT5 mediates FIR-induced neuroendocrine differentiation (NED) via activation of CREB, a critical transcription regulator of FIR-induced NED. Given that PRMT5 is overexpressed in prostate cancer patients, particularly high-risk disease, and that PRMT5 expression can be induced by IR, our findings suggest that PRMT5 overexpression contributes to both intrinsic radioresistance and acquired radioresistance in a subset of prostate cancer patients. As AR, DNA double strand break repair and NED all contribute to radioresistance, our novel findings provide convincing evidence that targeting PRMT5 is a valid radiosensitization approach by inhibiting these three distinct pathways. Under this Idea Development Award, we have published 4 research articles and one review article. Currently, we are in preparation of two more manuscripts for submissions.

(1) Publications

(2) Presentations relevant to prostate cancer research

05/10/16 Place: 2016 American Urological Association (AUA) meeting
Title: Protein arginine methyltransferase 5 (PRMT5) is a novel epigenetic regulator of androgen receptor in prostate cancer

01/05/15 Place: Tongling First People’s Hospital
Title: Advances in prostate cancer diagnosis and treatment- A comparative analysis between China and America

12/29/14 Place: Jinan University the first affiliated hospital
Title: Targeting PRMT5 for prostate cancer radiosensitization

05/18/14 Place: Mayo Clinic, Departments of Radiation Oncology
Title: Mechanism and targeting of radiotherapy-induced neuroendocrine differentiation for prostate cancer treatment

03/25/14 Place: Tongling 4th Hospital, Wannan Medical College
Title: Advances in prostate cancer diagnosis and treatment

02/27/14 Place: UCLA, Departments of Pathology and Laboratory Medicine
Title: Targeting neuroendocrine differentiation as a novel radiosensitization approach for prostate cancer treatment

10/9/13 Place: Cancer Hospital, Hefei Institutes of Physical Science Chinese Academy of Sciences
Title: Development of radiosensitizers: An urgent need for prostate cancer radiotherapy

05/24/13 Place: Hefei Chinese Academy of Sciences Cancer Hospital
Title: Impact of neuroendocrine differentiation in prostate cancer radiotherapy
05/20/13 Place: Huazhong University of Science and Technology Union Hospital Cancer Institute
Title: Radiation-induced neuroendocrine differentiation in prostate cancer: From bench to bedside

05/17/13 Place: Jinan University School of Medicine
Title: Neuroendocrine differentiation (NED) in prostate cancer cells: From basic science to clinical practice

02/05/13 Place: Tongji Hospital, Huazhong University of Science and Technology
Title: Neuroendocrine differentiation (NED): A therapeutic challenge in prostate cancer management

06/06/12 Place: Jiangshu University School of Medical Technology and Laboratory Medicine
Title: Mechanisms and targeting of radiation-induced neuroendocrine differentiation

05/31/12 Place: Tongling Traditional Chinese Medicine Hospital
Title: Recent advances in prostate cancer diagnosis and treatment

04/25/12 Place: University of Western Ontario
Title: Radiotherapy-induced neuroendocrine differentiation: Implications in prostate cancer progression and treatment

03/13/12 Place: Mayo Clinic Department of Urology
Title: Mechanisms and targeting of therapy-induced neuroendocrine differentiation for prostate cancer treatment

7. Inventions, Patents and Licenses
 Bimolecular fluorescence complementation (BiFC)-based screen for discovery of PRMT5 inhibitors. Provisional Patent Application No 62/121,627 filed on February 27, 2015

8. Reportable Outcomes
 a. All five published work listed above in Publications is available and has been deposited to NIH PubMed central. In particular, the recently accepted Oncogene paper is available online for free access.
 b. The newly developed PRMT5 inhibitor BLL3.3 by the co-investigator Dr. Chenglong Li has been preclinically evaluated in prostate cancer cells and normal cells. These data have been included in the recently accepted Oncogene paper. This will advance further development and preclinical evaluation of PRMT5 inhibitors.

9. Other Achievements
 a. Establishment of doxycycline-inducible stable cell lines to knockdown PRMT5, Sp1, NFY-A (LNCaP-shPRMT5, DU-145-shPRMT5, C4-2-shPRMT5, RWPE1-shPRMT5, LNCaP-shSp1, LNCaP-shNFY-A). These research materials will be available for scientific community.
 b. Establishment of radiation-resistant sublines after 40- and 70 Gy of FIR using LNCaP and DU-145 cells as reported here. The work reporting these development will be submitted for publication and will be made available for scientific community.
c. Construction of plasmids: There are many plasmids constructed throughout this work and all plasmids that have been published in the 4 research articles are available for scientific community, and some plasmids have already been distributed to several labs (e.g., PRMT5 luciferase reporter gene constructs from BBA, 2014, and PRMT5 knockdown plasmids).

d. Training of 4 graduate students awarded degrees: Chris Suarez (Ph.D. awarded in Dec 2012, currently postdoc at University of Notre Dame), Chih-chao Hsu (Ph.D. awarded in Dec 2012, currently postdoc at University of Texas M.D. Anderson Cancer Center), Gyeon Oh (M.S. awarded in May 2015, currently Ph.D. at University of Kentucky), Sarah Kelsey (M.S. awarded in Aug 2016, currently employed by a Clinical Diagnostic company in Cincinnati).

e. Training of 2 current graduate students in the lab: Two graduate students Jake Owens (3rd year) and Elena Beketova (2nd year) have been partially working on the project.

f. Training of a visiting graduate student: Huantin Zhang, a visiting graduate student from Jinan University, worked on the transcriptional regulation of PRMT5, has published his work in BBA (2014, 2016). He was awarded Ph.D. in July 2015, and currently is working as a postdoc at Jinan University.

g. Training of 2 visiting scholars: Yihang Wu, a visiting professor from Jiliang University, China, was studying in the lab and participating in the project. He received training in molecular biology and returned to his home institution on August 17, 2015. Genbao Shao, a visiting associate professor, received training in molecular biology and prostate cancer research from Feb 2015 to Jan 2016. He is also the second author of the Oncogene paper.

h. Training of 12 rotation graduate students (4-8 weeks per rotation): Sarah Kelsey (employed by a Clinical Diagnostic Lab in Cincinnati), Lama Abdullah Alabdi (graduate student at Purdue), Jake Owens (graduate student in the lab), Mitul Patel (graduate student at Purdue), Julio Grimmn De Guibert (graduate student at Purdue), Elena Beketova (graduate student in the lab), Rui Gan (graduate student at Purdue), Aindrilla Saha (graduate student at Purdue), Maurina Aranda (graduate student at Purdue), Ziyun Ding (graduate student at Purdue), Rmah Ali (graduate student at Purdue), Yi Yang (graduate student at Purdue). Three of them joined the lab for MS and Ph.D. study.

i. Training of 6 undergraduate students and pharmacy students for undergraduate research (at least one semester): Athena He (Aug 2015-July 2016, prepharmacy student at Purdue), Jialu Deng (Summer 2014, Pharm.D. awarded in May 2015, employed in CVS in California), Limin Zhang (Summer 2014, Pharm.D awarded in May 2015, currently employed in Walmart, West Lafayette, IN.), George Crabtree (Aug 2014-Dec 2015, currently pharmacy student at Purdue), Yadi Xu (Spring 2013, BS awarded in May 2014, currently employed as research assistant at NIH), Myra Fu (Spring 2015, currently pharmacy student at Purdue)

j. Funding received based on the work supported by this award:
(1): DoD PCRP Idea Development Award (PC120512): Targeting neuroendocrine differentiation for prostate cancer radiosensitization
(2): DoD PCRP Idea Development Award (PC150697): Co-targeting of androgen synthesis and androgen receptor expression as a novel treatment for castration resistant prostate cancer
k. Submitted NIH proposals based on the preliminary data generated from this award:

(1) NIH RO1 submitted in February 2016: Role and targeting of PRMT5 in prostate cancer: scored 40 percentile; A1 submission planned in November 2016.

(2) NIH RO1 submitted in June 2016: PRMT5 as a novel target for prostate cancer radiosensitization.

10. References

disease-free and cancer-specific survival following anatomic radical retropubic
28:555-65.

of contemporary prostate cancer patients with bone metastases at initial presentation: data

Forman, I.M. Thompson, and E.D. Crawford, Predominant treatment failure in postprostatectomy patients is local: analysis of patterns of treatment failure in SWOG

17. Lee, Y.-H. and M.R. Stallcup, Minireview: Protein Arginine Methylation of Nonhistone

18. Bedford, M. and S. Clarke, Protein arginine methylation in mammals: who, what, and

20. He, W., X. Ma, X. Yang, Y. Zhao, J. Qiu, and H. Hang, A role for the arginine
methylation of Rad9 in checkpoint control and cellular sensitivity to DNA damage.

arginine methyltransferase PRMT-5 negatively regulates DNA damage-induced

Ratliff, J. Huang, and C.D. Hu, Protein arginine methyltransferase 5 functions as an
epigenetic activator of the androgen receptor to promote prostate cancer cell growth.
Oncogene, 2016.

23. Godebu, E., M. Muldong, A. Strasner, C.N. Wu, S.C. Park, J.R. Woo, W. Ma, M.A. Liss,
T. Hirata, O. Raheem, N.A. Cacalano, A.A. Kulidjian, and C.A. Jamieson, PCSD1, a new
patient-derived model of bone metastatic prostate cancer, is castrate-resistant in the bone-

T. Granfors, and T. Helleday, Castration radiosensitizes prostate cancer tissue by

Castration therapy results in decreased Ku70 levels in prostate cancer. *Clin Cancer Res*,
2013. 19:1547-56.

26. Hu, C.D., R. Choo, and J. Huang, Neuroendocrine differentiation in prostate cancer: a

neuroendocrine differentiation and increases radiation-induced cell death in prostate

Original Article
Targeting CREB inhibits radiation-induced neuroendocrine differentiation and increases radiation-induced cell death in prostate cancer cells

Christopher D Suarez, Xuehong Deng, Chang-Deng Hu

Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana

Received September 8, 2014; Accepted October 15, 2014; Epub November 19, 2014; Published November 30, 2014

Abstract: Neuroendocrine differentiation (NED) is a process by which prostate cancer cells transdifferentiate into neuroendocrine-like (NE-like) cancer cells. Accumulated evidence suggests that NED is associated with disease progression and therapy resistance in prostate cancer patients. We previously reported that by mimicking a clinical radiotherapy protocol, fractionated ionizing radiation (FIR) induces NED in prostate cancer cells. Interestingly, FIR-induced NED constitutes two distinct phases: a radioresistance phase in which a fraction of cells selectively survive during the first two week irradiation, and a neuroendocrine differentiation phase in which surviving cells differentiate into NE-like cancer cells during the second two week irradiation. We have also observed increased activation of the transcription factor cAMP response element binding (CREB) protein during the course of FIR-induced NED. To determine whether targeting NED can be explored as a radiosensitization approach, we employed two CREB targeting strategies, CREB knockdown and overexpression of ACREB, a dominant-negative mutant of CREB, to target both phases. Our results showed that ACREB expression increased FIR-induced cell death and sensitized prostate cancer cells to radiation. Consistent with this, knockdown of CREB also inhibited FIR-induced NED and sensitized prostate cancer cells to radiation. Molecular analysis suggests that CREB targeting primarily increases radiation-induced premitotic apoptosis. Taken together, our results suggest that targeting NED could be developed as a radiosensitization approach for prostate cancer radiotherapy.

Keywords: Prostate cancer, radiosensitization, neuroendocrine differentiation, NED, CREB

Introduction
Prostate cancer is the second-leading cause of cancer death in American men [1]. Approximately 15-20% of prostate cancer patients were diagnosed with high-risk cancer that is either clinical stage T3, a Gleason score of 8-10 or prostate specific antigen > 20 ng/ml [2]. Radiotherapy (RT) plus androgen deprivation therapy (ADT) is the standard treatment for these patients [2-4]. However, 30-60% of patients with high-risk cancer still experience biochemical recurrence within 5 years [5-7]. Thus, high-risk prostate cancer represents a therapeutic challenge for prostate cancer management.

Neuroendocrine differentiation (NED) in prostate cancer is a process by which prostate cancer cells transdifferentiate into neuroendocrine (NE)-like prostate cancer cells [8]. NE cells are one type of prostatic epithelial cells that constitutes less than 1% of total epithelial cells. However, increased numbers of NE-like prostate cancer cells have been observed in prostate cancer patients [9-11]. Accumulated evidence suggests that NED is associated with disease progression, androgen-independent growth and poor prognosis in prostate cancer patients [8, 12-14]. Androgen-deprivation therapy and docetaxel treatments
Targeting NED for radiosensitization

[19]. Given that our recent pilot clinical study has shown 4 out of 9 patients may undergo NED [20], it is very likely that RT-induced NED may contribute to radioresistance and tumor recurrence in prostate cancer patients.

The mechanisms underlying NED remain to be defined [8]. It appears that distinct mechanisms are involved in NED induced by different stimuli [8, 14, 21]. We found that FIR-induced NED correlates with increased phosphorylation of cAMP response element binding (CREB) protein at Ser133 [19], an activating phosphorylation by many protein kinases [22]. CREB, a member of the ATF-1/CREM/CREB basic region leucine zipper transcription factor family, functions as a homodimer or heterodimer with other ATF-1/CREM/CREB family members to regulate transcription of target genes responsible for a wide range of cellular processes [23]. Studies have established a role for CREB in several human cancers [24-26]. In prostate cancer, increased expression of RGS17 enhances CREB phosphorylation to maintain tumor cell proliferation [27]. CREB activation has also been linked to aberrant expression of vascular endothelial growth factor (VEGF) and the resulting predisposition to bone metastasis [28]. In the present study, we employed a dominant negative CREB and CREB knockdown approaches to inhibiting CREB activity, and demonstrated that targeting FIR-induced NED is an effective approach to sensitizing prostate cancer cells to radiation.

Materials and methods

Establishment of stable cell lines for fractionated FIR treatment

Prostate cancer cell lines were maintained and treated with FIR (2 Gy/day, 5 days/week) as previously reported [19, 20]. The tetracycline/doxycycline inducible pcDNA4-TO system (Invitrogen) was used to establish stable cell lines (LNCaP-HA-ACREB#1-4) to express ACREB [19]. The tetracycline/doxycycline inducible lentiviral system to express short hairpin RNA (shRNA) or scrambled control (SC) was utilized to knock down CREB with pLKO.1-Tet-On (Addgene plasmid 21915). The oligonucleotides were selected using validated sequences from Sigma Aldrich and named using the last three digits corresponding to the Sigma TRCN sequence number (TRCN0000007308, TRCN0000226467, TRCN0000226468, TRCN0000226469).

Lentiviral packaging using pLKO.1-CREB shRNA or pLVX-ACREB (Clontech) in HEK293T cells and establishment of prostate cancer stable cell lines expressing ACREB or CREB shRNAs were performed as reported previously [29].

MTT assay

LNCaP-HA-ACREB#1 cells were seeded in triplicate in 48-well plates at a density of 2 × 10⁴ cells/ml. Tetracycline (5 µg/ml) was added to induce expression of HA-ACREB for 24 hours before subjecting to FIR. Medium was changed after 3 days and tetracycline was replenished. After achieving the desired dose of FIR, medium was removed from wells and 70 µl of MTT reagent was added. Cells were incubated at 37°C, 5% CO₂ for 4 hours followed by addition of 130 µl of DMSO. Plates were shaken, incubated for an additional 10 min at 37°C, 5% CO₂ and read on Biotek Synergy 4 plate reader at 570 and 700 nm. Results were from three independent experiments, and two-way ANOVA analysis was performed to determine the statistical significance.

Cell cycle analysis via flow cytometry

LNCaP-HA-ACREB#1 cells were treated with tetracycline (5 µg/ml) to induce expression of HA-ACREB for 24 hours, followed by FIR. Medium with fresh tetracycline was changed every 3 days. Cells were harvested, fixed in 70% ethanol and temporarily stored at 4°C, and then resuspended in 500 µl freshly prepared propidium iodide (PI) working solution prior to flow cytometry analysis. Data was collected on Beckman Coulter FC 500 flow cytometer and analysis was completed using FlowJo software (Treestar, Inc., Ashland, OR). Three independent experiments were performed and two-way ANOVA analysis was performed to determine the statistical significance.

Immunoblotting of γH2AX, PARP cleavage, and LC-3 cleavage

LNCaP-HA-ACREB#1 cells were treated with doxycycline or water for 48 hours, and then subjected to FIR (2 Gy/day). Irradiated cells including floating cells were harvested 24 hours after the last IR treatment and total lysate was prepared for immunoblotting analysis using antibodies against γH2AX (Cell Signaling Technology, #9718), cleaved poly ADP ribose polymerase (PARP) (BD Pharmingen, #556494),
and microtubule-associated protein 1A/1B-light chain 3 (LC-3) (Novus Biologicals, NB100-2220) to determine the underlying mechanisms of cell death. To determine whether pre-mitotic or post-mitotic cell death occurred in ACREB expressing cells, cells were induced to express ACREB for 48 hours and then subjected to a single dose of 2 Gy ionizing radiation (IR). The total cell lysate was prepared 4 hours after the irradiation for immunoblotting analysis of PARP cleavage. For preparation of total cell lysate at 24 hours after the irradiation, floating cells were removed by changing the medium at 12 hours, and the total cell lysate was prepared for PARP cleavage analysis at 24 hours after the irradiation treatment.

Immunofluorescence analysis of activated caspase-3

To quantify the number of cells with activated caspase-3, cells were first induced to express HA-ACREB with or without doxycycline, and then subjected to 2 Gy of IR or without IR treatment, followed by fixation and staining with
Targeting NED for radiosensitization

anti-cleaved caspase-3 antibody (Cell Signaling Technology, #9664) and a secondary Texas Red-conjugated anti-rabbit antibody and 4',6-diamidino-2-phenylindole (DAPI). The percentage of activated caspase-3 positive cells was calculated by dividing the number of cells stained red by the total number of cells counted (DAPI positive). For each experiment, at least 120 cells were counted, and three independent experiments were conducted. Results were analyzed using student's t-test.

Clonogenic assays

LNCaP-HA-ACREB#1 or LNCaP-CREB shRNA#468 cells or the control cell lines were first induced with or without doxycycline (1 μg/ml) for 48 hours (for ACREB) or 72 hours (for shRNAs), and then subjected to a single exposure of different doses of IR. Irradiated cells were trypsinized immediately and various numbers of cells were seeded in 6-well plates and cultured in complete medium with or without doxycycline for two weeks. At the end of experiments, the number of colonies was counted and surviving fractions were calculated as described [30]. Student’s t-test was used to determine the statistical significance.

Quantification of neurite extension and immunoblotting analysis of chromogranin A and neuron specific enolase

LNCaP-HA-ACREB stable cell lines were subjected to 40 Gy of FIR, and images were captured using a Nikon TE-2000 inverted epifluorescence microscope with CoolSnap CCD camera. Image processing and analysis was completed using ImageJ software modified by the McMaster Biophotonics Facility in Ontario, Canada (revision 1.44k). Neurite extension was quantified using the ImageJ plugin NeuronJ from Erik Meijering [31]. Quantification was performed using 10 image fields per condition. Results presented were from three independent experiments and two-tailed t-test was used to determine the statistical significance. The expression of chromogranin A (CgA) and neuron specific enolase (NSE) was similarly examined as reported previously [19].

Results

CREB knockdown inhibits FIR-induced neurite extension and NSE expression

To dissect the role of CREB in FIR-induced NED in prostate cancer cells (Figure 1A), we employed a lentivirus-based tetracycline-inducible knockdown system to generate four LNCaP cell lines containing stably integrated CREB shRNA expression plasmid. Screening of these four cell lines showed variable knockdown efficiency with CREB #468 achieving approximately 85% knockdown efficiency (data not shown). We then used CREB #468 to conduct three independent transductions to generate stable LNCaP cell lines that had comparable knockdown efficiency (Figure 1B). To determine the effect of CREB knockdown on FIR-induced NED, we performed 40 Gy of FIR and measured the expression of CgA and NSE. While we observed a dramatic inhibition of NSE expression when compared with SC, the expression level of CgA was not altered by CREB knockdown (Figure 1C). To quantify the effect of CREB knockdown on neurite extension and cell viability, we used the established three independent sublines to perform 40 Gy of FIR. Like the expression of a non-phosphorylatable CREB (S133A) [19], we observed that CREB knockdown significantly decreased neurite extension (Figure 1D). However, CREB knockdown failed to increase FIR-induced cell death (Figure 1E). The inability of CREB knockdown to increase FIR-induced cell death is not due to the selection of established stable clones as transient expression of CREB shRNAs also failed to increase FIR-induced cell death after 10 Gy of FIR (unpublished observation) and another CREB knockdown construct targeting a different region of the CREB coding sequence yielded similar results (data not shown).

Expression of a dominant negative CREB increases FIR-induced cell death

Our observation that CREB knockdown did not increase FIR-induced cell death is surprising, given that CREB phosphorylation was induced even after 10 Gy of FIR [19]. Because there are at least 3 members in the CREB/CREM/ATF-1 family that can form dimers with CREB to regulate target gene transcription [22], we reasoned that these family members might compensate for the reduction of CREB to regulate expression of target genes essential for cell survival. Alternatively, the residual amount of CREB might be sufficient to regulate expression of these target genes. To circumvent this potential problem, we used ACREB, a dominant negative CREB, in which the leucine zipper region of CREB is used and the basic region is replaced with acidic amino acid residues [32], to evalu-
Targeting NED for radiosensitization

Ate the role of CREB in FIR-induced NED. Because ACREB retains the ability to dimerize with endogenous CREB and other CREB dimerization partners but cannot bind DNA, overexpressed ACREB can efficiently inhibit transcription of CREB target genes [32, 33]. For this purpose, we established stable, tetracycline-inducible, LNCaP cell lines expressing HA-ACREB as a hemagglutinin (HA) fusion protein. Four individual clones were isolated, and these clones exhibited variable expression of HA-ACREB. Because CREB can autoregulate its own transcription [34], these clones also demonstrated unique effects on CREB expression (Figure 2A). Notably, induction of ACREB in clones #1 and #4 reduced CREB by 90%. Consistent with the expression level of ACREB and the down-regulation of CREB in these clones, induction of ACREB in clone #1 increased FIR-induced cell killing after 10 Gy of FIR (Figure 2B) whereas induction of ACREB in clones #2 and #3 had little effect on FIR-induced cell killing (unpublished observation). These results not only demonstrate that ACREB is a potent inhibitor of CREB activity but also suggest that CREB plays a role in conferring radioresistance even during the first week of irradiation.

Long-term expression of ACREB dramatically increases FIR-induced cell killing

To determine the effect of long-term expression of ACREB on FIR-induced cell death, we performed long-term FIR treatment. While attempt-
During these experiments, using clones derived from the Invitrogen pcDNA6/TR/pDNA4/T0 expression system, there was excessive cell death under both induced and non-induced conditions, which is likely due to the effect of radiation-induced damage to the DNA encoding the tetracycline-resistance operon [35]. To overcome this problem, we utilized the Clontech pLVX-Tet-On lentiviral expression system that does not rely on the dissociation of the Tet repressor protein from the tetracycline-resistance operon [36]. Stable clones were prepared using three independent transductions and induction of ACREB sufficiently down-regulated the expression of CREB in each cell line (Figure 2C). To separate the role of CREB in both phases, we specifically induced ACREB expression during the NED phase only (weeks 3 and 4, post-20 Gy induction) and during the entire 4 weeks (pre-induction) to assess the impact of ACREB expression on the total number of viable cells at the end of 40 Gy FIR (Figure 2D). Induction of ACREB during the entire FIR treatment period resulted in a 7.6-fold reduction in cell number, and induction of ACREB during the NED phase also resulted in a 2.5-fold reduction (Figure 2E). These results suggest that CREB plays a critical role in the acquisition of radiosensitivity and the acquisition of NED during the process of FIR-induced NED.

ACREB expression increases radiation-induced apoptosis

The transcriptional activity of CREB is required for regulation of many cellular processes includ-
Targeting NED for radiosensitization

...ing cell cycle, apoptosis, cell proliferation and differentiation [23]. To uncover the molecular mechanism by which ACREB expression increases IR-induced cell death, we examined the effect of ACREB expression on cell cycle, apoptosis, autophagy and DNA damage. Flow cytometry analysis revealed that FIR treatment in ACREB expressing cells exhibited increased granularity after 10 Gy of FIR. This granular population of cells increased by 2.3 fold when compared with FIR treated LNCaP not expressing ACREB (Figure 3A). Flow cytometry analysis using PI showed a 4-fold increase in the sub-G1 population in ACREB expressing cells treated with 10 Gy of FIR (Figure 3B). No significant difference in other phases of cell cycle was observed (data not shown). These results suggest that ACREB expression increases FIR-induced cell death. Because increased granularity can be associated with events such as autophagy [37] and apoptosis [38], we examined their involvement in ACREB-induced radiosensitivity. We harvested all floating and adherent cells after 10 Gy of FIR to measure PARP cleavage, and confirmed that ACREB expression indeed increased PARP cleavage (Figure 3C). We also performed immunoblotting analysis of LC3. Conversion of the cytosolic LC3I into autophagosome-associated LC3II allows assessment of autophagy via immunoblotting. However, ACREB induction did not increase the amount of FIR-induced LC3II nor the ratio of LC3II/LC3I (Figure 3D). However, ACREB expression slightly increased FIR-induced γH2AX level (Figure 3D).

Since we observed increased cell death with increased doses of FIR, we next determined whether this correlates with the extent of apoptosis by measuring PARP cleavage after various doses of FIR. Although ACREB expression increased the amount of cleaved PARP in all doses, there was no significant increase in cleaved PARP in higher doses (Figure 4A). Because we prepared total cell lysate for immunoblotting analysis of PARP cleavage 24 hours after the last irradiation of the indicated doses, these results suggest that apoptosis likely occurs within 24 hours.

Radiation-induced cell death can occur as pre-mitotic and post-mitotic cell death [39]. The former usually occurs within 4-5 hours whereas the latter occurs after 24 hours. To know whether ACREB expression increases radiation-induced pre-mitotic cell death, we performed a single dose IR and harvested cells at 4 and 24 hours to examine the level of PARP cleavage. We observed increased cell death at 4 hours after 2 Gy of irradiation, and some cells showed membrane blebbing, a typical feature of apoptotic cells (unpublished observations). Consistent with this, increased PARP cleavage in irradiated ACREB-expressing cells was observed (Figure 4B). However, we observed less cell death and PARP cleavage at 24 hours (Figure 4B). No increase in cell death or PARP cleavage was observed after 48 hours. These results suggest that ACREB induction may primarily induce pre-mitotic cell death. Because radiation-induced pre-mitotic cell death usually results from activation of pre-existing apoptotic machinery [39], we next examined the activation of caspase-3 by immunostaining, and observed that ACREB induction by itself appeared to slightly activate caspase-3. However, ACREB

Figure 4. ACREB expression induces pre-mitotic and post-mitotic apoptosis. A: LNCaP-HA-ACREB#1 cells were induced by doxycycline (Dox+) to express ACREB for 48 hours or without induction (Dox-), and then subjected to FIR for the indicated doses. Cell lysate was prepared 24 hours after the last irradiation treatment and cleaved PARP (cPARP) was analyzed by immunoblotting. As a positive control, cells were treated with 50 nM of okadaic acid (OA) or DMSO (−) for 24 hours. B: LNCaP-HA-ACREB#1 cells were induced to express ACREB by doxycycline (Dox+) for 48 hours or without induction (Dox−), followed by a single exposure to 2 Gy ionizing radiation (IR+) or without irradiation (IR−). Cell lysate was prepared 4 and 24 hours after the irradiation for immunoblotting analysis of cPARP. C: LNCaP-HA-ACREB#1 cells were similarly treated in B, and caspase-3 activation was assayed by immunostaining of cleaved caspase-3 at 4 hours after the irradiation.
expression dramatically increased IR-induced caspase-3 activation (Figure 4C). These results collectively suggest that ACREB expression primarily increases radiation-induced pre-mitotic apoptosis via activation of caspase-3. CREB targeting sensitizes prostate cancer cells to radiation

Our above results strongly suggest that targeting CREB signaling is an effective approach to

Figure 5. CREB targeting sensitizes prostate cancer cells to radiation. Indicated stable and doxycycline-inducible prostate cancer cell lines expressing HA-ACREB or CREB shRNA#468 (KD) or scrambled control (SC) were induced to express HA-ACREB for 48 hours or CREB shRNA#468 for 72 hours and then subjected to a single exposure of the indicated dose of IR, followed by seeding of various numbers of cells in 6-well plates for colony formation. Colony formation was counted 2 weeks later and survival fraction was calculated. Shown are the means from three independent experiments. *P <0.05; **P <0.01.
sensitizing prostate cancer cells to radiation. To further determine this, we used the ACREB stable cell lines to perform clonogenic assays, a standard assay for determination of radiosensitivity [30]. As shown in Figure 5A, induction of ACREB expression significantly sensitized LNCaP cells to radiation at all doses examined. Because the clonogenic assay utilizes a single dose treatment to assess the impact of DNA damage on cell reproduction, this is different from FIR, during which damaged DNA may be repaired by compensation for the reduction of CREB. Thus, we sought to determine whether CREB knockdown can sensitize LNCaP cells to radiation. Using the same stable cell line (#468), we observed that knockdown of CREB also sensitized LNCaP cells to radiation when compared with the scrambled control (Figure 5B). A similar result was observed in DU-145 (Figure 5C). Consistent with the lack of significant CREB activation by FIR in PC-3 cells [20], knockdown of CREB did not sensitize PC-3 to radiation (Figure 5D). Note that CREB expression was comparably knocked down in LNCaP (Figure 5E), DU-145 (Figure 5F) and PC-3 (Figure 5G) stable cell lines. Taken together, our results suggest that targeting CREB can sensitize a subset of prostate cancer cells to radiation.

