STATUS REPORT NO. 6

on

THE PHYSICAL AND CHEMICAL PROPERTIES OF TITANIUM BROMIDES AND TITANIUM IODIDES
Contract No. Nonr-1120(00)

to

HEAD, METALLURGY BRANCH
OFFICE OF NAVAL RESEARCH

July 1, 1955

by

J. M. Blocher, Jr., N. D. Veigel,
E. H. Hall, and I. E. Campbell

BATTELLE MEMORIAL INSTITUTE
505 King Avenue
Columbus 1, Ohio
Battelle Memorial Institute
505 King Avenue Columbus, Ohio

July 29, 1955

Mr. W. C. Arsem
Metallurgy Branch
Office of Naval Research
Department of the Navy
Washington 25, D. C.

Dear Mr. Arsem:

Contract No. Nonr-1120(00)

Enclosed are two copies of Status Report No. 6 covering the period from April 1, 1955, to July 1, 1955.

Sincerely yours,

I. E. Campbell

IEC:mm
Enc. (2)
cc: See Distribution List
DISTRIBUTION LIST

Dr. O. T. Marzke
Superintendent, Metallurgy Division
Naval Research Laboratory
Washington 25, D. C.

Col. B. S. Mesick
Commanding Officer
Watertown Arsenal
Watertown 72, Massachusetts

Aeronautical Research Laboratory
Wright Air Development Center
Wright-Patterson Air Force Base, Ohio
Attention WCRL, J. G. Jackson

Office, Chief of Ordnance
ORDTB-Materials
Washington 25, D. C.
Attention E. J. Dunn

ONR Resident Representative
The Ohio State University
Research Foundation Office Building
Columbus 10, Ohio

ONR Branch Office
The John Crerar Library Building
86 East Randolph Street
Chicago 1, Illinois

Dr. A. J. Stosick
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Dr. C. J. B. Fincham
Columbia University
New York, New York

Dr. G. E. MacWood
The Ohio State University
Columbus, Ohio

Dr. F. D. Rossini
Carnegie Institute of Technology
Pittsburgh, Pennsylvania

Dr. R. Gilchrist
Inorganic Chemistry Division
National Bureau of Standards
Washington 25, D. C.

Mr. E. J. Prosen
Thermochemistry Division
National Bureau of Standards
Washington 25, D. C.

Dr. K. K. Kelley
U. S. Department of the Interior
Bureau of Mines
126 Hearst Memorial Mining Building
Berkeley, California

Dr. M. A. Steinberg
Horizons, Incorporated
Cleveland, Ohio

Dr. P. Herasymenko
New York University
College of Engineering
Research Division
University Heights
New York 53, New York

Dr. R. S. Dean
Chicago Development Company
Riverdale, Maryland

Mr. A. D. Schwope
Brush Laboratories Company
540 East 105th Street
Cleveland, Ohio

Mr. E. J. Chapin
Department of the Navy
Naval Research Laboratory