Discussion

Numerous studies have demonstrated that NED is associated with disease progression and poor clinical outcome in prostate cancer patients [12]. The clinical significance of NED is further supported by the fact that ADT- and chemotherapy-induced NED correlates with poor therapeutic responses and clinical outcomes [15-18, 40]. Because NE-like cells are highly resistant to apoptosis [41] and cAMP and androgen depletion-induced NED are reversible [8, 42], it has been hypothesized that therapy-induced NED allows prostate cancer cells to survive treatment and contribute to tumor recurrence [8, 13, 14]. However, it remains unclear whether targeting therapy-induced NED can be explored to sensitize prostate cancer cells to treatments such as ADT, radiotherapy or chemotherapy. Using LNCaP cells as a model, we have demonstrated that FIR-induced NED constitutes two distinct phases: selection of radioresistant cells and NED onset (Figure 1A). Using two CREB targeting approaches, we provide evidence in the present study that CREB is involved in both phases and targeting CREB can increase FIR-induced cell death. In particular, expression of ACREB, a potent dominant negative CREB, increased FIR-induced cell death and sensitized LNCaP cells to FIR. Consistent with FIR-induced activation of CREB in LNCaP and DU-145 cells [20], knockdown of CREB also sensitized LNCaP and DU-145 cells to radiation. Our results suggest that inhibition of RT-induced NED may be explored to sensitize prostate cancer cells to radiotherapy. Further investigation of CREB targeting strategies [24] or identification of CREB upstream regulators will likely lead to development of novel radiosensitizers.

Although CREB signaling has been explored for its role in oncogenesis [43], the impact of CREB in cancer cell signaling has recently attracted attention. CREB targeting CRE-decoy oligonucleotides induce apoptosis in ovarian cancer cells [25] and CREB is involved in prostate cancer bone metastasis through regulation of VEGF [28]. In several studies, the dominant negative ACREB has been utilized to target CREB. One such study reported the mechanism of ACREB-induced apoptosis in rat thyroid cells [44]. It was demonstrated that S phase delay led to activation of ATR and the S-phase checkpoint without altering the regulation of pro- or anti-survival genes. These findings are consistent with the role of CREB in regulating expression of several target genes involved in the cell cycle [23]. In the present study, we demonstrate that ACREB expression efficiently sensitized LNCaP cells to FIR by increasing FIR-induced apoptosis. However, we did not see any significant S phase delay in ACREB expressing cells. It is worth noting that CREB knockdown only inhibited FIR-induced neurite outgrowth and the expression of NSE without significant effect on FIR-induced CgA expression and cell death during FIR treatment. Paradoxically, CREB knockdown was sufficient to inhibit colony formation in clonogenic assays in LNCaP and DU-145 cells. Given that CREB/CREM/ATF-1 family members can form both homodimers and heterodimers and that some target genes are regulated by these dimeric complexes [22], it is likely that the loss of CREB may be functionally compensated for by other dimeric complexes during FIR [45]. This is supported by the observation that CREB knockdown did not inhibit FIR-induced CgA expression, though CREB is a transcriptional activator.
Targeting NED for radiosensitization

of CgA [46]. Thus, it is likely that expression of some CREB target genes critical for cell survival are not affected by CREB knockdown, but are suppressed by ACREB expression during the course of FIR treatment. Alternatively, a residual amount of CREB (e.g., 10-20%) is enough to activate the expression of target genes that confer the resistance and cell survival to FIR treatment. In agreement with this, we indeed observed that induction of ACREB in clones #1 and 4, in which CREB expression was decreased by more than 90%, efficiently increased IR-induced cell death. Conversely, induction of ACREB in clones #2 and #3, in which CREB expression was only decreased by 60% and 13% respectively, was ineffective.

Radiation-induced cell death can be a result of induction of apoptosis or autophagy [47]. It has been reported that IR-induced apoptosis and autophagy can occur in prostate cancer cells such as LNCaP [37, 48]. However, induction of ACREB did not significantly increase FIR-induced autophagy. Thus, it is unlikely that CREB is involved in the regulation of FIR-induced autophagy in LNCaP cells. Instead, we observed increased PARP cleavage and caspase-3 activation as early as 4 hours after a single exposure to IR. Interestingly, this effect appears to last for at least 24 hours. However, we failed to observe any further increase in apoptosis after 48 hours. These results collectively suggest that ACREB induction primarily increases IR-induced pre-mitotic apoptosis, and to a lesser extent post-mitotic apoptosis. Future identification of CREB target genes involved in IR-induced apoptosis and FIR-induced NED will provide new insight into the role of CREB in radioresistance and FIR-induced NED.

In conclusion, we have employed two CREB targeting approaches and demonstrated that CREB is involved in both the acquisition of radioresistance and the acquisition of NED during FIR-induced NED. In particular, expression of ACREB potently increased FIR-induced apoptosis and sensitized prostate cancer cells to radiation. Our results suggest that targeting FIR-induced NED is an effective approach to sensitizing prostate cancer cells to radiation.

Acknowledgements

This study was partially supported by grants from U.S. Army Medical Research Acquisition Activity, Prostate Cancer Research Program (PC11190 and PC120512). DNA sequencing was conducted in the Purdue University Center for Cancer Research Genomic Core Facility supported by NCI CCSG CA23168 to Purdue University Center for Cancer Research.

Disclosure of conflict of interest

None to declare.

Address correspondence to: Chang-Deng Hu, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907. Tel: 765-496-1971; Fax: 765-494-1414; E-mail: hu1@purdue.edu

References

[8] Yuan TC, Veeramani S and Lin MF. Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenoc...
Targeting NED for radiosensitization

[33] Impey S, McCorkle SR, Cha-Molstad H, Dwyer J, Yochum GS, Boss JM, McWeeney S, Dunn
Targeting NED for radiosensitization

Transcriptional activation of PRMT5 by NF-Y is required for cell growth and negatively regulated by the PKC/c-Fos signaling in prostate cancer cells

Huan-Tian Zhang a,b, Dabao Zhang c, Zhen-Gang Zha a, Chang-Deng Hu a,*

a Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
b Institute of Orthopedic Diseases and Department of Orthopedics of the First Affiliated Hospital, Jinan University, Guangzhou 510630, People’s Republic of China
c Department of Statistics, Purdue University, West Lafayette, IN 47907, USA

A R T I C L E I N F O

Article history:
Received 5 August 2014
Received in revised form 17 September 2014
Accepted 24 September 2014
Available online 2 October 2014

Keywords:
NF-Y
PRMT5
PKC
Prostate cancer
Lung cancer
c-Fos

A B S T R A C T

Protein arginine methyltransferase 5 (PRMT5) symmetrically methylates arginine residues of histones and non-histone protein substrates and regulates a variety of cellular processes through epigenetic control of target gene expression or post-translational modification of signaling molecules. Recent evidence suggests that PRMT5 may function as an oncogene and its overexpression contributes to the development and progression of several human cancers. However, the mechanism underlying the regulation of PRMT5 expression in cancer cells remains largely unknown. In the present study, we have mapped the proximal promoter of PRMT5 to the −240 bp region and identified nuclear transcription factor Y (NF-Y) as a critical transcription factor that binds to the two inverted CCAAT boxes and regulates PRMT5 expression in multiple cancer cell lines. Further, we present evidence that loss of PRMT5 is responsible for cell growth inhibition induced by knockdown of NF-YA, a subunit of NF-Y that forms a heterotrimeric complex with NF-YB and NF-YC for function. Significantly, we have found that activation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) in LNCaP prostate cancer cells down-regulates the expression of NF-YA and PRMT5 at the transcription level in a c-Fos-dependent manner. Given that down-regulation of several PKC isozymes is implicated in the development and progression of several human cancers, our findings suggest that the PKC-c-Fos-NF-Y signaling pathway may be responsible for PRMT5 overexpression in a subset of human cancer patients.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Protein arginine methyltransferase 5 (PRMT5), a type II methyltransferase that symmetrically methylates arginine residues of histones and non-histone protein substrates [1,2], regulates a variety of cellular processes by epigenetic regulation of target gene expression and by post-translational modification of critical signaling molecules [1]. Recently, several studies have shown that PRMT5 is overexpressed in human cancers such as lung cancer [3,4], ovarian cancer [5], colorectal cancer [6], breast cancer [7], melanoma [8], leukemia and lymphoma [9,10], and glioblastoma [11]. The overexpression of PRMT5 correlates with disease progression and poor prognosis. Importantly, these studies also present evidence that silencing PRMT5 expression in these cancer cells inhibits cell proliferation and/or induces apoptosis, suggesting that PRMT5 overexpression in cancer cells plays an important role in the development and progression of human cancers. However, how PRMT5 expression is transcriptionally regulated in cancer cells has not yet been investigated.

Nuclear transcription factor Y (NF-Y) is an important transcription factor that is highly conserved across the species [12–14]. NF-Y is composed of three subunits, NF-YA, NF-YB and NF-YC, and functions as a heterotrimeric complex to bind the CCAAT box in promoter regions to regulate gene transcription. CCAAT boxes are usually positioned in either orientation between −60 and −100, and are present in almost 30% of human promoters, particularly those that drive expression of oncogenes in human cancers [15–17]. In addition, NF-Y binding sites overlap with binding sites of several other transcription factors, such as SP1, E2F1, GATA, and c-Fos, to cooperate and regulate cell growth [12,15,18]. The NF-Y transcriptional activity can be modulated by increasing DNA binding to the CCAAT boxes [19,20] or by increasing expression of the NF-YA subunit [21,23]. However, whether the cancer signaling regulates NF-YA expression remains unknown.

Abbreviations: PRMT5, Protein arginine methyltransferase 5; NF-Y, Nuclear transcription factor Y; PKC, Protein kinase C; AP-1, Activator protein-1; PMA, Phorbol 12-myristate 13-acetate; GFX, Bisindolylmaleimide I; TCI, Total cell lysate; CCNA2, Cyclin A2; Dox, Doxycycline; SC, Scrambled control; shRNA, Short hairpin RNA; BrdU, Bromodeoxyuridine; indel, Insertion–deletion; SNPs, Single nucleotides polymorphisms; WT, Wild-type

* Corresponding author at: Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA. Tel.: +1 765 496 1971; fax: +1 765 494 1414.
E-mail address: hu1@purdue.edu (C.-D. Hu).
Protein kinase C (PKC) is a family of serine/threonine protein kinases that regulates a wide range of cellular processes [24]. PKC isoforms can be classified into three groups including calcium-dependent “classical” cPKCs (α, β, and γ), calcium-independent “novel” nPKCs (δ, ε, η and θ), and calcium-independent “atypical” aPKCs (ζ and η; χ). Classical and novel PKC isoforms, but not atypical PKC isoforms, can be activated by diacylglycerol (DAG) and phorbol 12-myristate 13-acetate (PMA). Although it is generally thought that most PKC can be activated by diacylglycerol (DAG) and phorbol 12-myristate 13-acetate (PMA). Although it is generally thought that most PKC isoforms are overexpressed in human cancers and promote cellular transformation, proliferation, and migration, the opposite effects have also been reported [24]. This is exemplified by the use of prostate cancer cells as a model system to study distinct roles of PKC isoforms in apoptosis in prostate cancer cells [25], in which treatment of LNCaP, but not DU 145 and PC-3 cells, with PMA induces apoptosis [26]. Consistent with their differential roles in cell-based studies, the expression level of several PKC isoforms in some human cancers inversely correlates with the aggressiveness of the disease [27,28]. However, the mechanism by which down-regulation of PKC isoforms regulates cancer cell growth remains unknown.

Activator protein 1 (AP-1) is a family of dimeric transcription factors which includes c-Jun and c-Fos [29]. AP-1 was discovered as a complex which down-regulates the expression of NF-YA and PRMT5 in a PKC- and Fos-dependent manner. The prostate cancer cell lines LNCaP and PC-3 cells were cultured as described previously [40,41]. Lung cancer cell line A549 was kindly provided by Wanqing Liu, and cells were cultured in F-K12 medium containing 10% fetal bovine serum and 1% penicillin/streptomycin. PMA was purchased from Sigma (P 1585), and bisindolylmaleimide I (GF109203X, GFX), a pan-PKC inhibitor, was purchased from Tocris (07-405, Millipore), anti-FLAG M2 (F3165, Sigma), anti-PRMT5 (07-405, Millipore), anti-cyclin A2 (CCNA2, BF683, Cell Signaling). Secondary HRP-conjugated antibodies were purchased from GE Healthcare UK Ltd. (Buckinghamshire, UK).

2.4. Immunoblotting
Preparation of total cell lysate (TCL) and immunoblotting were performed as described before [41]. Densitometric quantification was performed with Image J software (NIH, Rockville, MD, USA). The antibodies used for immunoblotting analysis were: anti--/α-actin (A1978, Sigma), anti-NF-YA (H-209, sc-10779, Santa Cruz) [45], anti-c-Jun (H-79, sc-1694, Santa Cruz), anti-c-Fos (H125, sc-9202, Santa Cruz), anti-PRMT5 (240/75, B6; 1169/+75, B3; −472/+75, B4; −323/+75, B5; −240/+75, B6; −68/+75, B7: +8/+75), the same methods were used for PCR amplification by using two types of PRMT5 promoters as templates. For mutagenesis, nucleotide substitutions in putative binding motifs were introduced by ligation PCR [42]. The expression plasmids pFLAG-c-fos and pFLAG-c-Jun were previously constructed [39,43,44]. The cDNA encoding PRMT5 was amplified by PCR using primers 5’-CTGAACTCGGTATGCCTGATGTAGA-3’ and 5’-GCCCTGGAGAACCGTACCC-3’ and cloned into pcMV-Myc vector (Clontech). All plasmid constructs were verified with DNA sequencing.

2.3. Luciferase reporter gene assay
Prostate cancer cells were plated in 12-well plates at a density of 2 x 10^5/well, and A549 cells were plated at a density of 1 x 10^5/well. After 24 h, 1 μg of a short-hairpin RNA (shRNA) plasmid targeting NF-YA was transiently co-transfected with 0.5 μg of a PRMT5 reporter gene, along with 0.1 μg of pRL-TK (Promega) by FuGENE HD or FuGENE 6 (Promega). Forty-eight hours after transfection, FireRed and Renilla luciferase activities were determined by a TopCount NXT microplate luminescence counter (Packard) using dual-luciferase Reporter Assay Kit (Promega) according to the manufacturer’s instruction with minor modifications as described previously [43,44].

2.5. RNA isolation and quantitative real-time PCR (qRT-PCR)
Total RNA was isolated from cells by using TRIzol reagent (Invitrogen) according to the manufacturer’s instruction and verified for integrity by agarose gel electrophoresis. One microgram of RNA was used for reverse-transcription using random primers (100 ng) and MMLV reverse transcriptase (Promega). The mRNA level of PRMT5, NF-YA, NF-YB, NF-YC and GAPDH was quantified using qRT-PCR with gene specific primers. PRMT5 forward, 5’-CAGAAGAACCTGTGCTCTGAT-3’ and PRMT5 reverse, 5’-ATGGCCTGTTGACTAGAGA-3’; NF-YA forward, 5’-CTGTAACATACGTTGGCAAC-3’ and NF-YA reverse, 5’-TGCTCCCTCCTAGAACTCAGG-3’; NF-YB forward, 5’-GCAA GTGAAAAGTGGCCATACAGC-3’ and NF-YB reverse, 5’-CTGTCACCAAACTCCCTCTCTC-3’; NF-YC forward, 5’-GAACTGAAACTCCCTACAGCTG-3’ and NF-YC reverse, 5’-TGTCCTAGTTGTCGAGACCATG-3’; GAPDH forward, 5’-GCCTCTGAGAGAGGCCAATGGTATA-3’ and GAPDH reverse, 5’-CCTGTTCGTACCGACACC-3’. The expression levels were calculated using the comparative 2^ΔΔct method [46].

2.6. Chromatin immunoprecipitation (ChIP)
Cells cultured in 10 cm dishes were cross-linked with 1% formaldehyde for 10 min and then stopped by adding 125 mM glycine. Chromatin from two-dish cells was sheared by a Branson Digital Sonifier 250 to an average size of approximately 0.5 kb in 1 ml immunoprecipitation (IP) buffer (50 mM Tris-Cl, pH 7.4, 0.5% NP-40, 1% Triton X-100,
150 mM NaCl, 5 mM EDTA, and 0.5 mM DTT). The sheared chromatin (DNA–protein complexes) was incubated with anti-NF-YA (G-2, sc-17753X, Santa Cruz) [47], or the control IgG (sc-2025, Santa Cruz) at 4 °C for overnight and the DNA–protein complexes were recovered by protein G-agarose beads (Santa Cruz, sc-2002). The immunoprecipitated DNA was isolated by 10% Chelex-100 using the fast ChiP method [48], and then subjected to qRT-PCR. The relative fold enrichment was calculated by normalizing to IgG control. A non-target region in the PRMT5 distal promoter and a region containing a validated NF-Y binding site in the CCNA2 promoter was amplified from the same IP sample, and used as negative control and positive control, respectively. The primers used for ChiP are listed as follow: the region containing two NF-Y binding sites in the PRMT5 proximal promoter (5’-CACGTGTTTCTCCTCGATGCAGTAC-3’ and 5’-GGCTGCTCCACGACCCGAG-3’); and a non-target region in the PRMT5 distal promoter (5’-CTGGGACAACTAGGCCAGAGGC-3’ and 5’-TTATGAGAGCCGGGGTCCATCA-3’); the region containing one validated NF-Y binding site in the CCNA2 promoter (5’-GCCCTCTGCTCCTGGAGTTCA-3’).

2.7. Lentivirus production and establishment of stable cell lines

For the construction of shRNA expressing plasmids, the pLKO-Tet-On inducible lentiviral RNAi system was used [49]. Several targeting sequences were selected from the RNAi Consortium (Sigma) as follow: NF-YA (shYA#1), 5’-CACGCTCTATCAACCAAGTTA-3’ (TRCN0000014930); NF-YA (shYA#2), 5’-CACATGTCGAAGTTA-3’ (TRCN0000014932); and c-Fos, 5’-GCCGAGAGCACCAACATGAA-3’ (TRCN0000027394). Scrambled control (SC), 5’-AACGCCAGAAGCAGCAAA-3’, was used as a negative control for all knockdown experiments. Annealed oligonucleotides were cloned into pLKO-Tet-On. To generate viral particles, HEK 293 T cells were cultured in a 10-cm dish without antibiotics for 24 h, and then transfected with 2 μg of pLKO.1-Tet-On shRNA vector, 1.5 μg of pHRI-CMV-ΔR8.2Δvpr packaging plasmid, and 0.5 μg of pHRI-CMV-VSVG envelope plasmid using FuGENE HD reagent. The supernatant containing viruses was harvested 3 days post-transfection, and then filtered through a 0.45 μm filter to remove cell debris. Prostate cancer cells and lung cancer cells were then infected by applying 6 ml viral supernatant in 10 ml complete medium. Polybrene was added to be a concentration of 8 μg/ml to facilitate the infection. Cells were selected with 2 μg/ml of puromycin (for PC-3, 3.5 μg/ml) for 3 days for stable integration of the shRNA plasmids, and surviving cells were maintained in the presence of 1 μg/ml of puromycin. To knock down NF-YA or c-Fos, cells were induced with 1 μg/ml of doxycycline (Dox) for at least 3 days.

2.8. Cell growth analysis and Trypan blue exclusion assay

LNCaP and PC-3, or A549 stable cell lines were seeded in six-well plates in triplicate at a density of 1 × 10^5 cells/well or 2 × 10^5 cells/well, respectively. Cells were then induced with or without Dox (1 μg/ml) for various times, and medium and Dox were changed every 3 days during culture. The number of viable and dead cells from each well was determined by Trypan blue staining. To determine the effect of NF-YA knockdown on cell proliferation, the indicated stable cell lines were seeded and grew on coverslips in six-well plates at a cell density of 1 × 10^5 cells/well or 2 × 10^5 cells/well, followed by treatment with or without Dox (1 μg/ml) for 84 h. Bromodeoxyuridine (BrdU, Calbiochem Cat#Q858) was then added to each well for incubation of another 8 h and cells were processed as described previously [39]. For quantification of BrdU incorporation, at least 1000 cells from 10 fields were counted for each cell line under a Nikon TE2000-U inverted fluorescence microscope. Fluorescent images were taken at 200 × magnification and the percentage of BrdU positive cells was shown.

2.9. Statistical analyses

Statistical analyses were performed with the GraphPad Prism 6 Software (Graphpad Software, San Diego, CA, USA). Briefly, Student’s t test was used to compare means of two different groups, while one-way analysis of variance (ANOVA) was used for multiple group comparison, followed by Tukey’s post-hoc test or Dunnett’s test. Two-way ANOVA was used to compare the means of two independent variables, followed by Tukey’s post-hoc test. All data were expressed as mean ± SEM, and p values less than 0.05 between groups were considered statistically significant. To analyze the correlation between the expression of PRMT5 and NF-YA in prostate cancer, we searched the Oncomine database (www.oncomine.org) and included each study that has more than 60 samples. A total of six independent studies met this criterion, and the results from these studies were pooled for correlation analysis. For each pair, the statistic Q was calculated to test the homogeneity of effect sizes across studies [50]. It turns out that, for each pair, the effect sizes across studies are not homogeneous (all with p value < 0.0001). Therefore, we employed a random-effects model for the meta-analysis of each pair [51].

3. Results

3.1. Identification of the proximal promoter of PRMT5

To investigate how PRMT5 expression is transcriptionally regulated, we cloned a 3.5kb PRMT5 promoter from LNCaP cells and found that there were two distinct types of promoters that harbor six single nucleotide polymorphisms (SNPs) and one 13 bp insertion/deletion polymorphism (inDEL) within 1.8 kb (Fig. 1A). To know whether these SNPs may impact the promoter activity, we used the 1.8 kb of the promoter to construct a series of truncated luciferase reporter genes (Fig. 1A). Transfection of these reporter genes into LNCaP cells resulted in at least a 7-fold increase in the promoter activity when compared with the vector control, with the B3 showing the highest activity (Fig. 1B). Similar results were obtained in PC-3 cells (Fig. 1C). However, mutations of all SNPs did not show any significant impact on the reporter gene activity (data not shown). Taken together, these results suggest that these SNPs have negligible effect on the 1.8 kb promoter activity.

To identify a proximal promoter region, we constructed two other reporter genes (B6: −68/+75; B7: +8/+75) (Fig. 1D) and found that further deletions (B6 and B7) dramatically decreased the reporter gene activity in LNCaP cells (Fig. 1D), indicating that the region −240 to +75 is critical for the PRMT5 promoter activity. Similar results were observed in PC-3 cells (Fig. 1D). Since PRMT5 expression is also required for the growth of lung cancer cells (A549) [3], we transfected these reporter genes into A549 cells and observed that the reporter gene activity of B5 in A549 was 2-fold higher than that in LNCaP and PC-3 cells, though a comparable reporter gene activity of B6 and B7 was observed in all three cell lines (Fig. 1D). These results demonstrate that the proximal −240 region is important for PRMT5 transcription in a cell context-dependent manner.

3.2. The two inverted CCAAT boxes are critical for the proximal promoter activity of PRMT5

We next used AliBaba2.1 and TFSEARCH online software to search for putative cis-regulatory elements and identified one consensus GATA binding site for GATA binding, one GC box for SP1 binding, and three identical inverted CCAAT boxes for NF-Y binding in the proximal promoter region (Fig. 2A). In order to determine whether these putative binding sites contribute to the proximal promoter activity, we mutated these consensus motifs by site-directed mutagenesis (Fig. 2B), and examined their activities by using the luciferase reporter gene assays. In LNCaP cells, mutation of Y1 or Y2 (from CCAAT to CAGAA) [52], decreased the reporter gene activity by 33% and 21%, respectively.
Significantly, mutations of both NF-Y binding sites resulted in 70% reduction in the reporter gene activity. Contrary to the two CCAAT box binding sites, single mutation introduced into the SP1 (GGGCGG to GGAAAG) or GATA (GATA to GCAA) binding site, which was demonstrated previously to abolish their binding [53,54], increased the promoter activity by 36% or 27%, respectively (Fig. 2C). However, mutation of both SP1 and GATA binding sites did not show any further increase in the promoter activity. Similar effect of mutations in NF-Y sites was observed in PC-3 (Fig. 2D) and A549 cells (Fig. 2E), though single mutation of the first NF-Y site (Y1) had a more profound effect compared with the second NF-Y site (Y2). These results suggest that the two NF-Y binding sites may positively regulate PRMT5 transcription in all three cell lines whereas the SP1 and GATA binding sites may negatively regulate PRMT5 transcription in LNCaP cells but not in PC-3 and A549 cells. To know how these binding sites cooperatively contribute to the PRMT5 promoter activity, we mutated these binding sites in combination (Fig. 2B), and observed an overall inhibitory effect on the luciferase reporter gene activity, which was similar to the effect of mutations in the first two NF-Y binding sites (mY1,2). Note that a third NF-Y binding site (Y3) is located at +42, however, mutation of Y3 did not decrease the reporter gene activity in all three cell lines. Instead, a slight increase was observed (Fig. 2F–H). When all three NF-Y binding sites were mutated, a comparable suppression of the reporter gene activity to that with Y1/Y2 mutated was observed in all three cell lines (Fig. 2F–H). Taken together, these results suggest that the first two putative NF-Y binding sites are the major cis-regulatory elements to drive PRMT5 transcription.

3.3. NF-Y regulates PRMT5 expression in LNCaP cells via binding to the two CCAAT boxes

Unlike NF-YB and NF-YC, whose expression is relatively stable, NF-YA is the limited subunit for specific binding to CCAAT boxes in cells [12,21–23]. To confirm the role of NF-Y in PRMT5 transcription at the endogenous level, we established two stable cell lines that inducibly express shRNAs targeting two different sequences in the coding region of NF-YA to evaluate the effect of NF-YA knockdown on PRMT5 expression. As shown in Fig. 3A, the two shRNAs knocked down the expression of NF-YA-S, the shorter isoform of NF-YA that is predominantly expressed in LNCaP cells, by more than 65%. The reduction of PRMT5 expression at protein level was similar to that of NF-YA. We confirmed that the expression of a well-known NF-Y target gene CCNA2 was also reduced, demonstrating the specificity of the two NF-Y shRNAs. Since the shYA#1 showed higher knockdown efficiency in LNCaP, it was chosen for the following experiments. We found that knockdown of NF-YA decreased the PRMT5 mRNA level (Fig. 3B), suggesting that the reduction of PRMT5 by NF-YA knockdown likely occurs at the transcriptional level. Transient knockdown of NF-YA significantly inhibited the WT reporter gene activity, but had no effect on the mutant reporter gene activity (Fig. 3C), suggesting that the two CCAAT boxes in the proximal promoter region likely mediates the effect of NF-Y on PRMT5 transcription. We next performed ChiP assays and confirmed that NF-YA bound to the region containing the two CCAAT boxes (P2 in Fig. 3D), but not the distal promoter region that does not contain CCAAT box (P1 in Fig. 3D). As a positive control, NF-Y also bound to the proximal promoter of CCNA2 [55]. These results demonstrate that NF-Y indeed binds to the two CCAAT boxes in the proximal promoter of PRMT5 and regulates PRMT5 transcription in LNCaP cells. To know whether NF-Y may regulate PRMT5 expression in human prostate cancer tissues, we searched Oncomine database and found that there was a strong positive correlation between the transcript level of NF-YA and PRMT5 (Fig. 3E), as evidenced by a meta-analysis from six independent studies. This result further supports our finding that NF-Y regulates PRMT5 expression in prostate cancer cells.

3.4. NF-Y regulation of PRMT5 expression is required for prostate cancer cell growth

Given that NF-Y is critical for PRMT5 expression in several cancer cell lines, we next sought to determine the importance of NF-Y regulation of
PRMT5 expression in cell growth. Using the two shRNA constructs, we were able to establish a stable cell line by using A549 to knockdown NF-YA by 50%, accompanied by a 39% reduction in PRMT5 expression (Supplementary Fig. S1A). However, the two shRNAs did not exhibit acceptable knockdown efficiency in PC-3 (Supplementary Fig. S1B).

We then examined the effect of NF-YA knockdown on cell growth and cell death in LNCaP and A549. Knockdown of NF-YA inhibited cell growth in LNCaP and A549 cells (Fig. 4A and B). The inhibition of cell growth in both LNCaP and A549 by NF-YA knockdown was attributable to the inhibition of cell proliferation (Fig. 4C and D; Supplementary Fig. S1C and D) and the induction of cell death (Fig. 4E and F), in agreement with previous findings that NF-Y plays a role in regulating cell proliferation and cell death [12]. Because NF-Y may influence growth of these cancer cells by controlling expression of many other genes [12,15,17], we next performed a PRMT5 rescue experiment to determine to what extent PRMT5 down-regulation is responsible for cell growth inhibition induced by NF-YA knockdown. As shown in Fig. 4G and H, transient expression of PRMT5 partially rescued cell growth inhibition only in LNCaP cells, but not in A549 cells. Taken together, these results suggest that the regulation of cell growth by NF-Y may be partially mediated through up-regulation of PRMT5 expression in a cell context-dependent manner.

3.5. The PKC signaling negatively regulates PRMT5 expression in LNCaP cells

We next searched for possible cell signaling that may regulate PRMT5 expression in LNCaP cells by treating cells with various protein kinase inhibitors or agents that activate cell signaling pathways, and observed that treatment of cells with PMA resulted in a dramatic decrease of PRMT5 expression in a dose- and time-dependent manner (Fig. 5A and B). Interestingly, NF-YA expression was similarly inhibited (Fig. 5A and B). Significantly, the mRNA level of PRMT5 (Fig. 5C) and NF-YA, but not NF-YB and NF-YC (Fig. 5D), was inhibited by PMA treatment as well. Because PMA-induced PKC activation contributes to cell growth inhibition and apoptosis in LNCaP cells [26], we examined whether inhibition of PKC can restore the expression of NF-YA and PRMT5 in LNCaP cells, and found that treatment of cells with a pan-PKC inhibitor GFX completely restored the expression of NF-YA and PRMT5 at mRNA and protein level (Fig. 5C–E). The observed increase in NF-YB mRNA in cells treated with PMA plus GFX was likely due to the effect of GFX alone, because GFX treatment only increased NF-YB expression at the mRNA level but had no effect on the expression of PRMT5, NF-YA, and NF-YC (Supplementary Fig. S2).

Consistent with a role for NF-Y in regulating PRMT5 transcription via the NF-Y binding sites in the proximal promoter region, PMA treatment resulted in almost
75% reduction of the NF-YA binding to the proximal promoter region of PRMT5 (Fig. 5F). In agreement with previous findings that PMA inhibits cell growth and induces apoptosis only in LNCaP, but not in DU 145 and PC-3 cells [25,26], PMA treatment did not cause any significant change in NF-YA and PRMT5 expression in PC-3 cells (Fig. 5G). Additionally, PMA did not have any effect on NF-YA and PRMT5 expression in A549 cells (Fig. 5H). Thus, PMA treatment appears to have a specific effect on the expression of NF-YA and PRMT5 in LNCaP cells.
3.6. c-Fos mediates the PKC signaling to regulate PRMT5 transcription via down-regulation of NF-YA expression

As AP-1 proteins c-Fos and c-Jun are downstream transcription factors of PKC that can be induced by PMA[30–32], we confirmed that PMA treatment indeed induced expression of c-Fos and c-Jun in LNCaP cells (Fig. 6A). However, overexpression of c-Fos, but not c-Jun, inhibited the PRMT5 reporter gene activity (Fig. 6B). Consistent with its effect on the PRMT5 reporter gene activity, overexpressed c-Fos, but not c-Jun, decreased PRMT5 mRNA (Fig. 6C) and protein expression (Fig. 6D). We found that NF-YA expression at both mRNA and protein levels was also inhibited by c-Fos (Fig. 6C and D). These results suggest that c-Fos may mediate the PKC signaling to down-regulate the expression of NF-YA and PRMT5. To test this, we generated a shRNA construct targeting c-Fos and observed that knockdown of c-Fos increased the PRMT5 reporter gene activity by 54% (Fig. 6E). Further, we used the shRNA construct to establish an inducible stable cell line to knock down c-Fos, and observed that PMA-induced NF-YA and PRMT5 down-regulation was partially restored when c-Fos was knocked down (Fig. 6F and G). Since the ENCODE ChIP-seq data from the UCSC database (http://genome.ucsc.edu/ENCODE/) show that c-Fos also binds to the proximal promoter region in HeLa-S3 and K562 cells, we were interesting to know whether c-Fos has any direct impact on the PRMT5 promoter activity in LNCaP cells. To this end, we examined the effect of c-Fos overexpression or knockdown on the WT and the mutant PRMT5 reporter gene activity. As shown in Fig. 6H and I, we found that...
overexpression of c-Fos decreased the WT PRMT5 reporter gene activity by 62.3%, but had no effect on the mutant reporter gene activity in which all three NF-Y binding sites were mutated (mY1,2,3). In contrast, transient knockdown of c-Fos remarkably increased the WT PRMT5 reporter gene activity, but had no effect on the mutant reporter activity. These results provide evidence that c-Fos indeed mediates, at least partially, the PKC signaling to negatively regulate PRMT5 transcription via down-regulation of NF-YA in LNCaP cells.

4. Discussion

It has been reported that PRMT5 may function as an oncogene to promote cancer cell growth [1–3,5–7,9,10]. Although NF-Y directly regulates transcription of many target genes to control cell cycle progression, cell proliferation and cell survival [12,13,15,17], our finding that NF-Y transcriptionally activates PRMT5 expression suggests that NF-Y may also regulate cancer cell growth by controlling the expression level of PRMT5, an emerging epigenetic enzyme that functions as an oncogene in human cancers [1]. For example, E2F1 is a member of the E2F family transcription factor required for transactivation of target genes involved in cell cycle progression in cancer cells [56]. Because the transcriptional activity of E2F1 is under the control of the tumor suppressor Rb, loss of Rb leads to constitutive activation of E2F1 and cancer development [57]. Interestingly, PRMT5 can epigenetically silence transcription of Rb [9]. Thus, activation or overexpression of NF-Y may lead to PRMT5 overexpression, by which Rb is silenced and E2F1 is activated, providing another pathway to promote cell cycle progression in cancer cells that harbor the wild-type Rb gene [9]. As NF-Y also regulates the transcription of the same target genes such as E2F1 [58], future studies of how NF-Y coordinates the regulation of PRMT5 expression and other target genes will likely provide novel insights into the oncogenic role of both NF-Y and PRMT5 in cancer cells.

Recent evidence indicates that PRMT5 is overexpressed in multiple human cancers [3–11], though it is unknown how PRMT5 expression is regulated by cancer signaling. In leukemia and lymphoma cells, down-regulation of several miRNAs contributes to PRMT5 overexpression [9,10]. We have provided several lines of evidence that NF-Y regulates PRMT5 transcription via the binding to the two CCAAT boxes in the proximal promotor region of PRMT5. First, mutagenesis analyses showed that mutation of the two CCAAT boxes in the proximal

Fig. 5. PKC negatively regulates PRMT5 expression in LNCaP. (A and B) The PKC activator PMA inhibits NF-YA and PRMT5 expression in a dose- and time-dependent manner. LNCap cells were treated with PMA at the indicated doses (A) for 24 h or treated with 100 nM of PMA for the indicated time points (B), and total cell lysate was used for immunoblotting analysis of PRMT5 and NF-YA expression. (C and D) A pan-PKC inhibitor inhibits PMA-induced down-regulation of PRMT5 and NF-YA at the mRNA level. LNCap cells were treated with 100 nM of PMA in the presence or absence of a pan-PKC inhibitor GFX (200 nM) for 24 h, and relative mRNA level of PRMT5 (C) or NF-YA, NF-YB and NF-YC (D) was determined by qRT-PCR. Results from three independent experiments are presented as mean ± SEM in C and D, and statistical significance (*p < 0.05, ***p < 0.001) was determined by one-way ANOVA followed by Tukey’s test. (E) PKC inhibition restores NF-YA and PRMT5 expression at the protein level in cells treated with PMA. LNCaP cells were treated with 100 nM of PMA in the presence or absence of GFX (200 nM) for 24 h, then NF-YA and PRMT5 expression was analyzed by immunoblotting. Representative blots from three independent experiments are shown. (F) PMA treatment decreases NF-YA binding to the PRMT5 promoter. ChIP analysis was conducted using anti-NF-YA antibody to determine the binding of NF-YA to the two CCAAT boxes in the proximal promoter region of PRMT5. ***p < 0.001 (Student’s t-test). (G and H) PMA does not significantly affect the expression of NF-YA and PRMT5 in PC-3 and A549. PC-3 and A549 cells were treated with PMA at the indicated concentration for 24 h, and total cell lysate was used for immunoblotting detection of NF-YA and PRMT5 expression. PMA −, DMSO treatment (Fig. 5C–F).
promoter region resulted in 70% reduction in the luciferase reporter gene activity in three different cancer cell lines (Fig. 2C–E). Second, endogenous NF-YA also specifically bound to the proximal promoter region containing the two CCAAT boxes in LNCaP cells (Fig. 3D). Third, knockdown of NF-YA not only inhibited the PRMT5 promoter-driven luciferase reporter gene activity but also decreased the expression of PRMT5 at both mRNA and protein levels (Fig. 3A–C). We also show that the PKC/c-Fos signaling negatively regulates PRMT5 expression.

Fig. 6. c-Fos mediates the PKC signaling to down-regulate PRMT5 expression via NF-YA. (A) PMA increases c-Jun and c-Fos expression in LNCaP. LNCaP cells were treated with 100 nM of PMA in the presence or absence of GFX (200 nM) for 24 h, and the expression of c-Fos and c-Jun was determined by immunoblotting. (B) Overexpression of c-Fos, but not c-Jun, inhibits the PRMT5 promoter activity. One microgram of pCMV-FLAG (Vector), pFLAG-c-Fos (c-Fos) or pFLAG-c-Jun (c-Jun) was co-transfected with 0.5 μg of the wild-type (B5) reporter gene, along with 0.1 μg of pRL-TK into LNCaP cells. The luciferase activity was determined 24 h after the transfection. Results from six independent experiments in triplicate are presented as mean ± SEM, and statistical significance (**p < 0.01, ****p < 0.0001) was determined using one-way ANOVA followed by Dunnett’s test. (C and D) Overexpression of c-Fos, but not c-Jun, inhibits NF-YA and PRMT5 expression. LNCaP cells were transfected with 3 μg of the indicated plasmids as described in B. The mRNA and protein expression of NF-YA and PRMT5 were determined by qRT-PCR (C) and immunoblotting (D), respectively. Results from at least three independent experiments are presented as mean ± SEM. Statistical significance (**p < 0.01) was determined by using one-way ANOVA followed by Dunnett’s test. (E) Knockdown of c-Fos inhibits the PRMT5 promoter activity. The SC or c-Fos shRNA (shFos) was co-transfected with 0.5 μg of the wild-type (B5) reporter gene, along with 0.1 μg of pRL-TK into LNCaP cells. The luciferase activity was determined 48 h after the transfection. **p < 0.01 versus SC (Student’s t test). (F and G) Knockdown of c-Fos partially rescues NF-YA and PRMT5 expression. Stable cell line that can inducibly express a c-Fos shRNA was induced with 1 μg/ml of doxycycline (Dox+) or without treatment (Dox−) for 48 h. Cells then were treated with 100 nM of PMA (PMA+) or DMSO (PMA−) for another 24 h, followed by determination of the mRNA expression (F) and protein expression (G) of NF-YA and PRMT5. Statistical significance (**p < 0.05, ***p < 0.01) was determined by two-way ANOVA followed by Tukey’s test. The numbers in G indicate the relative expression level of each protein analyzed by Image J software. (H and I) c-Fos decreases PRMT5 promoter activity mainly through CCAAT boxes. The indicated plasmids were transfected into LNCaP cells, and the luciferase assays were performed following the same procedure as described in B and E, respectively. Results from three independent experiments in triplicate are presented as mean ± SD, and statistical significance (**p < 0.01, ****p < 0.0001).
via down-regulation of NF-YA transcription in LNCaP prostate cancer cells (Figs. 5–7A). Although the mechanism by which c-Fos represses NF-YA transcription remains to be investigated, it is interesting to note that our preliminary analysis of the NF-Y promoter identified three consensus AP-1 binding sites within the 6 kb promoter region. It is therefore possible that c-Fos may directly repress NF-YA transcription by binding to these consensus AP-1 binding sites. Alternatively, c-Fos may indirectly repress NF-YA transcription through a secondary effect (e.g., up-regulation of a transcriptional repressor of NF-YA). Nevertheless, our findings suggest that cell signaling may up-regulate PRMT5 expression by down-regulation of PKC or by direct up-regulation of NF-YA to promote cancer cell growth (Fig. 7B). This is further supported by the fact that several isozymes of PKC are down-regulated in human cancers [59]. Indeed, a preliminary analysis of the Oncomine database shows that the transcript level of several PKC isozymes inversely correlates with the transcript level of PRMT5 in prostate cancer and lung cancer (Supplementary Fig. S3). It will be interesting to see whether down-regulation of these PKC isozymes correlates with PRMT5 overexpression at the protein level in human cancer tissues.

The cell growth–promoting role of PRMT5 is mediated by controlling the expression of target genes or by post-translational modification of signaling molecules that are involved in cell cycle progression, apoptosis, and DNA repair [1]. Although knockdown of PRMT5 in LNCaP cells inhibits cell proliferation [60], the downstream signaling mediating this effect remains unknown. A previous study suggests that PRMT5 may be required for the transcriptional activity of AR in a luciferase reporter gene assay [61]. Given that PMA-induced down-regulation of PRMT5 is mainly observed in AR positive LNCaP cells, but not in AR negative DU 145 and PC-3 cells, it is plausible to hypothesize that down-regulation of PRMT5 by PMA in LNCaP cells may contribute to the suppression of LNCaP cell growth and induction of apoptosis by attenuating the AR activity [61]. As a recent report shows that PMA treatment in LNCaP cells can down-regulate AR expression [62], it would be interesting to examine whether PRMT5 has any effect on AR expression. Alternatively, PMA-induced PRMT5 down-regulation may contribute to PMA-induced apoptosis by enhancing the activity of p38α, a major serine/threonine protein kinase mediating PMA-induced apoptosis in LNCaP cells [26]. Support for this notion comes from a recent observation that PRMT5 forms a complex with p38α and suppresses PKCα- and p38α-dependent signaling in keratinocytes [63]. Future studies to distinguish these possibilities will provide a novel insight into the regulatory role of PRMT5 in prostate cancer cells.

In summary, we have identified NF-Y as the major transcriptional activator of PRMT5 in multiple cancer cell lines, and demonstrated that the PKC/c-Fos signaling negatively regulates PRMT5 expression in LNCaP prostate cancer cells through down-regulation of NF-YA transcription. Because down-regulation of several PKC isozymes correlates with human cancer development and progression [59], further analysis of the interplay between PRMT5 and the PKC/c-Fos signaling in human cancer will provide novel insights into the oncogenic role of PRMT5 in human cancers.

Acknowledgments

This study was partially supported by grants from U.S. Army Medical Research Acquisition Activity, Prostate Cancer Research Program (PC11190 and PC120512), and Purdue University Center for Cancer Research Small Grants. DNA sequencing was conducted in the Purdue University Center for Cancer Research Genomic Core Facility supported by NCI CCSG CA23168 to Purdue University Center for Cancer Research. We thank members of the Hu lab for helpful suggestions and discussions. Huan-Tian Zhang was supported by a scholarship from China Scholarship Council and a Graduate Fellowship from Jinan University and Institute of Orthopedic Diseases of Jinan University for his study in the Hu lab at Purdue University.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.bbabmb.2014.09.015.

References

Fig. 7. Model for the regulation of PRMT5 expression by the PKC/c-Fos-NF-Y signaling in human cancer. (A) The PKC signaling negatively regulates PRMT5 expression in a c-Fos- and NF-Y-dependent manner in LNCaP cells. In response to PMA treatment, activation of PKC leads to the induction of c-Fos, which in turn suppresses NF-YA transcription and results in down-regulation of PRMT5. As a result, cell growth is inhibited. (B) Proposed mechanisms underlying up-regulation of PRMT5 expression in cancer cells. Two possible mechanisms may underlie PRMT5 overexpression in human cancers. One is the inactivation or down-regulation of PKC by cell signaling, and the other is direct activation or up-regulation of NF-YA by cell signaling that remains to be identified (X). Dashed lines indicate unknown factors that remain to be identified. Thick solid arrows illustrate the up-regulation or down-regulation of the indicated protein.

J.D. Fleming, G. Pavesi, P. Benatti, C. Imbriano, R. Mantovani, K. Struhl, NF-Y coassociates with FOS at promoters, enhancers, repressive elements, and inactive chromatin regions, and is stereo-positioned with growth-controlling transcription factors, Genome Res. 23 (2013) 1195–1209.

Fig. S1. Effect of PRMT5 knockdown on cell proliferation in LNCaP and A549 cells. (A) Knockdown of NF-YA decreases PRMT5 expression in A549 cells. A549 stable cell lines expressing shYA#1 or the scrambled control (SC) were induced to knock down NF-YA by 1 μg/ml of doxycycline (Dox) for 96 hours. Immunoblotting was applied to analyze expression of NF-YA and PRMT5. The number of values indicates the relative expression determined by Image J. (B) PC-3 stable cell lines expressing shYA#1 or shYA#2 or the scrambled control (SC) were induced to knock down NF-YA by 1 μg/ml of doxycycline (Dox) for 96 hours. Results were analyzed as in (A). (C and D) Knockdown of NF-YA inhibits BrdU incorporation in LNCaP and A549 cells. LNCaP and A549 stable cell lines were induced with and without Dox (1 μg/ml) for 84 hours, followed by BrdU treatment for another 8 hours. Cells were fixed and immunostained with a BrdU-specific antibody (Red). The nucleus was stained with DAPI (Blue). Scale bar: 50 μm.
Fig. S2. Effect of GFX on mRNA expression of PRMT5 and NF-Y subunits. LNCaP cells were treated with GFX (200 nM) or DMSO for 24 hours. The mRNA expression of NF-YA, NF-YB, NF-YC and PRMT5 was determined by qPCR. Student’s t test was used for statistical analysis (**, p<0.01).
Fig. S3. The correlation between PKC isozymes and PRMT5 transcript in cancer tissues. Expression of several PKC isozymes correlates with expression of PRMT5 in prostate cancer (A–D) and lung cancer (E–H). Data shown are from six independent studies (each study has more than 60 samples) deposited in Oncomine database (www.oncomine.org). All these studies were pooled for correlation analysis, and a random-effects model was employed for the meta-analysis of each pair.
The E3 ubiquitin ligase CHIP mediates ubiquitination and proteasomal degradation of PRMT5

Huan-Tian Zhang a,b, Ling-Fei Zeng b,c, Qing-Yu He d, W. Andy Tao b,c, Zhen-Gang Zha a,* , Chang-Deng Hu b,⁎

a Institute of Orthopedic Diseases and Department of Orthopedics, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
b Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
c Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
d Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China

A R T I C L E I N F O
Article history:
Accepted 1 December 2015
Available online 2 December 2015

Keywords:
CHIP
E3 ubiquitin ligase
PRMT5
Ubiquitination
Chaperone
Prostate cancer

A B S T R A C T
Protein arginine methyltransferase 5 (PRMT5) is an important member of the protein arginine methyltransferase family that regulates many cellular processes through epigenetic control of target gene expression. Because of its overexpression in a number of human cancers and its essential role in cell proliferation, transformation, and cell cycle progression, PRMT5 has been recently proposed to function as an oncoprotein in cancer cells. However, how its expression is regulated in cancer cells remains largely unknown. We have previously demonstrated that the transcription of PRMT5 can be negatively regulated by the PKC/c-Fos signaling pathway through modulating the transcription factor NF-Y in prostate cancer cells. In the present study, we demonstrated that PRMT5 undergoes polyubiquitination, possibly through multiple lysine residues. We also identified carboxyl terminus of heat shock cognate 70-interacting protein (CHIP), an important chaperone-dependent E3 ubiquitin ligase that couples protein folding/refolding to protein degradation, as an interacting protein of PRMT5 via mass spectrometry. Their interaction was further verified by co-immunoprecipitation, GST pull-down, and bimolecular fluorescence complementation (BiFC) assay. In addition, we provided evidence that the CHIP/chaperone system is essential for the negative regulation of PRMT5 expression via K48-linked ubiquitin-dependent proteasomal degradation. Given that down-regulation of CHIP and overexpression of PRMT5 have been observed in several human cancers, our findings suggest that down-regulation of CHIP may be one of the mechanisms underlying PRMT5 overexpression in these cancers.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction
Protein arginine methyltransferase 5 (PRMT5) is a type II methyltransferase that can symmetrically methylate arginine residues of histones and non-histone substrates [1]. The symmetric methylation on histone H4 at arginine 3 (H4R3) and/or histone H3 at arginine 8 (H3R8) is generally thought to result in transcriptional repression of target genes such as suppressor of tumorigenicity 7 [1,2], nonmetastatic 23 [1], p53 [3], and RBs (RB1, RB1L1, RB1L2) [4]; whereas methylation of non-histone substrates including E2F1, p53, RelA/p65, epidermal growth factor receptor (EGFR), RAD9, and programmed cell death 4 generates more diverse cellular effects [5,6]. For example, the methylation of E2F1 at R111 and R113 by PRMT5 reduces its ability to suppress cell growth and to promote apoptosis, conferring a survival advantage to tumor cells [7]. Also, methylation of p565 at K30 activates NF-κB signaling pathway and facilitates the expression of its target genes including tumor necrosis factor (TNF), TNF receptor-associated factor 1, interleukin-8, and interleukin 1A [8]. It has been proposed that PRMT5 functions as an oncprotein by either silencing the expression of tumor suppressors or activating the signaling molecules that are crucial for cancer cells [5]. In fact, recent studies have shown that up-regulation of PRMT5 expression correlates with the development and progression of several human cancers, such as breast cancer [9], gastric cancer [10], colorectal cancer [7], ovarian cancer [11], leukemia, and lymphoma [2]. However, how PRMT5 expression is regulated in cancer cells remains largely unknown.

We have previously demonstrated that in human prostate cancer cells, PRMT5 can be transcriptionally activated by nuclear factor Y (NF-Y), and that the protein kinase C (PKC)/c-Fos signaling pathway negatively regulates PRMT5 expression through transcriptional down-regulation of NF-Y [12]. Recent research has also found that MYC directly up-regulates the transcription of the core small nuclear ribonucleoprotein particle (snRNP) assembly genes, in which PRMT5 is the key...
enzymatic component [13]. In addition to the transcriptional regulation of PRMT5 expression, PRMT5 is also regulated by miR-92b/96 in mantle cell lymphoma [2]. Research from the same group also demonstrates that down-regulation of another three miRNAs (miR-19a, miR-25, and miR-32) in several lymphoid cancer cell lines leads to an increase of PRMT5 protein expression [4]. Recently, it has been observed that treatment of three different human cancer cell lines (ovarian, colon, and melanoma) with the heat shock protein 90 (Hsp90) inhibitor 17-AAG reproducibly down-regulates the expression of PRMT5 at the protein level [14]. Given the role of Hsp90 in the regulation of protein folding and degradation, it is reasonable to postulate that PRMT5 may be a putative client protein for Hsp90 [14].

Ubiquitination is one of the most important post-translational modifications that regulate diverse cellular signaling [15]. To execute the ubiquitination process, the consecutive action of three enzymes, including the E1 ubiquitin-activating enzyme, the E2 ubiquitin-conjugating enzyme, and the E3 ubiquitin ligases, is required for the attachment of ubiquitin to a substrate [16,17]. The ubiquitin–proteasome system (UPS) is often utilized to fine-tune the expression of target proteins that are associated with cancer development and progression. As a mechanism of quality control for protein folding, ubiquitin-dependent proteasomal degradation is often coupled with the molecular chaperone system to remove misfolded proteins [16,18,19]. In this system, E3 ubiquitin ligases appear to be the key regulators that function together with the chaperone system to regulate protein degradation. Carboxyl terminus of heat shock cognate 70-interacting protein (CHIP), also known as STUB1/STIP1 homology and U-Box containing protein 1, is a chaperone-dependent E3 ubiquitin ligase [20,21]. CHIP contains three tandem tetratricopeptide repeat (TPR) motifs, through which it interacts with the chaperones including heat shock protein 70 (Hsp70) and Hsp90, and a U-box domain, which is responsible for ubiquitination of the chaperone-bound substrates. Recently, CHIP has been proposed as a tumor suppressor since lower expression of CHIP promotes cell proliferation and/or inhibits apoptosis in breast cancer [22,23], gastric cancer [24], pancreatic cancer [25], and colorectal cancer [26]. Specifically, the role of CHIP in these cancers is to control the expression of several crucial proteins, such as ErbB2 [22], hypoxia-inducible factor-1a [27], c-Myc [28], p65 [26], and EGFR [25].

In the present study, we demonstrated that PRMT5 can undergo polyubiquitination both in vivo and in vitro. We also provided evidence that the E3 ubiquitin ligase CHIP couples to the molecular chaperone system (Hsp70/Hsp90) and mediates ubiquitin-dependent proteasomal degradation of PRMT5. Our work provides a new mechanism underlying PRMT5 overexpression in cancer cells.

2. Materials and methods

2.1. Cell culture and reagents

Prostate cancer cell line LNCaP, human embryonic kidney 293 T (HEK293T), and COS-1 cells were purchased from American Type Culture Collection (ATCC) and were maintained in RPMI 1640 or DMEM medium containing 10% heat-inactivated fetal bovine serum (FBS) supplemented with penicillin/streptomycin, sodium pyruvate, and L-glutamine. All cells were maintained at 37 °C in a humidified incubator containing 5% CO2. Cycloheximide (CHX) and MG132 were purchased from Sigma. GA and 17-AAG were purchased from Chittaranjan Das lab (Purdue University) and were then subcloned into pCMV-HA vector. All plasmid constructs were verified by enzymatic digestion or DNA sequencing.

2.2. Plasmid construction

The pCMV-Myc-PRMT5 expression plasmid was previously constructed [12] and was used as a template to generate methyltransferase activity-deficient mutant pCMV-Myc-PRMT5-R368A [29], and a series of truncated fragments covering the residues 229–637, 284–637, and 352–637, and 451–637. For mutagenesis, nucleotide substitutions (from lysine/K to arginine/R) were introduced into PRMT5 using ligation PCR as described previously [12,30]. pCMV-FLAG-PRMT5 was generated by subcloning PRMT5 into pCMV-FLAG expression vector (Sigma). Various truncated mutants and single-point mutations of PRMT5 were generated using PCR or ligation PCR, and then subcloned into pCMV-FLAG or pCMV-HA (Clontech). The chaperone-interaction-deficient K30A mutant (Lysine/K to alanine/A at position 30) and E3 ubiquitin ligase activity-deficient H260Q mutant (histidine/H to glutamine/Q at position 260) for CHIP were generated using the same methods. Two truncated fragments of CHIP were amplified by PCR using primers specific for ΔU-box (forward primer: 5′-ccggaattcggatcgcgaagaagaagcg-3′ and reverse primer: 5′-cggcggctaccaatggaagctgctcgcct-3′) and ΔTPR (forward primer: 5′-ccggaattcggatcgggaagcagggcg-3′ and reverse primer: 5′-cggcggctaccaatggaagctgctcgcct-3′), and then were subcloned into pCMV-FLAG. To express CHIP as a fusion with GST, the cDNA encoding CHIP was subcloned into pGEX-4 T2 vector. For BiFC plasmid construction, pCMV-Myc and pCMV-HA were used to generate pBiFC-VN155 (1152L)-N and pBiFC-VC155-N vectors, followed by the subcloning of the cDNAs encoding PRMT5 and CHIP into either of these two BiFC cloning vectors. cDNAs encoding wild-type (WT) ubiquitin, ubiquitin-K48R, and ubiquitin-K63R were kind gifts from Dr. Chittaranjan Das lab (Purdue University) and were then subcloned into pCMV-HA vector. All plasmid constructs were verified by enzymatic digestion or DNA sequencing.

2.3. In vivo ubiquitination assay

Cells were co-transfected with the plasmid encoding HA-Ubiquitin and Myc-PRMT5 or its various mutants, along with plasmids encoding FLAG-CHIP or CHIP mutants for the indicated time, followed by the treatment with MG132 (10 μM) for another 6 h. Whole cell lysate (WCL) was prepared, and 500 μg of the WCL was used for immunoprecipitation (IP) using the antibodies against PRMT5, HA, and Myc, followed by the detection of respective proteins by immunoblotting (IB). For the detection of protein ubiquitination, a final concentration of 10 mM NEM (Sigma, E3876-SG) was added to the IP buffer in order to inhibit protein deubiquitination.

2.4. Co-immunoprecipitation and immunoblotting

Cells were harvested and washed twice with cold phosphate buffered saline (PBS) and then lysed by sonication in lysis buffer (10 mM Tris–HCl pH 7.4, 1.5 mM MgCl2, 10 mM KCl) containing 1 mM phenylmethyisulfonyl fluoride (PMSF), 1 mM dithiothreitol (DTT), protease cocktail, 25 mM okadaic acid, and 1% Triton X-100 as described previously [31]. For the preparation of soluble and insoluble samples, supernatant was collected and saved as soluble fraction, and pellets were resuspended in the same volume of lysis buffer and sonicated on ice, and the boiled pellets were saved as insoluble fraction. For co-immunoprecipitation (Co-IP), cells were treated with or without 17-AAG for 24 h, and the cell lysate was prepared by sonication in IP buffer (50 mM Tris–HCl, pH 7.4, 50 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 1.5 mM sodium orthovanadate, 50 mM sodium fluoride, 10 mM sodium pyrophosphate, 10 mM beta-glycerolphosphate, 1 mM PMSF, and protease cocktail), and IP was performed following the same procedure as described previously [12,32]. The antibodies used for IB analysis were anti-β-actin (Cell Signaling Technology, 8H10D10), anti-PRMT5 (Millipore, 07–405), anti-CHIP (Santa Cruz, G-2 sc-133,066), anti–FLAG M2 (Cell Signaling Technology, 9A3), anti-HA (Cell Signaling Technology, 6E2), anti-GST (BD Biosciences), and anti-Myc (GenScript, A00704-100). Secondary HRP-conjugated antibodies were purchased from Amersham Biosciences.
2.5. Mass spectrometry analysis of PRMT5 interacting proteins in LNCaP cells

For the identification of PRMT5 interacting proteins using mass spectrometry, LNCaP cells were transfected with the plasmids encoding FLAG-PRMT5 and HA-Ubiquitin for 42 h, followed by the treatment with MG132 for another 6 h. WCL was used for IP of FLAG-PRMT5 with anti-FLAG antibody, or the control IgG, followed by trypsin digestion and quantitative mass spectrometry analysis as described before [33]. Three independent experiments were performed, and E3 ligases that were specifically identified in the anti-FLAG immunoprecipitates but not in the IgG control were considered as putative E3 ligases for PRMT5 interaction.

2.6. GST pull-down assay

pGEX-4 T2-CHIP was transformed into Escherichia coli strain BL21, and a single colony of the transformed bacteria was inoculated into 200 ml LB medium and cultured at 37 °C until the optical density value reached 0.6. CHIP expression was induced by adding 1.0 mM isopropyl-beta-D-thiogalactopyranoside into the culture for 4 h. For cell lysate preparation, pelleted bacteria were resuspended in ice cold lysis buffer (50 mM Tris–HCl pH 7.4, 50 mM NaCl) and disrupted by sonication, followed by centrifugation at 15,000 × g for 30 min at 4 °C. For GST pull-down assay, plasmid encoding Myc-PRMT5 was transfected into HEK293T cells using FuGENE 6 following the manufacturer’s instructions and incubated for 24 h. The transfected cells were then lysed, and WCL was prepared. Approximately 500 μg of WCL was incubated with the same molar ratio of GST and GST-CHIP at 4 °C for overnight, followed by the incubation with glutathione-Sepharose beads (GE Healthcare) for another 2 h. The beads were washed three times with lysis buffer and boiled in 2 × SDS loading buffer and subjected to SDS-PAGE gel analysis [34].

2.7. BiFC assay

BiFC assay was performed essentially the same as previously described to analyze the interaction between PRMT5 and CHIP in COS-1 cells [35]. Briefly, COS-1 cells were grown on coverslips in a 6-well plate for 24 h, and the BiFC plasmids encoding Myc-VN155-PRMT5 and HA-VC155-CHIP, along with FLAG-Cerulean, were co-transfected into COS-1 cells for 24 h. Cells were then fixed with 3.7% paraformaldehyde and stained with 4',6-Diamidino-2-Phenylindole (DAPI) for 5 min at room temperature (RT) under dark condition. The fluorescent images were acquired by Nikon A1 confocal microscope.

2.8. Luciferase assay

HEK293T cells were transiently transfected with 1 μg of pCMV-FLAG (Vector) or pCMV-FLAG-CHIP (CHIP), along with 500 ng of the PRMT5 proximal promoter reporter gene, plus 100 ng of pRL-TK for 24 h using Lipofectamine® 3000 Transfection Reagent (Invitrogen), and the relative luciferase activity was determined using Dual-Luciferase® Reporter Assay system (Promega) as described previously [12].

2.9. Reverse transcription and real-time PCR

For real-time PCR analysis, total RNA was purified using TRIZol® Plus RNA Purification Kit (Life Technologies), and 2 μg of RNA was then reverse transcribed to cDNA using the High Capacity cDNA Reverse Transcription Kit (Invitrogen) according to the manufacturer’s protocol. Human PRMT5 and GAPDH primers used for real-time PCR were the same as described previously [12]. For real-time PCR, StepOne Real-Time PCR (Applied Biosystems) was performed by using SYBR Select Master Mix. All real-time PCR reactions were performed in triplicate with at least three independent experiments, and the relative expression of each gene was normalized to GAPDH [36].

2.10. RNA interference

Endogenous CHIP was depleted in cells using siGENOME Human STUB1/CHIP (10273) siRNA SMARTpool (Dharmacon, Lafayette, CO), and siGENOME Non-Targeting siRNA Pool (Dharmacon, Lafayette, CO) was used as a negative control. For siRNA experiments, the indicated siRNA was transfected into HEK293T cells using DharmaFECT 1 Transfection Reagent (Dharmacon) according to the manufacturer’s protocol. After cells were transfected for 72 h, WCL was prepared, and the ubiquitination pattern or the expression level of CHIP was analyzed by immunoblotting.

2.11. Analysis of cell apoptosis by flow cytometry

Plasmid encoding FLAG-CHIP (or Vector only) was transfected into cells for 48 h, followed by the treatment of 17-AAG for another 24 h. Both floating and adherent cells were collected for flow cytometry analysis using Annexin V-APC/7-amino-actinomycin D Apoptosis Detection Kit (KeyGEN Biotechnology, Nanjing, China). Briefly, HEK293T cells were trypsinized and washed with filtered PBS twice, resuspended in 200 μl binding buffer with 2 μl Annexin V-APC, and then incubated at RT for 15 min. Supernatant was gently removed after 300 s centrifugation for 2 min, followed by adding 2 μl of 7-ADD into 200 μl binding buffer and incubated at RT for 5 min in the dark. At least 50,000 cells were resuspended in 800 μl of PBS. Three independent experiments were performed using a BD Accuri C6 flow cytometer at a low flow rate with a minimum of 1 × 104 cells, and the percentage of apoptotic cells was determined.

2.12. Cell growth analysis

To determine the role of CHIP in 17-AAG-induced cell growth inhibition, HEK293T cells were seeded and grown on coverslips in a 6-well plate at a cell density of 1 × 105 cells/well, and siRNA control (siCon) or siCHIP was transfected into cells for 48 h using DharmaFECT 1 Transfection Reagent, followed by the treatment with or without 17AAG (100 nM) for another 24 h. Total cell number was counted using hemocytometer, and the percentage of cell growth over the control was determined [12].

2.13. Sequence alignment and visualization of PRMT5 structure

Sequence alignment and ubiquitination site prediction were performed using several online alignment and prediction software (http://bdmpub.biocuckoo.org/prediction.php, http://www.ubpred.org/, and http://protein.cau.edu.cn/cksaap_ubsite/), and the crystal structures of PRMT5 and MEP50 were retrieved from PDB database (accession code 4GQB) and processed by PyMOL software (http://www.pymol.org/). The illustration of protein domain of PRMT5 and CHIP was created using DOG1.0 software [37].

2.14. Statistical analysis

The GraphPad Prism 6 Software (Graphpad Software, San Diego, CA, USA) was used to perform all statistical analysis. Data were presented as mean ± SD from at least three independent experiments. Comparison between two groups was conducted by using Student’s t test. Two-way ANOVA was used to compare the means of two independent variables, followed by Tukey’s post-hoc test. p value less than 0.05 was considered to be statistically significant.
3. Results

3.1. PRMT5 undergoes polyubiquitination in LNCaP cells

We have previously shown that PRMT5 is transcriptionally activated by NF-Y in LNCaP prostate cancer cells, and that treatment of cells with the PKC activator phorbol-12--myristate-13-acetate (PMA) down-regulates PRMT5 expression [12]. During the course of these experiments, we noticed that PMA-induced PRMT5 down-regulation appeared to be partially reversed by the proteasome inhibitor MG132 (Fig. 1A), suggesting that PRMT5 might undergo proteosomal degradation. Given that polyubiquitination is a prerequisite for the proteosomal degradation of many cytosolic proteins [38], we sought to determine whether PRMT5 is subjected to polyubiquitination. To this end, LNCaP cells transfected with the plasmid encoding HA-Ubiquitin were treated with or without MG132, followed by immunoprecipitation of endogenous PRMT5 with anti-PRMT5 antibody. Indeed, polyubiquitination of endogenous PRMT5 was readily detectable in the absence of MG132, and the presence of MG132 further enhanced the polyubiquitination of PRMT5 (Fig. 1B). This result provides evidence that endogenous PRMT5 is polyubiquinated. To determine whether exogenously expressed PRMT5 also undergoes polyubiquitination, we co-expressed Myc-PRMT5 with HA-Ubiquitin (or HA-Vector) in LNCaP cells in the presence of MG132, and then immunoprecipitated Myc-PRMT5 with anti-Myc antibody followed by immunoblotting of HA-Ubiquitin with anti-HA antibody. As shown in Fig. 1C, Myc-PRMT5 was clearly polyubiquitinated. A reverse immunoprecipitation using anti-HA antibody was performed to further confirm the polyubiquitination of the exogenously expressed Myc-PRMT5 in LNCaP cells (Fig. 1D). Taken together, we conclude that PRMT5 can undergo polyubiquitination at both endogenous and exogenous level in LNCaP cells.

3.2. PRMT5 polyubiquitination involves multiple lysine residues

Since covalent attachment of multiple ubiquitin molecules to specific lysine residues of target proteins is a prerequisite for recognition and subsequent degradation by proteasome [39], we were interested in identifying the lysine residues that are responsible for PRMT5 ubiquitination. We generated a series of deletion mutants based on PRMT5 structure (Fig. 2A, top) and co-expressed them with HA-Ubiquitin in LNCaP cells to map the ubiquitination sites. As shown in Fig. 2A, all of these mutants appeared to undergo polyubiquitination in the presence or absence of MG132 treatment. Significantly, the PRMT5 mutants 229–637, 284–637, and 352–637 were highly ubiquitinated when compared with full-length PRMT5, whereas the ubiquitination pattern of the PRMT5 mutant 451–637 remained unchanged in the presence of MG132 treatment, suggesting that the major ubiquitination sites of PRMT5 are located between residues 229 and 451. Based on the crystal structure of PRMT5, we then focused on

![Fig. 1. Ubiquitination of PRMT5 in LNCaP cells. (A) Proteasome inhibitor MG132 partially restores PMA-induced reduction of PRMT5 expression. LNCaP cells were treated with the PKC activator PMA (100 nM) in the presence or absence of MG132 (10 μM) for 24 h, and the whole cell lysate (WCL) was prepared and subjected to immunoblotting (IB). The short isoform of NF-YA (NF-YA-s) represents the positive control. (B) Ubiquitination of endogenous PRMT5 in LNCaP cells. LNCaP cells were transfected with HA-Vector or the plasmid encoding HA-Ubiquitin for 48 h, followed by the treatment with DMSO (−) or MG132 (+) for another 6 h. WCL was immunoprecipitated with anti-PRMT5 antibody and probed with anti-HA or anti-PRMT5 antibody. (C) Ubiquitination of exogenous PRMT5 in LNCaP cells. Myc-PRMT5 was co-expressed with either HA-Vector or HA-Ubiquitin in LNCaP cells for 48 h, and WCL was immunoprecipitated with IgG or anti-Myc antibody, respectively, followed by immunoblotting of β-actin, HA-Ubiquitin, and Myc-PRMT5. * indicates non-specific band. (D) HA-Ubiquitin was co-expressed with either Myc-Vector or Myc-PRMT5 in LNCaP cells for 48 h, and WCL was immunoprecipitated with anti-HA antibody, followed by immunoblotting with β-actin and Myc antibodies. PRMT5-(Ub)n in B, C, and D indicates polyubiquitination of PRMT5.](image-url)
ten most surface-exposed lysine (K) residues (highlighted in Fig. 2B) within the region of residues 229–451. We mutated these lysine residues to arginine (R) at the indicated sites, including positions at 240 and 241 (1), 248 (2), 259 (3), 275 (4), 302 (5), 329 and 333 (6), 343 (7), 354 (8), 380 (9), and 387 (10). The expression level of all mutants was comparable; however, mutated individual lysine did not significantly change the ubiquitination pattern of PRMT5 (Fig. 2C). Next, we mutated the first five K (M1), the middle four K (M2), and the last three K (M3) to R in combination. As shown in Fig. 2D, all three mutants (M1, M2, and M3) showed a dramatic decrease of polyubiquitination, suggesting that multiple lysine residues might be involved in the polyubiquitination of PRMT5.

3.3. Co-chaperone E3 ubiquitin ligase CHIP interacts with PRMT5

E3 ubiquitin ligases are critical regulators of the ubiquitination process for specific substrates [40]. To identify E3 ubiquitin ligases specific for PRMT5, HA-Ubiquitin was co-expressed with FLAG-PRMT5 in LNCaP cells for 42 h and treated with MG132 for another 6 h, followed by immunoprecipitation using anti-FLAG antibody or IgG. The immunoprecipitates were subjected to mass spectrometry analysis. Two ubiquitin E3 ligases, CHIP and TRIM21, and one sumo E3 ligase, RanBP2, were specifically identified from three independent experiments (Table 1). Given the high coverage of CHIP, we selected CHIP for further validation as a potential interacting protein of PRMT5. Since HEK293T cells have a higher transfection efficiency, we co-expressed Myc-PRMT5 with FLAG-CHIP in HEK293T cells for 48 h in the presence of MG132 and then performed immunoprecipitation with anti-FLAG antibody. Compared with FLAG-Vector or IgG control, Myc-PRMT5 was co-immunoprecipitated with FLAG-CHIP (Fig. 3A), suggesting the specific interaction between Myc-PRMT5 and FLAG-CHIP in cells. Their interaction was further validated using GST pull-down assays (Fig. 3B), as evidenced by the enrichment of PRMT5 by GST–CHIP when compared with GST only. To ascertain the physiological interaction between CHIP and PRMT5, the WCL from HEK293T was prepared and subjected to reciprocal co-immunoprecipitation with either anti-CHIP antibody or anti-PRMT5 antibody. As shown in Fig. 3C, PRMT5 and CHIP were specifically co-immunoprecipitated with each other, demonstrating that PRMT5 and CHIP also interact at the endogenous level. Since CHIP and PRMT5 can be both localized to the cell nucleus, it is possible that their interaction may involve a process that requires nuclear localization of both proteins.
cytoplasm and nucleus [41], we then determined where they interact in cells using bimolecular fluorescence complementation (BiFC) technique [35,42]. Given that COS-1 cells have a better cytoplasm/nucleus ratio for visualization of subcellular localizations, we transiently transfected plasmids encoding HA-VC155-CHIP and Myc-VN155-PRMT5 along with a plasmid encoding FLAG-Cerulean into COS-1 cells for 24 h. As shown in Fig. 3D, the Venus signal (BiFC signal) in the transfected cells was predominantly localized in the cytoplasm, suggesting that the interaction between CHIP and PRMT5 likely occurred in the cytoplasm. In line with this, we also found that both CHIP and PRMT5 were co-localized in the cytoplasm by co-expressing them fused to full-length Cerulean and Venus, respectively (Fig. 3E).

CHIP contains a TPR domain involved in the interaction with chaperones at the N-terminus, a U-box domain that possesses ubiquitin ligase activity at the C-terminus, and a linker known as charged domain in between [20]. In order to determine which region of CHIP is required for PRMT5 interaction, we then generated a series of CHIP mutants (chaperone interaction-deficient mutant K30A, ubiquitination-deficient mutant H260Q, and TPR or U-box deletion mutant), to map the PRMT5 interaction domain in CHIP (Fig. 3F). We co-expressed these CHIP mutants as FLAG fusion proteins with Myc-PRMT5 in HEK293T cells and performed immunoprecipitation with anti-FLAG antibody and immunoblotting for Myc-PRMT5 with anti-Myc antibody. Although both H260Q and U-box deletion (∆U-box) mutants co-immunoprecipitated comparable
amount of Myc-PRMT5 when compared with the CHIP-FL, the binding of Myc-PRMT5 to the K30A and TPR deletion (ΔTPR) mutants was almost abolished (Fig. 3G). This result suggests that the TPR domain of CHIP is necessary for the interaction with PRMT5 and that the binding of PRMT5 and chaperons to CHIP may share the same binding motif. However, the interaction between CHIP and PRMT5 is independent of the E3 ligase activity of CHIP. Taken together, these results demonstrate that CHIP and PRMT5 can interact both in vitro and in vivo, and the interaction likely occurs in the cytoplasm.

3.4. CHIP negatively regulates PRMT5 expression

The finding that CHIP interacts with PRMT5 prompted us to determine whether CHIP regulates PRMT5 expression. We first co-expressed Myc-PRMT5 with increasing amounts of FLAG-CHIP in HEK293T cells for 48 h and then detected the expression of Myc-PRMT5. As shown in Fig. 4A, FLAG-CHIP dose-dependently decreased Myc-PRMT5 protein expression. We also confirmed that there was no significant effect of FLAG-CHIP on the PRMT5 promoter-driven reporter gene activity and PRMT5 mRNA expression (Fig. 4B). However, we found that overexpression of CHIP promoted degradation of PRMT5 and its methyltransferase activity-deficient mutant (Fig. 4C). To further investigate whether CHIP regulates PRMT5 expression, we co-transfected Myc-PRMT5 with either wild-type or the K30A and H260Q mutants of CHIP into HEK293T cells for 48 h and then determined the expression level of Myc-PRMT5 by immunoblotting. As shown in Fig. 4D, the expression of Myc-PRMT5 was significantly decreased by overexpression of CHIP in a dose-dependent manner. The effect of CHIP and its mutants on the expression of PRMT5 was further confirmed with a Student’s t-test, but no significant difference was observed between the CHIP-FL and CHIP-K30A and H260Q mutants. These results suggest that CHIP negatively regulates PRMT5 expression by promoting its degradation and reducing its methyltransferase activity.

Fig. 4. CHIP negatively regulates PRMT5 expression. (A) Overexpression of CHIP dose-dependently decreases PRMT5 expression. pMyc-PRMT5 was co-transfected with pFLAG-Vector (Vector) or an increasing amount of pFLAG-CHIP into HEK293T cells for 48 h. Antibodies against PRMT5, FLAG, and β-actin were used for immunoblotting. Representative blots from three independent experiments are shown, and the images were analyzed by Image J software and relative expression of Myc-PRMT5 is presented as mean ± SD (on the right). "**"p < 0.0001 one-way ANOVA. (B) Overexpression of CHIP has no effect on the PRMT5 promoter activity. One microgram of pFLAG-Vector (Vector) or pFLAG-CHIP (CHIP) was co-transfected with 0.5 μg of the PRMT5 proximal promoter reporter gene, along with 100 ng of pRL-TK into HEK293T cells for 24 h, and the relative luciferase activity was determined and analyzed. (C) Overexpression of CHIP has no effect on PRMT5 mRNA expression. Three micrograms of pFLAG-Vector (Vector) or pFLAG-CHIP (CHIP) was transfected into HEK293T cells for 24 h, and the PRMT5 mRNA level was determined by real-time PCR. (D) CHIP promotes degradation of PRMT5 and its methyltransferase activity-deficient mutant. pMyc-PRMT5-WT or pMyc-PRMT5-R368A was co-transfected with pFLAG-CHIP into HEK293T cells for 48 h. Antibodies against Myc, FLAG, and β-actin were used for immunoblotting. (E) CHIP promotes the turnover rate of PRMT5 in HEK293T cells. HEK293T cells were transfected with either pFLAG-Vector or pFLAG-CHIP along with Myc-PRMT5 for 36 h, followed by the treatment with 10 μg/mL cycloheximide (CHX) for different times, and the turnover rate of Myc-PRMT5 was determined by immunoblotting. Representative results are shown (Top). Bottom: Quantitative result analyzed by Image J is presented as means ± SD from three independent experiments. Dashed line indicates the time required for exogenous PRMT5 being degraded to 50%. Statistical significance (**p < 0.01; "****"p < 0.0001) was determined by two-way ANOVA followed by Tukey’s test. (F) The effect of CHIP and its mutants on the expression of PRMT5. Myc-PRMT5 was co-expressed with CHIP or CHIP mutants (K30A and H260Q) for 48 h, and the expression level of Myc-PRMT5 was determined by immunoblotting. n.s. in B, C, and F indicates no significance (Student’s t test).
expression (Fig. 4B, C). Similarly, the expression of the methyltransferase activity-deficient mutant Myc-PRMT5-R368A was also down-regulated by FLAG-CHIP, suggesting that CHIP-mediated degradation of PRMT5 is independent of the catalytic activity of PRMT5 (Fig. 4D). Next, we sought to investigate the impact of CHIP expression on the half-life of PRMT5. FLAG-CHIP or FLAG-Vector was co-expressed with Myc-PRMT5 in cells for 36 h, and treatment of CHX was applied for the indicated times. As shown in Fig. 4E and Supplementary Fig. S1, CHIP expression (though vanished at 9 h) reduced the half-life of Myc-PRMT5 from 5.5 h to 3 h, suggesting that CHIP can promote PRMT5 degradation. The identification of PRMT5 as a substrate of CHIP for proteasomal degradation is particularly intriguing, given that many proteins regulated by CHIP also require the molecular chaperone system Hsp90/Hsp70 for protein folding [20,21]. We next determined whether the two CHIP mutants K30A and H260Q might affect the expression of PRMT5. Interestingly, we found that both CHIP and H260Q, but not K30A mutant, significantly attenuated Myc-PRMT5 expression (Fig. 4F), suggesting that the molecular chaperone system is required for PRMT5 recognition and its subsequent degradation by CHIP.

3.5. CHIP mediates the down-regulation of PRMT5 expression and cell growth inhibition by 17-AAG

The molecular chaperone proteins (Hsp90 and Hsp70) cooperate with the ubiquitination/proteasomal system to regulate the degradation of unfolded or misfolded proteins. CHIP is one of the major E3 ubiquitin ligases involved in this ubiquitin/molecular chaperone system [20, 43,44]. Our result that the K30A mutant failed to decrease PRMT5 expression is consistent with previous reports that PRMT5 is a client protein of Hsp90 [14,65]. This led us to hypothesize that the degradation of PRMT5 may be regulated by the ubiquitin/molecular chaperone system involving CHIP, Hsp90, and Hsp70. In support of this hypothesis, we indeed found that Hsp90 inhibitors 17-AAG and GA, both of which target Hsp90 ATPase binding domain, dose-dependently decreased PRMT5 protein expression in HEK293T cells (Fig. 5A) and in LNCaP cells (Fig. 5B). Further, overexpression of CHIP enhanced 17-AAG-mediated down-regulation of PRMT5 (Fig. 5C). In addition, overexpressed FLAG-CHIP increased 17-AAG-induced cell death from 14.05% to 23.3% (Fig. 5D). To understand the role of endogenous CHIP in the regulation of PRMT5 expression, siRNA SMARTpool targeting CHIP was used to knock down CHIP in HEK293T cells. Significantly, knockdown of CHIP completely inhibited 17-AAG-induced down-regulation of PRMT5 (Fig. 5E), indicating that PRMT5 expression can be regulated by the ubiquitin/molecular chaperone system in cells. We next sought to determine the effect of CHIP on 17-AAG-induced cell growth inhibition/cell death. 17-AAG indeed significantly inhibited cell growth, which is consistent with previous reports [23,46], and knockdown of CHIP partially rescued cell growth inhibition by 17-AAG (Fig. 5F). Taken together, these results suggest that 17-AAG-induced cell growth inhibition/cell death is likely mediated by CHIP-dependent down-regulation of PRMT5 expression.

3.6. CHIP promotes PRMT5 degradation through K48-linked ubiquitination

CHIP is an E3 ubiquitin ligase that mediates protein degradation by ubiquitinating its substrates [47]. Since PRMT5 undergoes ubiquitination and CHIP negatively regulates PRMT5 expression, we were interested in determining whether PRMT5 is subjected to CHIP-mediated proteasomal degradation. To this end, FLAG-CHIP and Myc-PRMT5 were co-expressed in the absence or presence of the proteasome inhibitor MG132. As shown in Fig. 6A, treatment with MG132 attenuated the inhibitory effect of FLAG-CHIP on Myc-PRMT5 expression (Fig. 6A), suggesting that the down-regulation of PRMT5 expression by CHIP is mainly through the proteasomal degradation pathway. To demonstrate that CHIP is capable of ubiquitinating PRMT5, we performed in vivo ubiquitination assays in HEK293T cells by transiently co-expressing Myc-PRMT5 with FLAG-CHIP in the presence of HA-Ubiquitin. Immunoprecipitation results showed that overexpression of CHIP increased the ubiquitination of PRMT5 when compared with FLAG-Vector only (Fig. 6B). However, both K30A and H260Q mutants had a reduced activity when compared with FLAG-CHIP (Fig. 6B), suggesting that the chaperone binding activity of CHIP and the U-Box region are required for CHIP-induced ubiquitination of PRMT5. However, H260Q mutant not only decreased PRMT5 expression (Fig. 4F) but also abolished the ubiquitination of PRMT5 (Fig. 6B), and this led us to investigate whether PRMT5 moves to the insoluble fraction as suggested previously [48,49]. As shown in Fig. 6C, H260Q mutant did not increase the level of insoluble PRMT5.

In contrast, knockdown of CHIP decreased 17-AAG-induced polyubiquitination of PRMT5 (Fig. 6D), indicating the necessity of CHIP in ubiquitinating PRMT5. Since CHIP can function either as a partner of Ubc13-Uev1a to induce the formation of K63-linked polyubiquitin chains [50], or a mediator for K48-linked proteasomal degradation [41], we next sought to determine which types of ubiquitination may occur in PRMT5. To this end, two ubiquitin mutants, HA-Ubiquitin-K48R (HA-Ub-K48R) and HA-Ubiquitin-K63R (HA-Ub-K63R), were co-expressed with Myc-PRMT5 in the presence of FLAG-CHIP for 48 h, and anti-Myc antibody was used for immunoprecipitation. As shown in Fig. 6E, a substantially reduced ubiquitination of PRMT5 was observed when Myc-PRMT5 was co-expressed with HA-Ub-K48R, but not HA-Ub-K63R, when compared with HA-Ub-WT, demonstrating that CHIP mediates K48-linked polyubiquitination of PRMT5. These results further support our finding that the CHIP/chaperone system (Hsp90/Hsp70) is involved in proteasomal degradation of PRMT5.

4. Discussion

PRMT5 is an emerging arginine methyltransferase that can epigenetically suppress the transcription of tumor suppressor genes and regulate the function of several signaling molecules through symmetrically dimethylating arginine residues of histones and non-histone substrates [51,52]. Recently, overexpression of PRMT5 has been demonstrated to promote cell growth or inhibit cell death in multiple cancer cell lines, and is correlated with cancer development and progression in cancer patients [47,9,11,53]. The de-regulation of PRMT5 expression may occur at four different levels including transcription, post-transcription, translation, and post-translation. We and others have previously demonstrated that PRMT5 can be transcriptionally activated by NF-Y [12] or post-transcriptionally regulated by miR-92b/96 [2]. However, whether the expression of PRMT5 can be regulated at post-translational level remains elusive. In the present study, we first showed that PRMT5 undergoes polyubiquitination and further demonstrated that CHIP as an E3 ubiquitin ligase interacts with PRMT5 and targets PRMT5 for ubiquitin-dependent proteasomal degradation. Results also revealed that 17-AAG-induced cell death and PRMT5 down-regulation are mediated through a CHIP-dependent mechanism.

Ubiquitination is a common type of post-translational modifications (PTMs) that regulate various cellular processes. The functional consequences of protein ubiquitination are highly dependent on the ubiquitination pattern (monoubiquitination vs polyubiquitination) and the ubiquitination linkage types [16]. At present, eight inter-ubiquitin linkage types such as K6, K11, K27, K29, K33, K48, K63, and linear ubiquitination have been reported [17,39,54]. Among them, K63 and K48 are the two most well-known ubiquitin-linked types. K63 ubiquitin linkage is involved in protein trafficking, and K48 ubiquitin linkage leads to proteasomal degradation [54]. Accumulated evidence suggests that CHIP can function as an E3 ubiquitin ligase and thereby is responsible for fine-tuning protein homeostasis through K48-linked proteasomal degradation [54,55]. Consistent with this, our results suggest that CHIP is required for ubiquitinating and targeting PRMT5 for proteasomal degradation. Several lines of evidence from our study support this conclusion. First, PRMT5 could undergo polyubiquitination, which is a prerequisite for proteasomal degradation.
(Fig. 1B-D). Second, co-immunoprecipitation, GST pull-down, and BiFC assays demonstrated the interaction between PRMT5 and CHIP both in vitro and in vivo (Fig. 3A-D). Third, the TPR domain of CHIP was sufficient for the interaction with PRMT5 (Fig. 3E and F), which is consistent with previous reports that the TPR domain is necessary for the interaction between CHIP and its substrates [56,57]. Fourth, overexpression of CHIP dose-dependently decreased PRMT5 expression and shortened the half-life of PRMT5 (Fig. 4A, D, and E). Fifth, overexpression of CHIP, but not its mutant (K30A, H260Q), mediated PRMT5 K48-linked ubiquitination (Fig. 4F, Fig. 6B, D), whereas knockdown of CHIP blocked 17-AAG-induced ubiquitination (Fig. 5D, Fig. 6C). However, H260Q also decreased the expression level of PRMT5 when overexpressed. Contrary to previous report that H206Q brings substrates into the insoluble fraction [28,57], we did not see any significant increase of PRMT5 in the insoluble fraction (Fig. 6C). Therefore, it remains to be investigated whether CHIP may cooperate with other E3 ligases to ubiquitinate PRMT5 [58].

Fig. 5. CHIP mediates the down-regulation of PRMT5 expression and cell growth inhibition by 17-AAG. (A and B) Hsp90 inhibitors dose-dependently inhibit PRMT5 expression in HEK293T and LNCaP cells. HEK293T (A) and LNCaP cells (B) were treated with increasing amounts of 17-AAG (1 nM–100 nM) or GA (10 nM–1 μM) for 24 h, and the whole cell lysate (WCL) was subjected to immunoblotting (IB). (C) Overexpression of CHIP enhances the down-regulation of PRMT5 induced by 17-AAG. HEK293T cells were either transfected with pFLAG-Vector (Vector) or pFLAG-CHIP (CHIP) for 48 h, and then treated with 17-AAG for another 24 h before preparing WCL for IB. (D) Overexpression of CHIP increased 17-AAG-induced apoptosis in HEK293T cells. HEK293T cells were either transfected with pFLAG-Vector (Vector) or pFLAG-CHIP (CHIP) for 48 h, followed by the treatment with 17-AAG for another 24 h. Both floating and adherent cells were collected and labeled with Annexin V-APC and 7-amino-actinomycin D (7-ADD) for flow cytometry analysis. The percentage of apoptotic cells (Q2 + Q3) was calculated and normalized to the Vector control, and the percentage of apoptotic cells is represented as means ± SD from three independent experiments (**p < 0.01; **p < 0.001). (E) Knockdown of CHIP blocks the reduction of PRMT5 induced by 17-AAG treatment. HEK293T cells were transfected with siRNA Control (siCon) or siRNAs targeting CHIP (siCHIP) for 60 h, and 17-AAG was applied for another 24 h before preparing WCL for IB. (F) Knockdown of CHIP partially reverses 17-AAG-induced cell growth inhibition. HEK293T cells were transfected with siRNA Control (siCon) or siRNAs targeting CHIP (siCHIP) for 60 h, followed by the treatment with 17-AAG for another 24 h. The total cell number was counted using hemocytometer and is presented as the percentage of the control. Statistical significance (**p < 0.05; **p < 0.01). Representative blots from three independent experiments are shown in A, B, C, and E.
CHIP-mediated client protein degradation is often coupled with the molecular chaperone system including Hsp90 and Hsp70 [21]. Hsp90 inhibitors such as GA and 17-AAG have been on clinical trials in several human cancers [23,46]. Their effects are mainly attributed by the disruption of chaperone function of Hsp90 and subsequent targeting of its client proteins for proteasomal degradation through associating with Hsp70 and E3 ubiquitin ligases [20,43,44]. Recent evidence has also shown that 17-AAG decreases PRMT5 protein expression (but not mRNA level) in ovarian cancer cell lines, suggesting that PRMT5 may be a potential client protein of Hsp90 [14,45]. We showed here that Hsp90 inhibitors GA and 17-AAG dose-dependently inhibited PRMT5 protein expression in HEK293T cells and LNCaP cells (Fig. 5A and B), and overexpression of CHIP enhanced 17-AAG-induced PRMT5 reduction and cell death (Fig. 5C and D). Given that overexpressed PRMT5 is correlated with the development and progression of several human cancers [5], our results suggest that CHIP likely mediates the inhibitory effect of 17-AAG on cancer cell growth by promoting PRMT5 polyubiquitination and degradation via the chaperone/proteasomal degradation system.

Recent reports have shown that overexpression of CHIP blocks oncogetic signaling pathways, inhibits cell migration and anchorage independent growth, and induces cell death, whereas depletion of CHIP expression increases tumor formation and metastasis in mouse models [55,59]. Interestingly, several studies have also demonstrated that the expression of CHIP in a number of cancers, such as breast cancer, gastric cancer, pancreatic cancer, and colorectal cancer [24,26], is lower than the corresponding normal tissues, and that lower expression of CHIP appears to contribute to a lower survival rate (Supplementary Fig. S2). In these cancers, CHIP actually functions as a tumor suppressor by degrading a number of important oncogenic proteins, such as hypoxia-inducible factor 1α [27], p65 [60], androgen receptor [59], c-Myc [28], EGFR [25], and histone deacetylase 6 [61]. Interestingly, PRMT5 is also
overexpressed in these cancers. It is therefore tempting to hypothesize that the major tumor suppressor role of CHIP is through promoting the degradation of multiple oncogenic proteins such as PRMT5. In conclusion, the present study demonstrates that PRMT5 undergoes polyubiquitination and that CHIP mediates ubiquitin-dependent proteasomal degradation of PRMT5 (Fig. 7). Given that lower expression of CHIP and overexpression of PRMT5 have been observed in a number of cancers, it will be necessary to further evaluate the negative regulatory role of CHIP on PRMT5 expression in human cancer tissues.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgments

We thank members of the Hu lab for helpful suggestions and discussions. Huan-Tian Zhang was supported by a scholarship from China Scholarship Council and a graduate fellowship from Jinan University. This study was partially supported by grants from U.S. Army Medical Research Acquisition Activity, Prostate Cancer Research Program (PC11190 and PC120512), and Purdue University Center for Cancer Research Small Grants. DNA sequencing was conducted in the Purdue University Center for Cancer Research Genomic Core Facility supported by NCI CCSG CA23168 to Purdue University Center for Cancer Research.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.bbamcr.2015.12.001.

References

J. Hohfeld, D.M. Cyr, C. Patterson, From the cradle to the grave: molecular chaperones that may choose between folding and degradation, EMBO Rep. 2 (2001) 885–890.

Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth

X Deng1, G Shao1,2, H-T Zhang1,3, C Li4, D Zhang5, L Cheng6, BD Elzey7, R Pili8, TL Ratliff7,9, J Huang10 and C-D Hu1,9

Protein arginine methyltransferase 5 (PRMT5) is an emerging epigenetic enzyme that mainly represses transcription of target genes via symmetric dimethylation of arginine residues on histones H4R3, H3R8 and H2AR3. Accumulating evidence suggests that PRMT5 may function as an oncogene to drive cancer cell growth by epigenetically inactivating several tumor suppressors. Here, we provide evidence that PRMT5 promotes prostate cancer cell growth by epigenetically activating transcription of the androgen receptor (AR) in prostate cancer cells. Knockdown of PRMT5 or inhibition of PRMT5 by a specific inhibitor reduces the expression of AR and suppresses the growth of multiple AR-positive, but not AR-negative, prostate cancer cells. Significantly, knockdown of PRMT5 in AR-positive LNCaP cells completely suppresses the growth of xenograft tumors in mice. Molecular analysis reveals that PRMT5 binds to the proximal promoter region of the AR gene and contributes mainly to the enriched symmetric dimethylation of H4R3 in the same region. Mechanistically, PRMT5 is recruited to the AR promoter by its interaction with Sp1, the major transcription factor responsible for AR transcription, and forms a complex with Brg1, an ATP-dependent chromatin remodeler, on the proximal promoter region of the AR gene. Furthermore, PRMT5 expression in prostate cancer tissues is significantly higher than that in benign prostatic hyperplasia tissues, and PRMT5 expression correlates positively with AR expression at both the protein and mRNA levels. Taken together, our results identify PRMT5 as a novel epigenetic activator of AR in prostate cancer. Given that inhibiting AR transcriptional activity or androgen synthesis remains the major mechanism of action for most existing anti-androgen agents, our findings also raise an interesting possibility that targeting PRMT5 may represent a novel approach for prostate cancer treatment by eliminating AR expression.

Oncogene advance online publication, 22 August 2016; doi:10.1038/onc.2016.287

INTRODUCTION

Protein arginine methyltransferase 5 (PRMT5) is a type II arginine methyltransferase that epigenetically regulates gene transcription by symetrically dimethylating histone H4 arginine 3 (H4R3me2s), histone H3 arginine 8 (H3R8me2s) or histone H2A arginine 3 (H2AR3me2s).1,2 PRMT5 also modulates the function of non-histone protein substrates by dimethylating arginine residues on the proteins. By regulating transcription of target genes or post-translational modifications of signaling proteins, PRMT5 is implicated in the regulation of many cellular processes such as cell cycle progression, apoptosis and DNA-damage response. Accumulating evidence shows that PRMT5 is overexpressed in several human cancers, and its expression positively correlates with disease progression and poor outcomes.3–8 Mechanistic studies have suggested that PRMT5 may function as an oncogene by epigenic repression of several tumor suppressor genes or by post-translational modification of signaling molecules.9,10

Prostate cancer remains the most common non-cutaneous cancer among American men.11 Although many molecules and signaling pathways that regulate prostate cancer development and progression have been identified and characterized, androgen receptor (AR) signaling is the most important factor that drives prostate cancer development and progression.12–14 Thus, targeting AR signaling, such as androgen deprivation therapy (ADT), is a standard treatment for patients with locally advanced and metastatic disease. Despite the initial response to ADT, the majority of prostate cancers progress to a lethal status known as castration resistant prostate cancer (CRPC) owing to AR reactivation, which includes AR gene amplification, AR mutations, AR splice variants, androgen-independent activation of AR by AR modulators and intratumoral de novo androgen synthesis in prostate cancer cells.1,3,15,16 Recent evidence further shows that AR reactivation is also the major mechanism of resistance to the two next-generation anti-androgen agents abiraterone and enzalutamide.17,18 Therefore, the expression of wild-type or mutant AR is absolutely required in both hormone naive prostate cancer and CRPC. However, compared with extensive studies of AR co-activators and co-repressors including epigenetic regulators,19–24 how AR expression is regulated, particularly at the epigenetic level, remains largely unknown.
Here, we report that PRMT5 is highly expressed in prostate cancer tissues and that its expression positively correlates with the expression of AR. Molecular analysis reveals that PRMT5 epigenetically activates the transcription of AR via symmetric dimethylation of H4R3 and promotes prostate cancer cell growth in vitro and xenograft tumor growth in mice. Given that current AR-targeting strategies, which are largely based on the inhibition of AR transcriptional activity or inhibition of androgen synthesis, are ultimately ineffective, our findings raise an interesting possibility that targeting PRMT5 may be explored as a novel therapeutic approach to inhibit or eliminate AR expression for prostate cancer treatment.

RESULTS
PRMT5 expression is required for prostate cancer cell growth in an AR-dependent manner
We and others previously reported that knockdown of PRMT5 inhibited cell growth in LNCaP cells.25,26 To further investigate this, we examined the role of PRMT5 in DU145 and PC-3 cells by transiently knocking down PRMT5, and did not observe any significant effect on cell growth when compared with scrambled control (SC; Supplementary Figure S1a–d). Knockdown of PRMT5 in LNCaP cells also exhibited a pronounced inhibitory effect on colony formation in soft agar (Supplementary Figure S1e). Next, we established stable cell lines using LNCaP and DU145 that can be induced by doxycycline (Dox) to express short-hairpin RNA (shRNA), and confirmed that inducible knockdown of PRMT5 indeed showed significant growth inhibition in LNCaP cells (Figure 1a), but not in DU145 cells (Figure 1b). Because DU145 and PC-3 cells do not express detectable level of AR,27 these results suggest that PRMT5 may regulate prostate cancer cell growth in an AR-dependent manner. To confirm this, we established Dox-inducible stable cell lines using LNCaP-derived CRPC cell line C4-2 cells that express a higher level of PRMT5 and AR (Supplementary Figure S2), and normal prostate epithelial RWPE-1 cells that do not express detectable AR in the absence of androgen stimulation.28,29 Again, knockdown of PRMT5 significantly inhibited cell growth in C4-2 cells, but had no effect on cell growth in RWPE-1 cells (Figures 1c and d). Consistent with the growth inhibition in LNCaP and C4-2 cells, PRMT5 knockdown also downregulated AR expression (Figure 1e). As a result, the mRNA level of AR target genes PSA, KLK2 and TMPRSS2 was decreased by PRMT5 knockdown30 (Figure 1f). To further confirm that AR mediates the effect of PRMT5 on the regulation of cell growth, we performed a rescue experiment by expressing FLAG-AR under the control of a CMV promoter, and observed that overexpressed FLAG-AR completely abolished the growth inhibition induced by PRMT5 knockdown (Figures 1g and h). Similar results were obtained when the LNCaP stable cell line was used and the target gene expression was partially rescued (Supplementary Figure S3). Thus, AR downregulation is likely responsible for the growth inhibition induced by PRMT5 knockdown.

Recently, a PRMT5-specific small molecule inhibitor Compound 5 (named here as BLL3.3) has been identified.31 To determine whether inhibition of PRMT5 by BLL3.3 can recapitulate the effect of PRMT5 knockdown in prostate cancer cells, we treated LNCaP cells with BLL3.3, and observed that the growth of LNCaP cells and the expression of AR were significantly inhibited (Supplementary Figures S4a and b). No inhibitory effect was observed when DU145 and RWPE-1 cells were similarly treated with BLL3.3 (Supplementary Figures S4c and d). These results provide additional evidence that the enzymatic activity of PRMT5 is required for AR expression and cell growth in prostate cancer cells.

AR is an epigenetic target of PRMT5 in prostate cancer cells
To determine how PRMT5 regulates AR expression, we examined the effect of PRMT5 knockdown on AR transcription by performing quantitative real-time PCR (qRT-PCR), and observed that transient knockdown of PRMT5 decreased the mRNA level of AR by ~50% (Figure 2a). As PRMT5 may regulate AR transcription epigenetically or indirectly via the regulation of AR transcriptional regulators, we examined the effect of PRMT5 knockdown on the AR-Luciferase reporter gene (AR-Luc) activity, and observed that PRMT5 knockdown had no impact on the AR-Luc activity (Figure 2b). This result suggests that a native chromatin status is required for the downregulation of AR by PRMT5 knockdown. Thus it is likely through epigenetic control of AR transcription. Indeed, the symmetric dimethylation status of H4R3 was significantly enriched on the proximal promoter region of the AR gene when compared with H3R8 and H2AR3 (Figure 2c), despite that all three antibodies can efficiently immunoprecipitate histones H4, H3 and H2A (Supplementary Figure S5). Knockdown of PRMT5 exhibited a greater inhibitory effect on the methylation status of H4R3 (Figure 2d), but a lesser effect on H3R8 and H2AR3 (Supplementary Figure S6). Consistent with this, knockdown of PRMT5 reduced the binding of PRMT5 to the proximal promoter region of the AR gene (Figure 2e), and decreased the level of H4R3me2s on the AR promoter region (Figure 2f). Further, treatment of LNCaP cells with the PRMT5 inhibitor BLL3.3 also decreased the level of AR and H4R3me2s (Supplementary Figure S4b). Taken together, these results demonstrate that PRMT5 epigenetically activates AR transcription by symmetrically dimethylating H4R3.

PRMT5 interacts with Sp1 and Brg1 on the AR promoter
To determine how PRMT5 is recruited to the AR promoter, we examined whether PRMT5 interacts with Sp1, the major and only well-characterized transcription factor that positively regulates AR transcription in prostate cancer cells.32,33 Indeed, Sp1 was co-immunoprecipitated with PRMT5 from LNCaP cells (Figure 3a). Because both H3R8me2s and H4R3me2s are associated with the activation of target gene expression when PRMT5 is associated with the ATP-dependent chromatin-remodeling enzyme Brg1,34,35 we performed co-immunoprecipitation and found that Brg1 was also co-immunoprecipitated with PRMT5 from LNCaP cells (Figure 3b). To substantiate this finding, we established a Dox-inducible Sp1 knockdown cell line (LNCaP-shSp1) and confirmed that knockdown of Sp1 indeed repressed AR expression (Figure 3d). Significantly, knockdown of Sp1 in this cell line not only abolished the binding of Sp1 to the proximal promoter region of the AR gene (Figure 3d), but also abolished the binding of PRMT5 (Figure 3e) as well as reduced the binding of Brg1 to the same region (Figure 3f). These results together suggest that Sp1, PRMT5 and Brg1 form a complex on the AR proximal promoter region to activate AR transcription.

PRMT5 is overexpressed in human prostate cancer tissues and correlates with AR expression
Next, we examined the expression level of PRMT5 in a human prostate cancer tissue microarray (TMA) consisting of 32 benign prostatic hyperplasia (BPH) tissues and 40 prostate cancer tissues (20 with Gleason score 6 and 20 with Gleason score ≥7), and found that PRMT5 expression was significantly higher in prostate cancer tissues than BPH tissues (Figure 4a). Although there is no statistically significant difference in the expression scores between prostate cancer tissues with Gleason score 6 and those with Gleason score 7 and above, 60% of prostate cancer tissues with Gleason score 7 and above showed moderate to high expression (total expression score 40–60) of PRMT5 whereas 40% of prostate cancer tissues Gleason score 6 had similar expression of PRMT5.
Because PRMT5 subcellular localization appears to be an important determinant of cell fate, we compared the expression level of PRMT5 in both the cytoplasm and the nucleus and observed that some cells showed more nuclear or cytoplasmic localization of PRMT5. However, there was no significant difference in PRMT5 subcellular localization in either BPH tissues

Figure 1. PRMT5 regulates prostate cancer cell growth in an AR-dependent manner. (a–d) Induction of PRMT5 knockdown by doxycycline (Dox+) inhibited cell proliferation in AR-expressing LNCaP and C4-2 cells but not in DU145 and RWPE-1 cells that do not express AR. (e) PRMT5 knockdown induced by Dox decreased AR expression in LNCaP and C4-2 stable cell lines. (f) Knockdown of PRMT5 in LNCaP-shPRMT5 cells reduced the mRNA level of the indicated AR target genes measured by qRT-PCR. (g) Restored cell growth by exogenous expression of FLAG-AR in LNCaP cells transiently co-transfected with SC, or pLKO-Tet-On-shPRMT5 (KD) in combination with pFLAG-CMV (Vec) or pFLAG-CMV-AR (AR). (h) Representative Western blots from g to verify the expression of FLAG-AR and the knockdown of PRMT5. *P < 0.05; **P < 0.01; and ***P < 0.001.
or prostate cancer tissues (Supplementary Figure S7). To analyze the correlation between AR and PRMT5 expression, we examined the expression of AR from the same TMA. In fact, PRMT5 expression in the nucleus correlated positively with AR expression in prostate tissues (Figures 4b and c). We also retrieved data from Oncomine that have 460 cases in each study, and found that PRMT5 expression correlated with AR at the transcript level in prostate cancer tissues (Figure 4d). Thus, it is likely that nuclear-localized PRMT5 may activate AR transcription in prostate tissues.

PRMT5 knockdown inhibits AR expression and suppresses the growth of xenograft tumors in mice

To determine whether PRMT5 expression is necessary for the growth of xenograft tumors in mice, we used Dox-inducible stable cell lines expressing PRMT5 shRNA (LNCaP-shPRMT5) or SC (LNCaP-SC) to establish xenograft tumors in nude mice. As shown in Figure 5a, knockdown of PRMT5 completely suppressed the growth of LNCaP xenograft tumors. In fact, tumor growth in 8 out of 10 Dox-treated mice were completely suppressed. There was no significant difference in the growth of tumors derived from LNCaP-SC regardless of the Dox status (Figure 5b). The expression level of PRMT5 and AR was also downregulated in Dox-treated residual tumor nodules derived from LNCaP-shPRMT5 when compared with Dox-untreated (Figure 5c). Similar expression of PRMT5 and AR was observed in SC control tumors regardless of the Dox status (Figure 5d). These results demonstrate that PRMT5 is required for the growth of xenograft tumors in mice.

DISCUSSION

AR signaling is a critical determinant of prostate cancer development and progression. Many studies have characterized how AR transcriptional activity is modulated by its co-activators and co-repressors. However, how the transcription of AR itself is regulated, particularly at the epigenetic level, remains poorly understood. Here, we provide evidence showing that PRMT5 is a novel epigenetic activator of AR transcription in prostate cancer. First, knockdown of PRMT5 or inhibition of PRMT5 by a small molecule inhibitor specifically inhibited the growth of prostate cancer cells in an AR-dependent manner. Second, knockdown of PRMT5 specifically inhibited AR transcription. Third, PRMT5 binds to the proximal promoter region of the AR gene along with Sp1

Figure 2. Epigenetic activation of AR transcription by PRMT5 in LNCaP cells. (a) Transient knockdown of PRMT5 (KD) reduced AR mRNA level when compared with SC. (b) Transient knockdown of PRMT5 had no effect on the AR-luciferase reporter gene (AR-Luc) activity. (c) Enrichment of H4R3me2s, but not H3R8me2s and H2AR3me2s, on the proximal promoter region of the AR gene in LNCaP cells. (d) Transient knockdown of PRMT5 reduced symmetric dimethylation of H4R3 (H4R3me2s). (e) Knockdown of PRMT5 induced by doxycycline (Dox+) reduced PRMT5 binding to the proximal promoter region of the AR gene when compared with cells without Dox (Dox−). (f) Knockdown of PRMT5 induced by doxycycline (Dox+) reduced the enrichment of H4R3me2s on the proximal promoter region of the AR gene when compared with cells without Dox (Dox−).
and Brg1. Fourth, H4R3me2s is highly enriched on the proximal promoter region of the AR gene. Fifth, PRMT5 is highly expressed in prostate cancer tissues and its expression correlates positively with AR expression at both mRNA and protein levels. Finally, depletion of PRMT5 expression completely suppressed the growth of LNCaP xenograft tumors in mice by downregulating AR expression.

Transcriptional regulation of gene expression is a tightly regulated process that involves the participation of multiple transcriptional regulatory proteins such as transcription factors, co-activators and co-repressors as well as chromatin-remodeling enzymes. Consistent with the fact that Sp1 is the major and well-characterized transcription factor that activates AR transcription in prostate cancer cells, we indeed confirmed that Sp1 binds to the AR promoter and regulates AR expression in LNCaP cells. Because PRMT5 interacts with Sp1 and Brg1 and because Sp1 knockdown also reduces the binding of PRMT5 to the AR promoter, we suggest that Sp1 may recruit PRMT5 to the AR promoter. Interestingly, Brg1, an ATP-dependent chromatin remodeler, was also recruited to the AR promoter through its interaction with PRMT5. This finding suggests that PRMT5-mediated H4R3 dimethylation could also activate transcription of target genes such as AR when Brg1 is recruited to the promoters (Figure 6), though PRMT5 generally represses transcription of target genes. Interestingly, PRMT5-mediated H3R8 dimethylation is also involved in transcriptional activation of target genes when Brg1 is recruited to the target gene promoters. Although this manuscript was in preparation, a recent report showed that PRMT5 can dimethylate H4R3 and H3R8 to regulate the expression of the protein kinase FLT3 in acute myeloid leukemia cells via two distinct pathways. Thus, dimethylation of either H3R8 or H4R3 by PRMT5 may permit ATP-dependent chromatin remodeling, leading to activation or repression of target gene transcription. Given that PRMT5 and Brg1 also cooperate to repress transcription of target genes and that AR transcription is subjected to the regulation of DNA methylation and histone lysine methylation, it is likely that AR transcription is subjected to a high order of epigenetic regulation. Future studies to gain insight into the epigenetic regulation of AR may offer new opportunities to develop novel targeting strategies to inhibit or even eliminate AR expression. Because PRMT5 may exhibit an opposite role in the cytoplasm and nucleus in cells, it remains to be determined whether cytoplasmic- and nuclear-localized PRMT5 may have distinct effects on the transcription of AR.

The present finding has significant clinical implications due to the central role of AR in prostate cancer development and progression. Our findings here, together with a previous study showing that PRMT5 may form a complex with MEP50 and AR to modulate the transcriptional activity of AR, raise an interesting
possibility that targeting PRMT5 may have a dual effect on both the expression and activity of AR. Thus, PRMT5 may be an ideal target for development of novel therapeutics. As radiotherapy in combination with adjuvant ADT is the current standard treatment for locally advanced prostate cancer, combining radiotherapy with PRMT5 targeting may be an alternative approach. Perhaps targeting AR expression by inhibiting PRMT5 may avoid some adverse effects often seen with ADT. It is worth noting that PRMT5 also regulates the expression of AR in the CRPC line C4-2. As AR reactivation is the major mechanism underlying the development of CRPC13,14 and the resistance to the next-generation anti-androgen therapy,17,18 targeting PRMT5 alone or in combination

Figure 4. PRMT5 expression correlates positively with AR expression in prostate cancer. (a) Shown are representative immunohistochemistry staining images (magnification ×400) of PRMT5 in benign tissue (N5), Gleason 6 prostate cancer tissue (6T1) and Gleason 7 prostate cancer tissue (7T8). The total expression score of PRMT5 is significantly higher in prostate cancer tissues (PCa) when compared with BPH. Scale bar, 30 μm. (b) PRMT5 expression correlates positively with AR expression at the protein level in the same TMA from a. (c) Representative images of PRMT5 and AR expression from serial sections of prostate cancer tissues. The upper panels show higher expression of both PRMT5 and AR in the nucleus and the lower panels show weaker expression of both PRMT5 and AR in the nucleus. Scale bar, 30 μm. (d) PRMT5 expression correlates positively with AR expression at the transcript level. The data were retrieved from Oncomine database.
with other AR-targeting agents may exhibit a better treatment efficacy than the existing treatments. Given that two small molecule inhibitors of PRMT5 have been developed, 31,40,46 preclinical evaluation of these inhibitors alone or in combination with radiotherapy or other AR-targeting agents may lead to the development of novel therapeutic approaches for prostate cancer treatment.

MATERIALS AND METHODS

Cell lines and culture
Prostate cancer cell lines LNCaP, DU145, and PC-3 as well as RWPE-1 cells were purchased from ATCC (Manassas, VA, USA) and C4-2 cells were purchased from M.D. Anderson Cancer Center (Houston, TX, USA). All frozen stock received were immediately expanded and aliquots were prepared and stored in liquid nitrogen for future use, and cells were maintained for no longer than 3 months as described previously. 30,47 Cell line authentication was performed by IDEXX BioResearch (IMPACT II). The establishment of stable cell lines was described previously. 26,30

Plasmid construction

The pLKO-Tet-On plasmid for expressing shRNA was obtained from Addgene (Cambridge, MA, USA), 48 and the two shRNA sequences that target 5'-GCCCACTTCTCTCTCTCTAAAG-3' (#1577) and 5'-CCCACTCTCCCTCCTTAAG-3' (#1832) for PRMT5 knockdown and that target 5'-CCACTCCTTCAGCCCTTATTA-3' (#2310) for Sp1 knockdown were selected for constructing pLKO-Tet-On-shPRMT5 and pLKO-Tet-On-shSp1 as described previously. 30 The pLKO-Tet-On-SC and pFLAG-CMV-AR were constructed before. 30 The AR promoter luciferase reporter gene construct and the PSA promoter luciferase reporter gene construct were kindly provided by Donald Tindall. pFLAG-CMV-AR was made by subcloning the AR cDNA into pFLAG-CMV vector. All plasmids were confirmed by DNA sequencing.

Cell proliferation assay

The cell proliferation assay was performed using MTT reagent (Sigma, St Louis, MO, USA). For transient transfection experiments, LNCaP, DU145 or PC-3 cells (4 × 10³) were seeded in 48-well plates for 24 h, and then transiently transfected with pLKO-Tet-On-shPRMT5 (#1577) or the SC control using FuGENE HD or FuGENE 6 (Promega, Madison, WI, USA) for 96 h after the transfection. For MTT analysis, cell medium was removed and 70 μl of MTT solution (0.5 mg/ml) was added into each well and incubated at 37 °C for 4 h. At the end of incubation, MTT solution was removed and 130 μl of DMSO was added into each well and incubated at 37 °C for another 10 min. The plates were then read at 560 nm with TECAN Microplate Reader (TECAN, Mannedorf, Switzerland). For LNCaP, DU145, C4-2 and RWPE-1 stable cell lines, similar procedure was followed except that Dox was added at 1 μg/ml to induce PRMT5 knockdown during culture. At least three independent experiments were performed and the mean ± s.d. was presented. Student’s t-test was performed to determine the statistical significance. The effect of PRMT5 inhibitor BLL3.3 on the growth of LNCaP, DU145 and RWPE-1 cells was similarly determined by MTT.

Soft-agar growth assay

The cell proliferation assay was performed using MTT reagent (Sigma, St Louis, MO, USA). For transient transfection experiments, LNCaP, DU145 or PC-3 cells (4 × 10³) were seeded in 48-well plates for 24 h, and then transiently transfected with pLKO-Tet-On-shPRMT5 (#1577) or the SC control using FuGENE HD or FuGENE 6 (Promega, Madison, WI, USA) for 96 h after the transfection. For MTT analysis, cell medium was removed and 70 μl of MTT solution (0.5 mg/ml) was added into each well and incubated at 37 °C for another 10 min. The plates were then read at 560 nm with TECAN Microplate Reader (TECAN, Mannedorf, Switzerland). For LNCaP, DU145, C4-2 and RWPE-1 stable cell lines, similar procedure was followed except that Dox was added at 1 μg/ml to induce PRMT5 knockdown during culture. At least three independent experiments were performed and the mean ± s.d. was presented. Student’s t-test was performed to determine the statistical significance. The effect of PRMT5 inhibitor BLL3.3 on the growth of LNCaP, DU145 and RWPE-1 cells was similarly determined by MTT.

Figure 5. Knockdown of PRMT5 suppresses the growth of xenograft tumors in mice. (a) LNCaP-shPRMT5 cells were implanted subcutaneously into the right lower flanks of 10 nude mice per group, and the tumor growth was monitored twice weekly in Dox-treated (Dox+) and untreated (Dox−) mice. (b) Similar experiment was performed as described in a for LNCaP-SC cell line. (c and d) Representative images showing inhibition of PRMT5 and AR expression in Dox-treated tumor nodules. No effect on PRMT5 and AR expression in xenograft tumors derived from LNCaP-SC was observed. Scale bar: 10 μm.

Figure 6. Proposed model for epigenetic activation of AR transcription by PRMT5.

Oncogene (2016) 1 – 9
of soft agar at 1 g/ml to induce the expression of shRNAs. The plates were incubated at 37 °C, 5% CO₂ for 7 days. To quantify the colony-formation efficiency, 16 µl of AlamarBlue Cell Viability Reagent (Invitrogen, Carlsbad, CA, USA) was added into each well and incubated at 37 °C for another 4 h. Fluorescence intensity was measured at 570EX nm/600EM nm using Multi-Mode Microplate Reader (BioTek, Winooski, VT, USA). Experiments were performed in triplicate and results from three independent experiments were analyzed and presented as mean±s.d. Student’s t-test was used to determine the statistical significance.

qRT-PCR and western blotting

To determine the effect of PRMT5 knockdown on AR expression, PRMT5 were transiently or stably knocked down in LNCaP cells for 96 h, and total RNA was isolated using TRIzol Reagent (Thermo Fisher Scientific, Waltham, MA, USA). One microgram of total RNA was used for reverse transcription using the High Capacity cDNA Reverse Transcription Kit (Promega) according to manufacturer’s instruction. The qRT-PCR analysis of AR or AR target genes (PSA, KLK2, TMPRSS2) was performed as described previously.30 Antibodies against AR (SC-816, Santa Cruz, CA, USA), PRMT5 (07-405, Millipore, Billerica, MA, USA), PSA (1994-1, Epitomics, Burlingame, CA, USA), FLAG (Sigma, F-1804), Sp1 (ab13370, Abcam, Cambridge, MA, USA), H4R3me2s (Abcam, ab5823), H3R8me2s (Abcam, ab130740), H2AR3me2s (Abcam, ab22397), and Brq1 (Abcam, ab110641) were used for western blotting analysis.

Chromatin immunoprecipitation assay

The LNCaP stable cell line or parental cells were cultured in the presence or absence of Dox (1 µg/ml) for 96 h. At the end of induction, 270 µl of 37% formaldehyde was added into each dish and incubated at room temperature for 10 min. Then 1 ml of 1.25 M glycine was added to stop the cross-linking reaction. Cells were then harvested, resuspended in 1 ml of immunoprecipitation buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 1% TritonX-100, 0.5% NP-40, 0.5 mM DTT, and protease and phosphatase inhibitors), and finally sonicated (Branson Sonifier250set, Wilmingtontm, USA) to prepare sheared chromatin. Antibodies against PRMT5 (Millipore, 07-405), Sp1 (Santa Cruz, SC7284), Brq1 (Abcam, ab110641), H4R3me2s (Abcam, ab5823), H3R8me2s (Abcam, ab130740), H2AR3me2s (Abcam, ab22397) and IgG (Santa Cruz, SC2027) were used to immunoprecipitate protein-DNA complexes for isolation of PCR-ready DNA using the Fast ChIP protocol described previously.31 The co-immunoprecipitated proximal promoter region of AR (−496 to −30) was quantified by qRT-PCR. Results were normalized to the IgG control and are presented as mean±s.d. from three independent experiments. Student’s t-test was used to determine the statistical significance.

Expression of PRMT5 and AR and the analysis of their correlation in prostate cancer tissues

A TMA consisting of NC of 32 BPH tissues and 40 prostate cancer tissues (20 with Gleason score 6 and 20 with Gleason score ≥7) was used for immuno-chemistry analysis of PRMT5 and AR expression. Briefly, paraffin section of the TMA was deparaffinized in xylene and rehydrated in graded ethanol, followed by inactivation of endogenous peroxidase activity in 3% hydrogen peroxide for 10 min. Antigen retrieval was performed by heating slides in 5 mM Tris-HCl (pH 10) for 30 min in microwave. After three washes with PBST and incubation with HRP-conjugated anti-rabbit secondary antibodies (Amersham, Pittsburgh, PA, USA) at room temperature for 1 h. The signal was developed with diaminobenzidine for 10 min, and slides were counterstained with hematoxylin. The semi-quantification of PRMT5 and AR expression was performed as described previously with slight modifications.51 The intensity was scored as 0 (no expression), 1 (low expression), 2 (moderate expression) and 3 (high expression), and the percentage of cells showing the expression was scored ranging from 0 to 10 with 10 as the highest percentage (100%). The expression score for cytoplasmic- and nuclear-localized PRMT5 was respectively determined by the intensity score times the percentage (0–30), and the total expression score is the sum of the cytoplasmic and nuclear expression scores (0–60). The unpaired t-test was used to determine the statistical significance of the total mean expression score between BPH and prostate cancer tissues, and paired t-test was used to determine the difference in expression scores between cytoplasmic-localized PRMT5 and nuclear-localized PRMT5. The same semi-quantification method was used for AR expression in the nucleus.

To determine the correlation between the expression of PRMT5 and AR in the nucleus in prostate tissues, their nuclear expression scores were used for Pearson’s analysis. To determine the correlation of PRMT5 and AR expression at the transcript level, we retrieved their expression data from 8 studies that have >60 tissues from Oncomine. The statistic Q was calculated to test the homogeneity of effect sizes across studies for each of the three methods (Pearson’s, Spearman’s and Kendall’s).52 and it found that the effect sizes across studies were not homogeneous (all with P-value < 1e−12). Therefore, we used a random-effects model for the meta-analysis of each method.53

Xenograft tumor growth in nude mice

Animal experiments were approved by the Purdue University Animal Care and Use Committee. Male athymic nude mice (5–7 week old) were purchased from Harlan Laboratories (Indianapolis, IN, USA), and 3x10⁶ cells of established stable cell lines that inductively express PRMT5 shRNA or SC were co-injected subcutaneously into the right lower flank of 20 mice with Matrigel (1:1 in volume). Assuming that PRMT5 knockdown can reduce tumor volume by 30% and that standard deviation within each group is about 25% of the mean tumor volume, a sample size of 10 male mice per group will have over 80% power to detect a 30% difference between the two groups at alpha level 0.05. Mice were randomly divided into two groups (10 mice/group) for each stable cell line by using Excel-based randomization method, and treated with Dox (1 mg/ml in drinking water) or without Dox (drinking water only). Tumor growth was monitored twice weekly, and tumor volume was calculated using ½ × L × W × H without using blinding method. At the end of experiments, tumors were resected and formalin fixed, and paraffin embedded. Immunohistochemistry analysis of PRMT5 and AR expression was similarly performed as described above. We used the following linear mixed model to model the j-th observed xenograft tumor volume of i-th mouse, that is, yij, assuming cubic polynomial growth of tumors over time,

\[y_{ij} = y_0 + y_1 t + y_2 t^2 + y_3 t^3 + e_{ij}, \]

where, \(t \) is the number of days after implantation for the j-th observation, \(D_i \) indicates whether the i-th subject is under Dox. The random-effects are independent, and the errors of the same subject are assumed to follow a first-order continuous autoregressive model.

To evaluate the effects of Dox on the tumor growth, we are subject to test the \(H_0 : \delta_0 = \delta_1 = \delta_2 = 0 \) against \(H_a : \delta_0 \neq 0 \) at least one of \(\delta_0, \delta_1, \delta_2 \) is not zero. We used the likelihood ratio test (χ²-test) to conduct the hypothesis tests. For PRMT5 knockdown, the P-value is 1.9305 × 10⁻⁶. For SC, the P-value is 0.1670. Error bar, s.e.m.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This study was partially supported by grants from U.S. Army Medical Research Acquisition Activity, Prostate Cancer Research Program (PC11190, PC120512, and PC150697) to C-D Hu, and Purdue University Center for Cancer Research Small Grants. DNA sequencing and animal experiments were conducted in Genomic Core facility and the Biological Evaluation Shared Resource facility, respectively, supported by NCI CCSG CA23168 to Purdue University Center for Cancer Research. Genbao Shao and Huan-Tian Zhang were visiting scholars supported by the China Scholarship Council.

REFERENCES

Legends to Supplementary Figures

Figure S1. Transient knockdown of PRMT5 inhibits prostate cancer cell growth in LNCaP cells but not DU145 and PC-3 cells. (a) Knockdown of PRMT5 in the indicated prostate cancer cells transiently transfected with scrambled control (SC) or pLKO-Tet-On-shPRMT5(#1577). (b-d) Transient knockdown of PRMT5 inhibited cell proliferation in LNCaP, but not in DU145 and PC-3 cells assayed by MTT. (e) Transient knockdown of PRMT5 by pLKO-Tet-On-shPRMT5(#1577) significantly inhibited colony formation in soft agar assay when compared with SC.

Figure S2. Western blotting analysis of PRMT5 and AR expression in LNCaP and C4-2 cells. Higher expression level of PRMT5 and AR was observed in C4-2 cells.

Figure S3. Rescue of PRMT5 knockdown-induced growth inhibition by AR overexpression in LNCaP cells. (a) LNCaP-shRNA stable cell line were transfected with pFLAG (Vector) or pFLAG-AR (AR) and cultured for 7 days in the presence of doxycycline (Dox+) or absence of doxycycline (Dox-). Cell growth was determined by Trypan blue staining, and the fold increase of cell growth was determined by dividing the total number of cells at day 7 by the number of cells seeded initially. (b) Cell lysate from (a) was used to determine the total expression of AR using an anti-AR antibody and the expression of PRMT5 using an anti-PRMT5 antibody. (c-e) Similar experiments were performed as described in (a), and total RNA was isolated for qPCR quantification of *PSA, TMPRSS2* and *KLK2*. Three independent experiments were performed and mean+SD was presented. The Student’s *t*-test was used for *P* value calculation between the indicated two groups.
Figure S4. Inhibition of PRMT5 by a small molecule inhibitor attenuates cell proliferation and reduces AR expression in LNCaP cells. (a) LNCaP cells were treated with 10 μM of BLL3.3, a selective small molecule inhibitor of PRMT5, and cell growth was determined by MTT. (b) LNCaP cells were incubated with BLL3.3 (10 μM) for 6 days, and the down-regulation of AR expression and the inhibition of symmetric dimethylation of H4R3 (H4R3me2) by the inhibitor were confirmed by Western blotting. Note that BLL3.3 had no effect on the expression level of PRMT5. (c and d) Similar cell growth experiments were performed for DU145 and RWPE-1 as LNCaP and no inhibitory effect was observed.

Figure S5. Immunoprecipitation of histones H4R3, H3R8 and H2A by methylation-specific antibodies. LNCaP cells were crosslinked and chromatins were fragmented as did for ChIP analysis except that proteins were not digested with protease K. Antibodies that recognize H4R3me2s, H3R8me2s and H2AR3me2s were used to immunoprecipitate H4R3, H3R8 and H2A, respectively. All three histones were efficiently immunoprecipitated when compared with the IgG control.

Figure S6. Effect of PRMT5 knockdown on the methylation status of histones. The established doxycycline (Dox)-inducible PRMT5 knockdown cell line LNCaP-shPRMT5 was induced by Dox (1 μg/ml) for 96 h (Dox+) or without Dox induction (Dox-), and total cell lysate was prepared for Western blotting analysis of H4R3me2s, H3R8me2s, and H2AR3me2s.
Figure S7. Expression of PRMT5 in the cytoplasm and nucleus in prostate tissues. The expression score of both cytoplasmic and nuclear expression of PRMT5 in a prostate cancer TMA was semi-quantified, and the paired t-test was used to determine the statistical significance in the subcellular localization of PRMT5 in both BPH (32 cases), prostate cancer tissues with Gleason score 6 (20 cases), and prostate cancer tissues with Gleason score 7 and above (20 cases).
Figure S1

(a) Western blot analysis showing PRMT5 expression in LNCaP, DU145, and PC-3 cell lines with SC (wild-type) and KD (knockdown) conditions. The β-Actin bands are used as loading controls.

(b) Graph showing cell proliferation (% of control) over 4 days for LNCaP cells with SC and KD conditions. The p-value is indicated as p<0.004.

(c) Graph showing cell proliferation (% of control) over 4 days for DU145 cells with SC and KD conditions.

(d) Graph showing cell proliferation (% of control) over 4 days for PC-3 cells with SC and KD conditions.

(e) Graph showing fluorescence intensity of LNCaP cells with SC and KD conditions over 7 days. The p-value is indicated as p<0.001.
Figure S2

![Image of Western Blot](image_url)

- LNCaP
- C4-2

Proteins

- AR
- PRMT5
- β-Actin
Figure S3

(a) Fold Increase of Cell Growth

(b) Western Blot Analysis

(c) PSA

(d) TMPRSS2

(e) KLK2
Figure S5

IP

<table>
<thead>
<tr>
<th>H4R3me2s</th>
<th>IgG</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 kDa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H4R3

IP

<table>
<thead>
<tr>
<th>H3R8me2s</th>
<th>IgG</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 kDa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H3R8

IP

<table>
<thead>
<tr>
<th>H2AR3me2s</th>
<th>IgG</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 kDa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H2AR3
Figure S6

- **Dox-**
 -
 - **Dox+**

<table>
<thead>
<tr>
<th>Protein</th>
<th>Dox-</th>
<th>Dox+</th>
</tr>
</thead>
<tbody>
<tr>
<td>H4R3me2s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)-Actin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3R8me2s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)-Actin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2AR3me2s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)-Actin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure S7

- Cytosolic PRMT5
- Nuclear PRMT5

Expression Score

- BPH
- Gleason 6
- Gleason ≥7

P-values: P=0.127, P=0.295, P=0.235
Neuroendocrine differentiation in prostate cancer: a mechanism of radioresistance and treatment failure

Chang-Deng Hu1,*, Richard Choo2 and Jiaoti Huang3

1 Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
2 Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
3 Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA

Neuroendocrine differentiation (NED) in prostate cancer is a well-recognized phenotypic change by which prostate cancer cells transdifferentiate into neuroendocrine-like (NE-like) cells. NE-like cells lack the expression of androgen receptor and prostate specific antigen, and are resistant to treatments. In addition, NE-like cells secrete peptide hormones and growth factors to support the growth of surrounding tumor cells in a paracrine manner. Accumulated evidence has suggested that NED is associated with disease progression and poor prognosis. The importance of NED in prostate cancer progression and therapeutic response is further supported by the fact that therapeutic agents, including androgen-deprivation therapy, chemotherapeutic agents, and radiotherapy, also induce NED. We will review the work supporting the overall hypothesis that therapy-induced NED is a mechanism of resistance to treatments, as well as discuss the relationship between therapy-induced NED and therapy-induced senescence, epithelial-to-mesenchymal transition, and cancer stem cells. Furthermore, we will use radiation-induced NED as a model to explore several NED-based targeting strategies for development of novel therapeutics. Finally, we propose future studies that will specifically address therapy-induced NED in the hope that a better treatment regimen for prostate cancer can be developed.

Keywords: neuroendocrine differentiation, prostate cancer, CREB, ATF2, radiosensitization, radiotherapy, cancer stem cell, EMT

INTRODUCTION

Prostate cancer is the second leading cause of cancer death among men in developed countries (1). In 2015, it is estimated that 27,540 men will die from prostate cancer in US according to American Cancer Society. Most of these deaths are due to the progression of localized diseases into metastatic, castration-resistant prostate cancer (CRPC).

Based on prostate specific antigen (PSA) level, tumor grade, and the extent of primary tumor in the prostate gland, clinically localized prostate cancer is classified into low-risk (PSA <10 ng/ml, Gleason score ≤6, and stage T1c–T2a), intermediate-risk (PSA >10 but ≤20 ng/ml, Gleason score 7, or stage T2b), and high-risk (PSA >20, Gleason score ≥8, or stage T2c) (2, 3). While a majority of low-risk disease is cured with surgery or radiotherapy (RT), intermediate- and high-risk disease has a relatively high rate of recurrence following a definitive therapy. For example, approximately 30–50% of high-risk, clinically localized, prostate cancer treated with RT develop a biochemical recurrence within 5 years post-therapy, and about 20% die of prostate cancer within 10 years (4–7). Given that about 25% of patients are diagnosed with a high-risk disease at presentation (8), there has been a major effort to develop a strategy to optimally manage this group of patients in recent years.

Resistance to RT (radioresistance) can be intrinsic or acquired (9). Given the heterogeneity of prostate cancer cells, it is likely that certain cells have intrinsic radioresistance, whereas others have the ability to acquire radioresistance over the course of RT. This review discusses the recent advance in our understanding of radiation-induced neuroendocrine differentiation (NED) and the implication on RT efficacy, and proposes possible approaches to addressing radiation-induced NED.

NEUROENDOCRINE DIFFERENTIATION AS A MECHANISM OF THERAPY RESISTANCE

Normal prostate tissue consists of three types of epithelial cells: basal cells, luminal cells, and neuroendocrine (NE) cells. Unlike basal cells and luminal cells, NE cells constitute only <1% of total epithelial cells, and their physiological role remains unclear (10). In prostate adenocarcinoma, the presence of an increased number of neuroendocrine-like (NE-like) cells is observed (10–14). It has been hypothesized that these NE-like cells may arise from luminal-type prostate cancer cells by a NED or transdifferentiation process (15–17). NE-like cells do not proliferate, and lack the expression of androgen receptor (AR) and PSA.

Clinical observations have suggested that NED correlates with disease progression and poor prognosis (14, 16, 18–28). Several mechanisms may account for the impact of NED on prostate cancer progression and therapeutic responses. First, NE-like cells do not proliferate, and thus they function as a dormant phenotype making NE-like cells particularly resistant to therapies. Second, NE-like cells express high levels of survival genes such as survivin and Bcl-2 (29–31), or exhibit alteration in calcium homeostasis.
Although NE-like cells in adenocarcinoma share many characteristics of normal NE cells, they also differ in some aspects. For example, NE-like cells secrete a number of peptide hormones and growth factors to support the growth of surrounding tumor cells in a paracrine manner. Lastly, NED is a reversible process. For example, treatment of LNCaP cells with cAMP or cAMP-inducing agents induces NED within a few days. Interestingly, removal of cAMP or cAMP-inducing agents results in either retraction or shedding of the neuritic processes within 10 h. Similarly, NED induced by androgen depletion (e.g., charcoal-stripped fetal bovine serum-containing medium) can be reversed by culturing cells in normal serum-containing medium. Based on these observations, there are two possible pathways by which NE-like cells can contribute to disease progression and therapy failure (Figure 1). One is that NE-like cells can survive therapeutic interventions and thus contribute to tumor recurrence if they resume proliferation post treatments. Second, the presence of NE-like cells supports the growth of surrounding tumor cells in a paracrine manner, thus conferring to disease progression.

PRE-EXISTING NED VERSUS THERAPY-INDUCED NED IN PROSTATE CANCER

PRE-EXISTING NED

Although NE-like cells in adenocarcinoma share many characteristics of normal NE cells, they also differ in some aspects. For example, NE-like cells express some luminal cell markers, whereas NE cells express some basal cell markers. Accumulating evidence favors the hypothesis that NE-like cells come from a transdifferentiation process of prostate cancer cells, either from hormone-naïve or CRPC. There are numerous stimuli and agents, which likely activate distinct signaling pathways to induce NED. For example, cAMP signaling may activate the PKA/CREB signaling pathway to induce NED, whereas IL-6-induced NED appears to be mediated by activation of the PI3K/Etk/Bmx and STAT3 pathways. Interestingly, while EGF may prevent androgen depletion-induced NED in an MAPK and PI3K/AKT-dependent manner, it may also promote NED in LNCaP cells in an ErbB2-dependant manner if treated with an inhibitor of the PI3K/AKT pathway such as LY294002. Because activation of the cAMP signaling pathway and the PI3K/AKT pathways are often associated with prostate cancer development and progression, it is very likely that a subset of cells may undergo NED during prostate cancer development and progression. Thus, these NE-like cells are already present at the time of initial diagnosis of prostate cancer, and this pre-existing NED confers resistance to subsequent treatments such as RT, androgen-deprivation therapy (ADT), and chemotherapy.

THERAPY-INDUCED NED

Therapy-induced NED refers to acquired NED induced by a therapeutic agent. Such therapeutic agents include ADT and docetaxel. Recently, it has been shown that enzalutamide and abiraterone (two recently FDA-approved agents for the treatment of CRPC) can also induce NED and that induced NED is correlated with poor survival in CRPC patients. Consistent with these clinical observations, induction of NED in prostate cancer cells by androgen depletion is well established in vitro and in prostate cancer xenografts in mice. Lin et al. recently reported that a patient-derived xenograft line showed a complete induction of NED following castration (compared to no sign of NED prior to castration). These observations provide convincing evidence that castration does induce NED. RT can also induce NED. While working on the isolation of radiation-resistant sublines after a fractionated RT regimen (2 Gy/day, 5 days/week), we unexpectedly found the display of apparent neurite outgrowth by irradiated cells after a 4-week fractionated ionizing radiation (FIR) treatment. Immunoblotting analysis confirmed that these cells express high levels of NE markers chromogranin A (CgA) and NSE, indicating that FIR also induces NED in vitro. Furthermore, it was observed that FIR-induced LNCaP xenograft tumors to undergo NED in nude mice, which displayed a four to fivefold increase of serum CgA after 4-week FIR treatment. Consistent with this observation, in a pilot clinical study, we measured serum CgA in nine patients with prostate cancer who were treated with RT, and found that four out of nine patients showed a 1.5- to 2.2-fold increase in serum CgA after 7-week RT. Similarly, Lileby et al. also found that a subset of prostate cancer patients treated with RT showed elevated serum CgA levels 3 months after the treatment. However, these pilot clinical studies have neither addressed the issue of whether RT-induced CgA elevation correlates with RT failure nor have they established the relationship between the disease status and the extent of serum CgA elevation. Nevertheless, it is clear that NED can be induced by clinical therapeutic agents including RT.
(acquired NED), and therapy-induced NED may represent one of the mechanisms leading to treatment failure.

THE RELATIONSHIP BETWEEN NE-LIKE CELLS, CANCER STEM CELLS, SENESCENT CELLS, AND EPITHELIAL-MESENCHYMAL TRANSITION

Based on the expression of marker proteins in NE cells, luminal cells, and basal cells, it was suggested that NE-like cells arise from prostate cancer cells by a process of NED or transdifferentiation (15). However, there is also evidence suggesting that NE-like cells are derived from neural crest cells or stem cells as extensively reviewed by Conteduca et al. (17). Palapatti et al. examined the expression of cancer stem cell marker CD44 in LNCaP, DU-145, and PC-3 cells (68), and revealed that CD44 is only expressed in cells that are positive for NE markers. Consistent with this observation, the correlation between CD44 expression and NE markers (NSE and CgA) was also observed in prostate cancer tissues. Interestingly, 100% of prostatic small cell NE carcinomas, an aggressive variant of prostate cancer that is composed of highly proliferating NE cells, have CD44 expression, whereas its expression was detectable only in a minority of small cell NE carcinoma from other organs. This observation raised an interesting possibility that CD44 expression may be a useful biomarker to distinguish the origin of prostate small cell NE carcinoma from NE carcinoma in other organs. Because CD44 positive cells are capable of generating CD44 negative cells, are highly tumorigenic, and express several “stemness” genes (69), these findings support the hypothesis that CD44 positive NE-like cells are prostate cancer stem cells.

Recently, Kyjačova et al. used clinically relevant FIR to irradiate four human prostate cancer cell lines, and observed that there are two populations of survived cells: one is adherent, senescent-like cells, and the other is non-adherent, anoikis-resistant stem cell-like cells (70). However, since the authors did not examine the expression of NE markers, it remains unknown whether one or both populations also express NE markers. We previously isolated several sublines from irradiated LNCaP cells that lost the expression of CgA and NSE (66). All three sublines could not be induced to undergo NED by FIR. Because NED, cancer stem cells, and epithelial–mesenchymal transition (EMT) share similar properties (17), it would be interesting to examine whether these sublines exhibit properties of cancer stem cells, senescent cells, and/or mesenchymal cells. Nonetheless, these observations suggest that FIR treatment may selectively enrich the population of cancer stem cells or induce NED, senescence, and/or EMT. Several mechanisms may account for this. First, NE-like cells, cancer stem cells, and EMT or senescent cells may have the same origin (e.g., stem cells); thus, the type of phenotypic changes may depend on the type of stimuli. Second, NED, cancer stem cells, and EMT or senescence may have a significant overlap of signaling molecules that are required for the development and maintenance of each of these phenotypic changes (17). For example, expression of Snail, a major transcription factor implicated in the induction of EMT, also induces NED in LNCaP cells (71). Third, these phenotypic changes share common inducers, which could lead to induction of NED, stemness, EMT, or senescence. In fact, stress signaling, such as hypoxia, can induce both NED (72) and EMT (73), as well as enrich the cancer stem cell subpopulation (74). Finally, considering cell heterogeneity, the cellular populations may consist of all of these cell types that are induced by distinct stimuli. Future cell lineage analysis and single cell analysis will likely provide insight into the origin of NE-like cells and their relationship with other cell types.

MECHANISM OF RADIATION-INDUCED NED

To study how NED is regulated at the transcriptional level, we examined the subcellular localization of ATF2 and observed increased cytoplasmic localization (66). ATF2 is a member of activator protein 1 (AP-1) family of proteins (75, 76). We discovered that ATF2 is a nucleocytoplasmic shuttling protein that possesses two nuclear import motifs and two nuclear export motifs (77, 78). ATF2 shuttles in LNCaP cells and IR impairs its nuclear import (66). Given that ATF2 belongs to the ATF/CREB family, and CREB is known to both regulate CgA transcription (79) and act downstream of the cAMP signaling (20, 80), we examined the expression and activation of CREB, and found that IR activated CREB as well as increased nuclear localization of phosphorylated CREB at Ser133 (66). These results suggest that CREB is a transcriptional activator of NED while ATF2 is a transcriptional repressor of NED, and that FIR tilts the balance between CREB and ATF2, leading to cell differentiation (Figure 2). Indeed, expression of a constitutively activated CREB is sufficient to induce NED, whereas expression of a constitutively nuclear-localized ATF2 (nATF2) can antagonize CREB-induced NED (66). Consistent with the converse roles of CREB and ATF2, nATF2, or a non-phosphorylatable CREB (CREB133A) also inhibits FIR-induced NED. Likewise, we recently established stable cell lines expressing several CREB short hairpin RNAs (shRNAs), and found that CREB knockdown significantly inhibited FIR-induced neurite outgrowth and NSE.
expression (81). However, CgA expression was not inhibited which was surprising given that CREB can activate CgA transcription. Because the CREB family members form different homodimers or heterodimers, the inability of CREB knockdown to inhibit CgA expression may be explained by functional compensation of other dimeric complexes. To overcome this, we established another stable cell line that has inducible expression of ACREB, a dominant negative CREB in which the basic region is replaced by acidic amino acids hence deficient in DNA-binding. This ACREB forms a dimeric complex not only with CREB but also with other CREB family members, exhibiting a potent inhibitory effect on the expression of CREB target genes (82, 83). Indeed, ACREB expression increased radiation-induced cell death by more than 70% in the setting of 40 Gy FIR treatment. Importantly, expression of ACREB both during the first 2 weeks (acquisition of radioresistance) and during the second 2 weeks (acquisition of NED phase) increased FIR-induced cell death (81). This result not only demonstrates the critical role of CREB in FIR-induced NED but also provides evidence that targeting either phase could be an effective approach to developing novel radiosensitizers.

MULTIPLE PHASES OF RADIATION-INDUCED NED

Fractionated ionizing radiation-induced NED differs from androgen depletion- and cAMP-induced NED in that cancer cells must survive from the treatment first. Unlike cAMP- and androgen depletion-induced NED in which almost all LNCaP cells can be induced to differentiate into NE-like cells, we observed that cell growth was largely inhibited during the first week of irradiation, and increased cell death became apparent during the second week of irradiation. However, little cell death was observed starting from the third week onward. Instead, cells began to show neurite outgrowth and cell body became smaller. With continued irradiation, cells showed extended neurite outgrowth (66). Upon 4 weeks of irradiation, almost all survived cells differentiated into NE-like cells and continued irradiation for another 3 weeks did not induce cell death. Similar processes were observed in DU-145 and PC-3 cells, though the extent of NED appears to be less than LNCaP cells (67). These observations suggest that FIR-induced NED constitutes several distinct phases: acquisition of radioresistance during the first 2 weeks, acquisition of NED during the second 2 weeks, maintenance of NED during the last 3 weeks, and reversal to the proliferating state after the completion of the FIR treatment (Figure 3).

STRATEGIES TARGETING RADIATION-INDUCED NED

A number of approaches have been attempted to target NE-like cells by either blocking secreted neuropeptide-mediated effects or inhibiting the survival signaling pathways in NE-like cells (17). However, the clinical effect of these therapeutic maneuvers remains unclear. Because NED can be induced by a variety of stimuli and therapeutic agents, the underlying molecular mechanisms of NED need to be thoroughly investigated so that targeted therapies can be developed accordingly. This is particularly important for therapy-induced NED. Further, recurrent tumors derived from therapy-induced NE-like cells may behave differently. For example, RT- and chemotherapy-induced NED involves a clonal selection, and likely reprogramming of survival cells. These cells are likely cross-resistant to other treatments (66).

Using radiation-induced NED as a model, we hypothesize here that two complementary directions could be pursued to develop novel therapeutics. One is to identify targets and pathways that are specific for the acquisition of radioresistance and NED, and the other is to identify molecules that are critical for the maintenance of NE-like phenotype. In addition, developments of agents

FIGURE 3 | Process and targeting strategies of radiation-induced neuroendocrine differentiation in prostate cancer cells. Shown is a schematic view of several distinct phases of fractionated ionizing radiation (FIR)-induced NED in prostate cancer cells (PCa). The critical role of CREB in the acquisition of radioresistance and NED phases has been demonstrated, and identification of upstream regulators of CREB may lead to development of novel radiosensitizers. Targeting NE-like cells and inhibiting the reversal of the “dormant” NE-like cells to a proliferating state could also be clinically useful. Further, profiling radioresistant recurrent prostate cancer cells may allow identification of molecules contributing to cross-resistance of recurrent prostate cancer after radiotherapy failure, and ultimately may lead to the development of novel therapeutic agents for the treatment of recurrent prostate tumors.
that inhibit the reversal of NE-like cells or target recurrent tumors after RT failure should also be considered.

TARGETING ACQUISITION OF RADIORESISTANCE AND DIFFERENTIATION PHASES

Because NED can be induced by a variety of stimuli via activation of distinct mechanisms, targeting specific signaling pathways downstream of a particular inducer is a reasonable strategy. Application of such targeting agents (applied as either a single agent or a combination of multiple agents) would therefore inhibit therapy-induced NED. In the case of RT-induced NED, we have demonstrated that the CREB signaling is critical for FIR-induced NED (66, 67). To determine whether targeting RT-induced NED can be explored to develop a novel radiosensitizer, we established doxycycline-inducible expression system to diminish CREB activity by expressing either ACREB, a dominant negative mutant of CREB, or shRNAs to knockdown CREB. The availability of these two inducible CREB targeting approaches allowed us to specifically test whether targeting CREB during the first 2 weeks or during the second 2 weeks can sensitize prostate cancer cells to radiation. Our results showed that targeting CREB during either phase can increase FIR-induced cell death (81). This finding not only confirms that CREB is critical for FIR-induced NED but also suggests that targeting FIR-induced NED can sensitize prostate cancer cells to radiation. Since several CREB targeting agents are being developed (84), it would be interesting to test whether these agents are effective in inhibiting FIR-induced NED. Furthermore, identification of upstream regulators, e.g., protein kinases, could provide an important approach to targeting FIR-induced NED. In conclusion, this type of targeting agents can be developed as radiosensitizers by targeting either the acquisition of radioresistance, NED phase, or both phases.

TARGETING NE-LIKE CELLS

Because NE-like cells do not proliferate and rather stay as “dormant” cells, cytotoxic chemotherapeutic agents may not be effective. It is therefore necessary to understand how these “dormant” cells survive and maintain their phenotype. It is possible that an autocrine pathway confers cell survival and would be a potential target for therapeutics. Alternatively, we may target the survival pathway. For example, NE-like cells often overexpress survivin (29), and several survivin-targeting agents have been developed (85). It would be interesting to determine if targeting survivin can induce apoptosis of therapy-induced NE-like cells.

INHIBITING THE REVERSAL OF NE-LIKE CELLS

One of the potential impact of NED on tumor recurrence is its reversibility. Like cAMP- and androgen depletion-induced NED (33, 34, 58), FIR-induced NED may also be reversible (66). The molecular mechanisms underlying this process remain unclear. However, inhibiting the reversal of NE-like cells to a proliferating state may be clinically useful if the reversibility of NE-like cells does occur in prostate cancer patients.

TARGETING RECURRENT PROSTATE CANCER CELLS

Treatment of recurrent prostate cancer remains a major challenge. A therapy for recurrent prostate cancer is variable, and depends on the type of primary treatment. For example, a treatment strategy for recurrent prostate cancer after RT failure is different from that for recurrent prostate cancer after surgery. This is because recurrent prostate cancer after RT has undergone genetic and epigenetic changes under the selective pressures, and may be cross-resistant to other treatments. Consistent with this notion, isolated radioreistant sublines after 40 Gy of FIR are indeed cross-resistant to androgen depletion and docetaxel (66). Given that 30–50% of high-risk and 10% of low-risk prostate cancer recur after RT, it is urgently needed to develop agents that can specifically target recurrent prostate cancer after RT failure. Because the recurrent tumor is composed of heterogeneous cells, including NE-like cells or cancer stem cells as discussed above, comparative analysis of genetic and epigenetic changes as well as signaling pathways between multiple radioreistant sublines and parental cells may lead to identification of molecular alterations that are common to all recurrent cells. If identified, molecular alterations could be validated with recurrent prostate cancer specimens, and developing novel therapeutics targeting specifically for RT-failed recurrent prostate cancer may become possible.

FUTURE PERSPECTIVES

ANIMAL MODELS TO STUDY THE IMPACT OF NED IN PROSTATE CANCER PROGRESSION AND THERAPEUTIC RESPONSE

The impact of NED on prostate cancer progression has been well demonstrated in vivo. It was shown that the implantation of NE mouse prostate allograft (NE-10) in nude mice bearing LNCaP xenograft tumors on the opposite flank can support the growth of LNCaP xenograft tumors under castration condition (86). This study provides compelling evidence that factors secreted by NE tumors are sufficient to support the growth of prostate tumors under castration condition (86). Consistent with this, Deeble et al. elegantly demonstrated again in castrated condition that coinjection of the constitutively activated protein kinase A subunit-induced NE-like cells and LNCaP cells into nude mice enhanced tumor growth (38). These studies corroborated in vitro findings that conditioned medium from NE-like culture can stimulate the growth of prostate cancer cells (38, 87), and that secreted mitogenic neuropeptides such as neurotensin are critical for the stimulation of tumor cell growth (33, 36, 87). Interestingly, Valerie et al. also showed that treating prostate cancer cells expressing high levels of neurotensin receptor 1 (NTR1) with a selective NTR1 antagonist SR48692 sensitizes prostate cancer cells to ionizing radiation. Thus, secreted neurotensin from NE-like cells not only promotes prostate cancer cell growth but also confers the surrounding tumor cells radioresistance. Although these studies provide evidence that secreted neuropeptides and growth factors from NE-like cells in vivo can promote prostate cancer progression and alter therapeutic responses, these findings are limited to established cell lines in immunocompromised mice and thus further research must be done with a better model system.

While many genetically engineered mouse (GEM) models have been established to study the development, progression, and therapeutic responses of prostate cancer (88), a GEM model that allows for the elucidation of the impact of NED on prostate cancer progression and therapeutic response is unavailable. By transgenically overexpressing SV40 large T antigen, a TRAMP mouse model was
established, which has a high incidence of NE tumor arising from prostate with a high potential to metastasize to lung, liver, and other tissues (89). The TRAMP mouse model is more representative of human NE carcinoma, a rare type of prostate cancer present at initial clinical presentation or in some ADT-treated setting (88). Recently, Qi et al. found that knockout of Siah2, a ubiquitin ligase, completely suppresses the development of NE tumors in the background of TRAMP (90), demonstrating a critical role of this E3 ligase in the development of NE tumors. Molecular analysis further revealed that HIF-1α, which is stabilized by Siah2, mediates the effect of Siah2 to selectively regulate, in combination with FoxA2, the expression of HIF target genes that are required for or involved in the development of NE tumor. Although these studies provide genetic evidence that Siah2, HIF-1α, and FoxA2 are required for the regulation of NE tumor development at the transcription level, the TRAMP mouse model does not permit the analysis of the impact of pre-existing and therapy-induced focal NED on disease progression and therapeutic response. Given that castration-induced NED also occurs in other GEM models (91, 92), it would be interesting to test if FIR also induces NED in these GEM models. Further, innovative approaches (e.g., inducible NED mouse models, chemical probes) that allow manipulation of NE-like cells or NED in these GEM models will likely facilitate the study of NED impact on prostate cancer progression and radiation response. As castration-induced NED has also been reported in patient-derived xenograft model system (65), infecting the cells with lentiviruses (that can inducibly destroy NE-like cells during the course of FIR treatment) will similarly permit the study of acquired NED in radio-responsiveness.

CLINICAL DIAGNOSIS OF NED IN PROSTATE CANCER PATIENTS

Traditionally, the proteins such as CgA, NSE, synaptophysin, and others that are expressed by NE-like and NE cells are used as biomarkers to identify NE-like or NE cells in tissue specimens using immunohistochemistry. However, analysis is often confounded by various factors including a sampling issue, leading to conflicting outcomes. Thus, it is generally felt that immunohistochemical analysis may not accurately represent the status of NED in a given patient. To overcome this, serum biomarkers have been used and their correlation to NED in tissues have been examined. It was found that CgA is the best biomarker to reflect NED in tissue (93). To date, serum CgA has been used to monitor ADT-induced NED and chemotherapy-induced NED (23, 24, 27, 53–55, 94, 95). We and others have also observed serum CgA elevation in some patients who were treated with RT (21, 67). Because prostate cancer cells express a basal level of CgA, and activation of transcription factors (e.g., CREB) may also lead to increased synthesis of CgA, measurement of individual biomarkers may not accurately reflect the status of NED in tissues. In addition, obtaining a biopsy for the examination of NED in cancer tissues in post-RT setting is very challenging. Thus, it is very desirable to develop new methods that can reliably diagnose NED in cancer tissues. One approach is to test whether circulating tumor cells can be used to monitor NED in patients in addition to serum CgA measurement. Alternatively, measurement of multiple biomarkers may be necessary for a more accurate diagnosis. One example is the ratio of CgA/PSA. Measurement of serum CgA in irradiated xenograft tumors revealed that the ratio of serum CgA/PSA might provide a better prediction of NED (67). Given that NE-like cells are PSA-low or negative and can secrete CgA, future research should focus on their relationship and the correlation with clinical outcomes.

POTENTIAL IMPACT OF CURRENT TREATMENT MODALITIES ON RADIOTHERAPY-INDUCED NED

Evaluation of current treatment modalities for locally advanced diseases

Locally advanced, high-risk, prostate cancer currently poses therapeutic challenges. Currently, the standard management for this group of patients is a combined treatment of RT plus ADT. The rationale for combining RT with ADT was based on the fact that both treatments can kill cancer cells or suppress cancer cell growth, and that the combination may lead to a synergistic effect. Indeed, several phase III clinical studies have demonstrated that RT plus ADT provides a survival benefit, in comparison with either RT or ADT alone (4, 96–99). The rationale for adding ADT in the RT setting is that ADT can eliminate androgen-dependent clones, potentiate the tumoricidal effect of RT, and may eradicate micrometastatic disease (96). However, whether ADT can radiosensitize prostate cancer cells is unknown. In fact, in vitro studies using LNCaP cells suggest that androgen depletion did not radiosensitize LNCaP cells in clonogenic assays, though apparent additive effect was observed (100). Given that ADT induces NED in a subpopulation of cancer cells (50–52), it would be necessary to evaluate the impact of this combined therapeutic approach on therapy-induced NED, in comparison to a monotherapy setting (ADT or RT alone). Ideally, developing novel therapeutic agents that not only sensitize prostate cancer cells to RT but also inhibit therapy-induced NED would be ideal and likely initiate a paradigm shift for future management of prostate cancer.

Impact of new treatment modalities on RT-induced NED

Radiotherapy is one of the main curative modalities for localized prostate cancer. Advances have been made to improve the efficacy of RT in recent years. These include a dose-escalation strategy, a hypofractionation regimen, an incorporation of chemotherapy, and a new RT modality such as high-dose-rate brachytherapy and proton therapy (101–108). Although biological, physical, and clinical rationales clearly support the use of these treatment modalities, their impact on radiation-induced NED remains unstudied. It is worth mentioning that all nine patients enrolled in our pilot clinical study were treated with proton therapy (67). As such, it could be critical to compare the effect of various other RT protocols or modalities on radiation-induced NED. Because FIR-induced NED is completed by a 4-week of irradiation, a dose-escalation strategy over a protracted course likely has a minimal effect on radiation-induced NED. However, other treatment strategies such as an ultra-hypofractionation regimen (e.g., five treatments over 1–2 weeks) or high-dose-rate brachytherapy (given over 1–2 weeks) may have less extent of radiation-induced NED. Also, proton therapy may have less degree of radiation-induced NED, as it has a higher relative biological effectiveness in comparison to a conventional photon beam. The decrease in radiation-induced NED may, in turn, translate to a clinical benefit with improved treatment outcomes. On a translational research perspective, it would
be worthwhile to determine whether the observed clinical benefit correlates with the extent of radiation-induced NED. If so, this would provide a biological rationale for exploring different RT regimens or modalities aiming to minimize radiation-induced NED and may also allow for reduction or possible elimination of the use of adjuvant ADT in RT setting.

CONCLUSION

Although NED has been a well-recognized phenotypic change in prostate cancer, its impact on prostate cancer progression and therapeutic responses has only recently gained significant attention. Several studies have provided compelling evidence that pre-existing NED confers resistance to treatments such as RT. However, the impact of therapy-induced NED on disease progression and treatment failures has not been rigorously studied. Using FIR-induced NED as a model system, we have provided evidence that targeting FIR-induced NED is an effective radiosensitizing approach. Future research should be directed at understanding the molecular mechanisms by which FIR induces NED and confers acquired radioresistance as well as tumor recurrence. With the use of appropriate animal models, implementation of new technologies as well as methodologies to diagnose RT-induced NED and better understanding of the biological effect of novel treatment modalities, we hope that a better RT strategy will be developed and implemented in clinical practice in the future.

ACKNOWLEDGMENTS

We would like to thank many collaborators who have contributed to the study of radiation-induced neuroendocrine differentiation in prostate cancer cells in the Hu lab. The prostate cancer research projects in the Hu lab have been supported by grants from U.S. Army Medical Research Acquisition Activity, Prostate Cancer Research Program (PC073098, PC11190, and PC120512), Purdue University Center for Cancer Research Small Grants Program, and the Indiana Clinical and Translational Science Institute funded, in part, by RR-25761 from the National Institutes of Health, National Center for Research Resources, Clinical and Translational Sciences Award. DNA sequencing was conducted in the Purdue University Center for Cancer Research Genomic Core Facility Supported by NCI CCSR CA23168 to Purdue University Center for Cancer Research.

REFERENCES

33. Cox ME, Dreebe PD, Lakhani S, Parsons SJ. Acquisition of neuroendocrine characteristics by prostatic tumor cells is reversible: implications for prostate cancer progression.

36. Deeble PD, Murphy DJ, Parsons SJ, Cox ME. Interleukin-6 and cyclic AMP-mediated signaling potentiates neuroendocrine differentiation of LNCaP prostate tumor cells.

37. Merkle D, Hoffmann R. Roles of cAMP and cAMP-dependent protein kinase in the progression of prostate cancer: cross-talk with the androgen receptor.

42. Spiotto MT, Chung TD. STAT3 mediates IL-6-induced neuroendocrine differentiation in prostate cancer cells.

43. Wang Q, Horiatis D, Pinski J. Interleukin-6 inhibits the growth of prostate cancer cells.

44. Qiu Y, Robinson D, Pretlow TG, Kung HJ. Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain, is an effector of phosphatidylinositol 3'-kinase and is involved in interleukin-6-induced neuroendocrine differentiation of prostate cancer cells.

47. Hu et al. Radiation-induced neuroendocrine differentiation in prostate cancer.

Frontiers in Oncology | Genitourinary Oncology

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

This article was submitted to Genitourinary Oncology, a section of the journal Frontiers in Oncology. Copyright © 2015 Hu, Choo and Huang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Curriculum Vitae

Chang-Deng Hu

Department of Medicinal Chemistry and Molecular Pharmacology
Purdue University College of Pharmacy
Purdue University Center for Cancer Research
575 Stadium Mall Drive, RHPH 224D
West Lafayette, IN 47907-1333
Department URL: http://www.mcmp.purdue.edu/faculty/?uid=cdhu
Lab URL: http://people.pharmacy.purdue.edu/~hu1/

Education / Degrees Awarded:

9/1979-7/1984: Bachelor in Medical Science (Equivalent to M.D.)
Faculty of Medicine, Bengbu Medical College, Bengbu, China

9/1984-7/1987: M.S. (Cancer Immunology)
Department of Microbiology and Immunology, College of Medicine,
Tongji Medical University, Wuhan, China

Department of Physiology II, Kobe University School of Medicine, Japan

Research/Working Experience:

9/1984-7/1987: Graduate Student (M.S.) in the Department of Microbiology &
Immunology, Tongji Medical University, Wuhan, China.
Study of anti-tumor mechanisms of a new Chinese herb in cell
culture and animal models.

7/1987-9/1991: Lecturer in the Department of Epidemiology, School of Public Health,
Tongji Medical University, Wuhan, China.
(1). Mutagenicity of trichloromethane in drinking water
(2). Epidemiological investigation of drinking water and cancer
incidence in Wuhan, China.

9/1991-3/1994: Visiting Research Associate in the Department of Molecular Oncology,
Kyoto University School of Medicine, Kyoto, Japan.
(1). Spontaneous and induced acquisition of tumorigenicity in nude
mice by lymphoblastoid cell line derived from patients with
xeroderma pigmentosum group A.
(2). Subtractive isolation of genes contributing to the acquisition of
tumorigenicity by lymphoblastoid cell line derived from
xeroderma pigmentosum group A patient.

4/1994-3/1997: Graduate Student (Ph.D.) in the Department of Physiology II, Kobe
University School of Medicine, Kobe, Japan
(1). Identification of cysteine-rich domain in Raf-1 as a novel Ras binding domain for activation by Ha-Ras and Rap1A.
(2). Activation mechanisms of Ras effectors (Raf-1, B-Raf, adenylyl cyclase).

4/1997-8/2000: **Assistant Professor** in the Department of Physiology II, Kobe University School of Medicine, Kobe, Japan.
(1). Differential regulation of Raf kinase activity by Ha-Ras and Rap1A.
(2). Identification and characterization of novel Ras effectors, (RalGDS, AF-6, PLC-ε) and regulators (RA-GEF1, RA-GEF2).
(3). Activation mechanisms of Ras effectors.

9/2000-6/2003: **Research Investigator/Specialist** in the Department of Biological Chemistry and Howard Hughes Medical Institute, University of Michigan School of Medicine.
(1). Establishment of bimolecular fluorescence complementation (BiFC) and multicolor BiFC assays for the study of protein-protein interactions in living cells.
(2). Functional analysis of cross-family transcription factor interactions among bZIP, Rel, Smad and Myc/Max families.

7/2003-6/2009: **Assistant Professor** in the Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy.
(1) Development and improvement of BiFC-based technologies
(2) BiFC analysis of AP-1 dimers in living cells and *C. elegans*
(3) AP-1 in prostate cancer development and therapeutic responses

7/2009-7/2015: **Associate Professor** (tenured) in the Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy.
(1) Development and improvement of BiFC-based technologies
(2) AP-1 in prostate cancer development and progression
(3) Mechanisms and targeting of radiation-induced neuroendocrine differentiation in prostate cancer
(4) Protein arginine methyltransferase 5 (PRMT5) in prostate cancer development, progression and therapeutic response

8/2011-present: **Director of Pharmacy Live Cell Imaging Facility (PLCIF)**
8/2015-present: **Professor** (tenured) in the Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy.
(1) Development and improvement of BiFC-based technologies
(2) AP-1 in prostate cancer development and progression
(3) Mechanisms and targeting of radiation-induced neuroendocrine differentiation in prostate cancer
(4) Protein arginine methyltransferase 5 (PRMT5) in prostate cancer development, progression and therapeutic response
(5) Development of high throughput screens for small molecule inhibitors targeting protein-protein interactions

08/2014-present: **Program Co-Leader of Cell Identity and Signaling (CIS) of Purdue**
University Center for Cancer Research (PCCR)
08/2014-present: Executive Committee Member of PCCR
08/2010-present: Co-Leader of Prostate Cancer Discovery Group of PCCR

Current Professional Memberships

2001- Present American Association for Cancer Research
2009- Present Society for Basic Urological Research
2010- Present American Urological Association
2015-present Radiation Research Society

Awards:

09/91-09/92: Fellowship of JSPS
Source: Japan Society for the Promotion of Science (JSPS)
09/92-09/93: Kyoto University Alumni Fellowship
Source: Kyoto University
04/94-03/97 Senshukai Scholarship (Ph.D. student)
Source: Kobe Senshukai Scholarship Foundation
04/98-03/99 President Young Investigator Award
Source: Kobe University
04/98-03/99 Young Investigator Award
Source: JSPS
04/99-03/01 Young Investigator Award
Source: Hyogo Prefecture Science and Technology Association
07/03-08/06 Walther Assistant Professor
07/16-06/21 University Scholar Award of Purdue University

Professional Services:

Reviewer for Grant Applications
2004 Reviewer of MAES (The Maryland Agricultural Experiment Station at the University of Maryland)
2005 Reviewer for NSF Advisory Panel for Molecular and Cell Biology
2006-2008 American Heart Association (MCB Panel)
2007-2011 Qatar National Research Fund (QNRF)
2008-present Pennsylvania Department of Health (PADOH)
2008 UK Cancer Research
2008 UK Diabetes
2009 Welcome Trust
2010-2014 Department of Defense, Prostate Cancer Research Program (Immunology, Endocrine, Experimental Therapeutics panels)
Reviewer for Professional Journals

Editorial Board Member:
2007- Perspective in Medicinal Chemistry
2011- American Journal of Cancer Research
2013- Journal of Biological Methods (Founding Editorial Member)
2014- Frontier in Surgical Oncology (review editor)
2015- Journal of Drug Research and Development
2015- Journal of Drug Research and Development

Organizer/Program Committee Member/Session Chair of Conferences, Symposiums, and Workshops
- Organizer of Tristate Worm Meeting at Purdue (2006)
- Session Chair of Optical Molecular Imaging of the 2008 PIBM
- Session Chair of Imaging Technology Symposium of the 2008 4th Modern Drug Discovery and Development Summit
- Program Member of the 2009 PIBM Program Committee
- Organizer of 2010 Bimolecular Fluorescence Complementation Workshop (Purdue University)
- Member of the Scientific Program Committee and Moderator of Breakout Panel Discussion of the 2013 Drug Discovery Chemistry-Sixth Annual Protein-Protein Interactions, San Diego
- Organizer, Program Committee Member and Session Chair of the 2013 Hefei Prostate Cancer Translational Medicine and Personalized Medicine Symposium

Member of Big Ten Cancer Research Consortium (BTRC) GU Clinical Trial Working Group (2013-present)

Consultation on BiFC technology
Since 2003, I have been providing BiFC plasmids, letter of support and consultation to many BiFC users worldwide. The lab provided BiFC plasmids to more than 200 labs prior to 2007. To facilitate the request process, we deposited 11 BiFC plasmids to Addgene in 2007,
and 1683 requests have been completed via Addgene as of May 2, 2016.

Invited Seminars/Presentations

05/10/16
Place: 2016 American Urological Association (AUA) meeting
Title: Protein arginine methyltransferase 5 (PRMT5) is a novel epigenetic regulator of androgen receptor in prostate cancer

01/07/16
Place: Jinan University the first affiliated hospital
Title: How to conduct scientific research

12/27/15:
Place: Northwest University of Agriculture and Forestry
Title: Bimolecular fluorescence complementation (BiFC): Current status and future perspectives

01/05/15:
Place: Tongling First People’s Hospital
Title: Advances in prostate cancer diagnosis and treatment- A comparative analysis between China and America

12/29/14:
Place: Jinan University the first affiliated hospital
Title: Targeting PRMT5 for prostate cancer radiosensitization

05/18/14:
Place: Mayo Clinic, Departments of Radiation Oncology
Title: Mechanism and targeting of radiotherapy-induced neuroendocrine differentiation for prostate cancer treatment

03/25/14:
Place: Tongling 4th Hospital, Wannan Medical College
Title: Advances in prostate cancer diagnosis and treatment

02/27/14:
Place: UCLA, Departments of Pathology and Laboratory Medicine
Title: Targeting neuroendocrine differentiation as a novel radiosensitization approach for prostate cancer treatment

10/9/13:
Place: Cancer Hospital, Hefei Institutes of Physical Science Chinese Academy of Sciences
Title: Development of radiosensitizers: An urgent need for prostate cancer radiotherapy

05/24/13:
Place: Hefei Chinese Academy of Sciences Cancer Hospital
Title: Impact of neuroendocrine differentiation in prostate cancer radiotherapy

05/20/13:
Place: Huazhong University of Science and Technology Union Hospital Cancer Institute
Title: Radiation-induced neuroendocrine differentiation in prostate cancer: From bench to bedside

05/17/13:
Place: Jinan University School of Medicine
Title: Neuroendocrine differentiation (NED) in prostate cancer cells: From basic science to clinical practice

05/14/13:
Place: Northwestern Agriculture and Forestry University (NWAFU): 2013 Purdue-NWAFU Center Symposium
Title: Bimolecular fluorescence complementation (BiFC): Current Status and Future Perspectives
04/17/13 Place: 2013 Drug Discovery Chemistry in San Diego: Sixth Annual Protein-Protein Interactions (Targeting PPI for Therapeutic Interventions)
Title: Bimolecular fluorescence complementation (BiFC) as a novel imaging-based screening for inhibitors of protein-protein interactions.

02/05/13 Place: Tongji Hospital, Huazhong University of Science and Technology
Title: Neuroendocrine differentiation (NED): A therapeutic challenge in prostate cancer management

10/25/12 Place: Wright State University Department of Biochemistry and Molecular Biology
Title: Bimolecular fluorescence complementation (BiFC): An imaging tool for visualization of molecular events

06/06/12 Place: Jiangshu University School of Medical Technology and Laboratory Medicine
Title 1: Mechanisms and targeting of radiation-induced neuroendocrine differentiation
Title 2: Bimolecular fluorescence complementation (BiFC): Past, Present and Future

06/4/12 Place: Chinese Academy of Sciences (Hefei)
Title: Bimolecular fluorescence complementation (BiFC): Past, Present and Future

05/31/12 Place: Tongling Traditional Chinese Medicine Hospital
Title: Recent advances in prostate cancer diagnosis and treatment

05/18/12 Place: Shanghai Center for Plant Stress Biology of Chinese Academy of Sciences
Title: Bimolecular fluorescence complementation (BiFC): Past, Present and Future

04/25/12 Place: University of Western Ontario
Title: Radiotherapy-induced neuroendocrine differentiation: Implications in prostate cancer progression and treatment

03/13/12 Place: Mayo Clinic Department of Urology
Title: Mechanisms and targeting of therapy-induced neuroendocrine differentiation for prostate cancer treatment

07/11/11 Place: Jinan University Medical School
Title: Bimolecular fluorescence complementation: An emerging technology for biological research

07/10/11 Place: Sun-Yat-sun University Medical School
Title: Mechanisms and targeting of therapy-resistant prostate cancer

02/09/11 Place: Tulane University Medical School
Title: Mechanisms and targeting of therapy-resistant prostate cancer

01/17/11 Place: Penn State University College of Medicine
Title: Bimolecular fluorescence complementation (BiFC): Current Challenges and Future Developments
12/07/10 Place: Purdue University BiFC Workshop
Title: Bimolecular fluorescence complementation: principle, experimental design and data analysis
11/18/10 Place: UT Austin College of Pharmacy
Title: Bimolecular fluorescence complementation (BiFC) analysis of AP-1 dimerization in living cells and C. elegans
09/28/10 Place: Nanjing University Medical School
Title: Multicolor bimolecular fluorescence complementation (BiFC): A novel high throughput screening method for protein-protein interactions
09/25/10 Place: Wannan Medical College
Title: Mechanisms and targeting of therapy-resistant prostate cancer
09/16/10 Place: Wuhan Institute of Virology
Title: Bimolecular fluorescence complementation (BiFC): Current Status and Future Perspectives
09/13/10 Place: Beijing University Cancer Hospital
Title: Mechanisms and targeting of therapy resistant prostate cancer
09/08/10 Place: Purdue University BIG Symposium
Title: Fluorescence complementation: An emerging tool for visualization of molecular events in living cells and animals
10/16/09 Place: Southern China Agriculture University
Title: Principle and applications of bimolecular fluorescence complementation (BiFC)
10/19/09 Place: Sun Yat-sen University Zhongshan Medical School
Title: Principle and applications of bimolecular fluorescence complementation (BiFC)
10/26/09 Place: Bengbu Medical College
Title: Principle and applications of bimolecular fluorescence complementation (BiFC)
10/28/09 Place: Nanjing University Medical School
Title: Seeing is believing: visualization of protein-protein interactions using bimolecular fluorescence complementation (BiFC),
05/07/09 Place: University of Chicago Graduate Program of Physiology
Title: Bimolecular fluorescence complementation (BiFC) analysis in living cells and living animals,
02/02/09 Place: Indiana University Medical School, Department of Biochemistry
Title: Ionizing radiation-induced neuroendocrine differentiation: implication in prostate cancer therapy
12/08/08 Place: University of Virginia Cancer Center
Title: Ionizing radiation-induced neuroendocrine differentiation:
<table>
<thead>
<tr>
<th>Date</th>
<th>Place</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/25/08</td>
<td>7th International Conference on Photronics and Imaging in Biology and Medicine (Wuhan, China), Nov 24-27, 2008</td>
<td>Title: Fluorescence complementation: an emerging technology in biomedical research (presentation and panel discussion)</td>
</tr>
<tr>
<td>10/15/08</td>
<td>4th Modern Drug Discovery & Development Summit (San Diego, 10/15/08-10/17/08)</td>
<td>Title: Multicolor bimolecular fluorescence complementation in drug discovery</td>
</tr>
<tr>
<td>11/29/07</td>
<td>UMDNJ-SOM Stratford</td>
<td>Title: Bimolecular fluorescence complementation (BiFC) analysis of AP-1 dimerization in living cells and living animals</td>
</tr>
<tr>
<td>11/28/07</td>
<td>The Children's Hospital of Philadelphia and the University of Pennsylvania</td>
<td>Title: Molecular regulation and targeting of ATF2 nucleocytoplasmic shuttling</td>
</tr>
<tr>
<td>11/13/07</td>
<td>Department of Biochemistry, Purdue University</td>
<td>Title: AP-1 biology, pathology, and technology</td>
</tr>
<tr>
<td>10/30/07</td>
<td>Fluorescent proteins and Biosensors Symposium at HHMI Janelia Farm</td>
<td>Title: BiFC-FRET, a novel assay for visualization of ternary complexes in living cells</td>
</tr>
<tr>
<td>08/07/07</td>
<td>International Microscopy & Microanalysis 2007 at Ft. Lauderdale</td>
<td>Title: Bimolecular fluorescence complementation (BiFC) and beyond</td>
</tr>
<tr>
<td>02/09/07</td>
<td>Montana State University Department of Microbiology</td>
<td>Title: Functional analysis of AP-1 dimerization by bimolecular fluorescence complementation</td>
</tr>
<tr>
<td>11/01/06</td>
<td>Vanderbilt University Institute of Chemical Biology</td>
<td>Title: Visualization of AP-1 protein interactions in living cells and in living animals using an improved BiFC system</td>
</tr>
<tr>
<td>10/04/06</td>
<td>University of Illinois at Chicago School of Medicine</td>
<td>Title: Bimolecular fluorescence complementation: principle and applications</td>
</tr>
<tr>
<td>07/17/06</td>
<td>Huazhong University of Science and Technology Tongji Medical College</td>
<td>Title: Bimolecular fluorescence complementation: principle and applications</td>
</tr>
<tr>
<td>03/14/06</td>
<td>University of Toronto Western Research Institute</td>
<td>Title: Visualization of AP-1 protein interactions in living cells and in living animals using an improved BiFC system</td>
</tr>
<tr>
<td>09/30/05</td>
<td>Eli Lilly, Indianapolis</td>
<td>Title: Identification of new fluorescent protein fragments for BiFC analysis under physiological conditions</td>
</tr>
<tr>
<td>03/10/05</td>
<td>Purdue University, School of Health Science, Purdue</td>
<td>Title: Identification of new fluorescent protein fragments for BiFC analysis under physiological conditions</td>
</tr>
</tbody>
</table>
University
Title: Bimolecular fluorescence complementation (BiFC), a novel approach to study protein-protein interactions
09/02/04 Place: Illinois State University, Department of Biology
Title: Role of C. elegans Fos and Jun homologs in development.
08/13/04 Place: Cold Spring Harbor (Cold Spring Harbor Image Course)
Title: Seeing is believing: visualization of transcription factor interactions in living cells and in living animals using a novel using bimolecular fluorescence complementation (BiFC) approach
05/07/04 Place: Purdue University, Department of Chemistry
Title: Seeing is believing: visualization of transcription factor interactions in living cells and in living animals
01/14/04 Place: Purdue University, Department of Biological Science
Title: Seeing is believing: visualization of transcription factor interactions in living cells and in living animals
12/04/03 Place: Indiana University at Bloomington, Department of Biology
Title: Bimolecular fluorescence complementation (BiFC), a novel approach to study protein-protein interactions
11/07/03 Place: Purdue Cancer Center (Purdue Cancer Center Director’s Advisory council)
Title: Bimolecular fluorescence complementation (BiFC), a novel approach to study protein-protein interactions in cancer research
09/04/03 Place: Purdue Cancer Center (Annual Scientific Retreat)
Title: Bimolecular fluorescence complementation (BiFC), a novel approach to study protein-protein interactions
03/11/03 Place: Cincinnati Children’s Hospital, Division of Experimental Hematology
Title: Bimolecular fluorescence complementation (BiFC), a novel approach to study protein-protein interaction in living cells
03/04/03 Place: Harvard Medical School, MGH, Laboratories of Photomedicine
Title: Bimolecular fluorescence complementation (BiFC), a novel approach to study protein-protein interaction in living cells
02/24/03 Place: Medical University of South Carolina, School of Pharmacy Department of Pharmaceutical Science
Title: Bimolecular fluorescence complementation (BiFC), a novel approach to study protein-protein interaction in living cells
02/19/03 Place: University of Texas M.D. Anderson Cancer Center, Department of Molecular Therapeutics
Title: Bimolecular fluorescence complementation (BiFC), a novel approach to study protein-protein interaction in living cells
02/06/03 Place: Ohio State University, School of Medicine Department of Physiology and Cell biology
Title: Bimolecular fluorescence complementation (BiFC), a novel approach to study protein-protein interaction in living cells
12/28/02 Place: Purdue University Cancer Center
Title: Bimolecular fluorescence complementation (BiFC), a novel approach to study protein-protein interaction in living cells
07/20/00 Place: Bengbu Medical College, Bengbu, China
Title: Recent progress in the activation mechanisms of Raf by Ras
07/15/00 Place: Tongji Medical University, Wuhan, China
Title: Cloning and functional characterization of a novel type phospholipase C (PLC-ε)

Development of Intellectual Property

- Bimolecular fluorescence complementation (BiFC)-based screen for discovery of PRMT5 inhibitors. Provisional Patent Application No 62/121,627 filed on February 27, 2015

Publications

a. Peer-reviewed Research Articles

b. Invited Peer-reviewed Review Articles

c. **Invited Review Article (Not peer-reviewed)**

d. **Book Chapters**

Current and Past Grant Support at Purdue University as PI or Co-PI (2003-2016):

Active Grant Support

Title: Co-targeting of androgen synthesis and androgen receptor expression as a novel treatment for castration resistant prostate cancer
Source: DoD (2015 PCRP)
Role: PI
Grant Period: 08/01/16-07/30/19
Total Cost:
Goal: The goal of this project is to evaluate whether co-targeting of androgen synthesis by abiraterone and androgen receptor expression via PRMT5 inhibition is an effective treatment for CRPC.

Title: Targeting PRMT5 as a novel radiosensitization approach for primary and recurrent prostate cancer radiotherapy
Source: DoD (2011 PCRP)
Role: PI
Grant Period: 08/01/12-07/30/16
Total Cost:
Goal: The goal of this grant is to determine that PRMT5 is a novel therapeutic target for prostate cancer radiotherapy.

Title: Targeting neuroendocrine differentiation for prostate cancer radiosensitization
Source: DoD (2012 PCRP)
Grant Period: 09/30/13-09/30/17
Total Cost:
Role: PI
Goal: The goal of this grant is to use CREB targeting as a model to determine whether targeting radiation-induced NED can be explored as a novel radiosensitization approach for prostate cancer radiotherapy.

Title: Identification of the Ac5 sensitization interactome using BiFC
Source: NIH R21 (National Institute of Mental Health)
Role: Multi-PI with Val Watts
Total Cost:
Role: Multi-PI
Grant Period: 07/19/13-06/15/17
Goal: The goal of this project is to develop BiFC-based cDNA library screening for identification of Ac5 interacting proteins.

Title: Developing novel therapeutic strategies for castration-resistant prostate cancer
Source: DOoD (2013 PCRP)
Total Cost:
Role: Co-PI (PI: Kavita Shah)
Grant Period: 08/01/14-07/30/17
Goal: The goal of this project is to determine whether targeting LIMK2 can be used to treat CRPC.

Title: Development of novel small molecule inhibitors targeting protein arginine methyltransferase 5
Source: CTSI (Indiana Drug Discovery Alliance)
Period: 12/01/14-11/30/16 (No cost extension for current year)
Total amount awarded:
Role: PI
Goal: The goal of this project is to discover inhibitors for disruption of PRMT5/MEP50 interaction using BiFC-based screening.

Title: Generation of PRMT5 transgenic mice for prostate cancer research
Source: Purdue University Center for Cancer Research Shared Resource Grant
Period: 12/01/15-12/31/16
Total amount awarded:
Role: PI
Goal: The goal of this project is to use the transgenic mouse facility to generate PRMT5-overexpressing mice.

Title: PRMT5 in prostate cancer development, progression and therapy response
Source: EVPRP Targeted RO1
Period: 12/01/15-05/30/17
Total amount awarded:
Role: PI
Goals: The goal of this project is to generate genetically modified mouse models for prostate cancer research.
Past Grant Support at Purdue University (2003-2015):

External Funding

Title: Temporal and spatial interaction patterns of bZIP proteins in living *C. elegans*
Source: National Science Foundation (MCB 0420634)
Role: PI
Grant Period: 08/15/04 – 07/30/08
Total Cost:
Goals: The goal of this project was to establish *C. elegans* BiFC assay to visualize temporal and spatial interactions of *C. elegans* bZIP proteins.

Title: Temporal and spatial interaction patterns of bZIP proteins in living *C. elegans*
Source: National Science Foundation (MCB 0420634)
Role: PI
Grant Period: 06/04/07 – 07/30/08
Total Cost:
Goals: The goal of this REU was to support Summer High School Student Research on the funded NSF *C. elegans* project.

Title: Regulation of *c-jun* transcription by ATF2 in cardiomyocyte in response to stress
Source: American Heart Association (AHA 0655570Z)
Role: PI
Grant Period: 07/01/06 – 06/30/08
Total Cost:
Goals: The goal of this project was to study the role of ATF2 subcellular localization in regulating *c-jun* transcription in rat cardiomyocytes in response to hypoxia and oxidative stress.

Title: Interplay of CREB and ATF2 in radiation-induced prostate cancer transdifferentiation
Source: DoD Prostate Cancer Idea Development Award (PC073981)
Role: PI
Grant Period: 06/01/08-05/30/11
Total Cost:
Goals: The goal of this project was to determine how CREB and ATF2 oppose each other at the transcriptional level to regulate radiation-induced neuroendocrine differentiation in prostate cancer cells.

Title: Improvement of BiFC technology and its application in the TLR signal transduction pathway (International collaborative project)
Source: Natural Science Foundation of China
Role: PI
Grant Period: 01/01/11-12/31/13
Total Cost:
Goal: The goal of this project was to collaborate with Dr. Yayi Hou at Nanjing University to apply BiFC technologies to study the TLR signaling in immune system.

Title: D2 receptor-induced sensitization of adenylate cyclase
Source: NIH RO1 (National Institute of Mental Health)
Role: Co-Investigator (PI: Val Watts)
Grant Period: 08/15/11-04/31/14
Total Cost:
Goal: The goal of this RO1 grant was to investigate the molecular mechanisms underlying D2 receptor-induced sensitization of adenylate cyclase. As a Co-Investigator, Dr. Hu provided his expertise in BiFC technology to help the analysis of D2 receptor interacting proteins.

Title: New mechanism for modulating opioid receptor mediated analgesia
Source: Showalter Trust Award
Role: Co-PI (PI: Richard van Rijn)
Total Cost:
Grant Period: 07/01/14-06/30/16
Goal: The goal of the project is to study the mechanisms and regulation of opioid receptors and to develop agents targeting protein-protein interactions using BiFC-based technologies.

Internal Funding

Title: Mass spectrometric identification of pCREB interacting proteins in prostate cancer cells LNCaP
Source: Purdue Cancer Center Small Grant (Indiana Elks, Inc)
Role: PI
Grant Period: 03/01/08-02/28/09
Total Cost:
Goals: The goal of this project was to identify cytoplasmic interacting proteins of pCREB using mass spectrometry.

Title: Identification of interacting proteins and phosphorylation of ATF2 implicated in prostate cancer transdifferentiation
Source: Purdue Research Foundation
Role: PI
Grant Period: 06/01/08-05/30/09
Total Cost:
Goals: The goal of this PRF support was to use mass spectrometry to identify interacting proteins and phosphorylation of ATF2 in the cytoplasm in radiation-induced neuroendocrine cells and to determine how ATF2 nuclear import is impaired by ionizing radiation.

Title: Targeting of prostate cancer transdifferentiation and proliferation via a novel DNA
nanotube-based nucleic acid delivery
Source: Lilly Seed Grant
Role: PI
Grant Period: 01/01/09-12/31/10
Total cost:
Goal: The goal of this grant was to collaborate with Dr. Chengde Mao to develop DNA nanotube-based delivery of siRNAs.

Title: Targeting neuroendocrine differentiation as a novel therapeutics in prostate cancer treatment
Source: Purdue Research Foundation
Role: PI
Grant Period: 08/01/2010-07/30/2011
Total cost:
Goal: The goal of this project was to support graduate student Chris Suarez to study the role of radiation-induced neuroendocrine differentiation in radioresistance.

Title: Ionizing radiation induces neuroendocrine differentiation in nude mice prostate cancer xenograft models: Implication in disease progression
Source: Purdue University Center for Cancer Research
Role: PI
Grant Period: 01/01/09-12/31/11
Total Cost:
Goals: The goal of this project was to use xenograft nude mice prostate cancer cell models to investigate whether CREB and ATF2 contribute to radiation-induced neuroendocrine differentiation \textit{in vivo} and to determine whether radiation induces changes of pCREB and ATF2 subcellular localization.

Title: Generation of cytoplasmic-localized ATF2 transgenic mice for prostate cancer research
Source: Purdue University Center for Cancer Research
Role: PI
Grant Period: 06/01/10-05/30/11
Total cost:
Goal: The goal of this support was to supplement the cost for making a transgenic mouse strain using the shared transgenic mouse facility

Title: Chromogranin A, a novel biomarker to monitor radiation-induced neuroendocrine differentiation in prostate cancer patients
Source: The Indiana Clinical and Translational Science Institute (CTSI)-Purdue Project Development Program
Role: PI
Grant Period: 06/01/10-05/30/12
Total cost:
Goal: The goal of this support was to conduct a pilot clinical study to determine the effect of radiotherapy on neuroendocrine differentiation in prostate cancer patients.
Title: Acquisition of an Nikon A1 Confocal Microscope
Source: Lilly Seed Grant, College of Pharmacy
Role: PI
Grant Period: 07/01/11-06/30/12
Total amount awarded:
Goal: The goal of this support was to acquire Nikon A1 confocal microscope to set up a Pharmacy Live Cell Imaging Facility

Title: Ultrahigh performance liquid chromatography (UHPLC) coupled to high resolution mass spectrometry
Source: Office of the Vice President for Research (OVPR) Laboratory Equipment Program
Role: Co-PI (PI: Andy Tao)
Period: Purchased by May 31, 2014
Total amount awarded:
Goal: The goal of this internal support was to acquire UHPLC.

Proposals that are pending for funding recommendation or review

Title: Role and targeting of PRMT5 in prostate cancer
Source: NCI RO1 submitted in Feb 2016
Role: Contact PI (Multi-PI with Chenglong Li)
Total Cost Requested:
Grant Period: 02/01/2016-11/30/2021
Goal: The goal of this proposal is to elucidate the molecular mechanisms by which PRMT5 promotes prostate cancer cell growth, improve the potency of BLL3.3, and conduct a preclinical evaluation of PRMT5 inhibition for castration resistant prostate cancer treatment.
Current Status: 40 Percentile
Planned resubmission: November 5, 2016

Title: PRMT5 as a novel target for prostate cancer radiosensitization
Source: NCI RO1 submitted in June 2016
Role: PI (Co-Is: Chenglong Li, Andy Tao)
Total Cost Requested:
Grant Period: 04/01/2017-03/30/2022
Goal: The goal of this proposal is to evaluate whether PRMT5 is a therapeutic target for prostate cancer radiosensitization
Current Status: To be reviewed in October, 2016

Title: Computational design of a reversible BiFC system for cancer research
Source: NCI R21
Role: PI
Total Cost Requested:
Grant Period: 01/01/2017-12/31/2020
Goal: The goal of this proposal is to develop a reversible BiFC system for protein interaction study and for cell signaling study.

Title: L-type Ca2+ channels in beta cell dysfunction
Source: NIH RO1
Role: Co-PI (PI: Greg Hockerman)
Total Cost Requested:
Grant Period: 04/01/2015-03/31/2019
Goal: The goal of this proposal is to investigate the role of L-type Ca2+ channels in beta cell dysfunction.
Current Status: 17 percentile
Planned resubmission: November 2016

Fellowships and Travel Awards Received by Postdoctoral Fellows, Graduate Students and Undergraduate Students at Purdue University (2003-2014):

Past Grant Support at Kobe University as PI (1998-2001): $80,000

Title: Regulation of Rap1A activity by phosphorylation
Source: Kobe University, President Young Investigator Award
Role: PI
Grant Period: 04/01/98-03/30/99
Total Cost:
Goals: The goal of this project was to investigate whether phosphorylation of Rap1A by PKA affects the ability of Rap1A to antagonize the function of Ras in activating Raf-1.

Title: Effect of phosphorylation on the regulation of Rap1A activity
Source: Ministry of Education, Science, Sports, and Culture of Japan
Role: PI
Grant Period: 04/1/98 - 03/30/99
Total Cost:
Goals: The goal of this project was to investigate whether phosphorylation of Rap1A by PKA affects the ability of Rap1A to activate downstream effectors such as Raf-1 and B-Raf.

Title: Activation mechanism of phospholipase C (PLC-ε) by Ras
Source: Hyogo Science and Technology Association
Role: PI
Grant Period: 04/01/00 – 03/30/01
Total Cost:
Goals: The goal of this project was to investigate whether Ras regulates catalytic activity of PLC ε directly by their physical interaction. The approach was to use \textit{in vitro} reconstitution system.

Title: Regulation of a novel phospholipase C (PLC-ε) by Ras
Source: Japan Society for the Promotion of Science
Role: PI
Grant Period: 04/01/00 – 03/30/01
Total Cost:

Goals: The goal of this project was to investigate how Ras regulates catalytic activity of PLC ε and determine whether membrane anchoring of PLC-ε by Ras is sufficient for the activation of PLC-ε. This project was primarily focused on the studies in cells.

\textit{Note: Research grants in Japan do not provide personnel support. All faculty members and staff are supported by the government. Postdoctoral fellows and graduate students can only be supported by fellowships.}

\textbf{Teaching Experience}

\textbf{Lectures and labs}

5/1985-6/1987: Microbiology and Immunology labs (medical students)
7/1987-8/1991: Epidemiology lectures and labs in the Department of Epidemiology, School of Public Health, Tongji Medical University, Wuhan
4/1997-8/2000: Physiology and Molecular Biology lab (medical students) in the Department of Physiology II, Kobe University
8/2003-present: As a faculty member in the Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, I have been involved in the teaching of the following 11 courses. The class size for the courses ranges from 5~15 for graduate students to 150 ~205 for professional pharmacy students. The total number of lecture hours taught is approximately 40h/year. Teaching evaluation scores have been 4.5~4.8/5.0 over the past five years, placing on the top third in the department.

\textit{Courses Taught}

\textit{Professional Pharmacy Students:}
MCMP 305 (Biochemistry I, 2004-2006)
MCMP 304 (Biochemistry II, 2005-2008)
MCMP 440 (Pathophysiology, 2006-2012)
PHRM 824 (Principles of Pathophysiology and Drug Action, 2012-present)
PHRM 302 (Integrated Lab, Neoplasia module, 2005-2012)
PHRM 820 (Professional Program Laboratory, Neoplasia module, 2012-present)

Graduate students:
MCMP 618/690G (Molecular Targets of Cancer, 2007-present)
MCMP 617/690N (Molecular Targets of Neurological Disorders, 2007-present)
MCMP 514 (Biomolecular Interactions-Theory and Practice, 2009-present)
MCMP 696 (Seminars in Medicinal Chemistry and Molecular Pharmacology, 2006-2008)

Undergraduate students (BS in Pharmaceutic Sciences):
PHRM 460 (Drug Discovery and Development I, 2013-present)
MCMP 544 (Drug Classes and Mechanisms, 2015-present)

Medical students (Indiana School of Medicine):
LCME 504 (Molecular Cell Biology, guest lecture of Molecular Biology of Cancer, 2013-present)

Courses Served as Coordinator
PHRM 824 (Principles of Pathophysiology and Drug Action, 2013-present)
MCMP 440 (Pathophysiology, 2011-2012)
MCMP 696 (Seminars in Medicinal Chemistry and Molecular Pharmacology, 2006-2008)

Supervision of graduate, professional and undergraduate student research
07/1987-08/1991 Supervised 6 undergraduate students at Tongji Medical University
04/1997-08/2000 Co-supervised 7 Ph.D. students for thesis research with Professor Tohru Kataoka and supervised 5 undergraduate summer research at Kobe University
09/2000-06/2003 Supervised two undergraduate students at University of Michigan
07/2003-present Served as thesis adviser of 9 Ph.D. students (5 graduated with PhD)
Supervised 27 graduate students for lab rotation
Served as a committee member of 35 thesis committees
Served as a committee member or chair of 34 preliminary examinations of graduate students
Supervised 26 professional and undergraduate student research
Supervised 4 high school students for summer research

Supervision of postdoctoral fellows, visiting scholars and technicians
07/2003-present Supervised 8 postdoctoral fellows, visiting scholars or technicians
Service Experience

Major Administrative Services in the Purdue University Center for Cancer Research

2010-2013 Seminar Coordinator of Purdue University Center for Cancer Research
2010-Present Co-leader of Prostate Cancer Discovery Group of Purdue University Center for Cancer Research
2012- Present Coordinator of Indian Basic Urological Research (IBUR) monthly meetings
2012- Present Executive Committee Member of Obesity and Cancer Discovery Group, Purdue University Center for Cancer Research
2013- Present Executive Member of Purdue University Center for Cancer Research
2013- Present Co-leader, Cell Identity and Signaling (CIS) Program of Purdue University Center for Cancer Research

Major Administrative Services at Purdue University

2007-2009 PULSe Graduate Program Admission Committee
2007-2009 PULSe Graduate Program Recruitment Committee
2008-present Bindley Imaging Committee (BIG)
2010 Faculty Search Committee for a Cancer biology and Pharmacology position in the College of Veterinary Medicine
2012-present PULSe Graduate Program Curriculum Committee

Major Administrative Services in the College of Pharmacy

2009-2013 Assessment Committee
2011-present Director of Pharmacy Live Cell Imaging Facility (PLCIF)
2011-present Chair of PLCIF Committee
2012-2014 Grade Appeal Committee
2012-present Faculty Liaison for Core-Pharmacy Courses Taught by Other Schools (BIOL110/111)
2013-2014 Honor Degree Policy Committee
2013-present Curriculum committee
2014-present Pharm.D. Academic Standards and Readmissions Committee

Major Administrative Services in the Department of Medicinal Chemistry and Molecular Pharmacology

2005-2011 Facility and Instrumentation Committee
2008-2009 Strategy Plan Task Force
2009 Biochemistry Task Force
<table>
<thead>
<tr>
<th>Year</th>
<th>Committee Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Business Manager Search Committee</td>
</tr>
<tr>
<td>2011</td>
<td>Faculty Search Committee (Pharmacology)</td>
</tr>
<tr>
<td>2012</td>
<td>Faculty Search Committee (Pharmacology)</td>
</tr>
<tr>
<td>2012</td>
<td>Faculty Search Committee (Epigenetics)</td>
</tr>
<tr>
<td>2010-2015</td>
<td>Graduate Admissions and Recruiting Committee</td>
</tr>
<tr>
<td>2012-present</td>
<td>Graduate Assessment Committee</td>
</tr>
<tr>
<td>2015-present</td>
<td>Chair of Graduate Assessment Committee</td>
</tr>
</tbody>
</table>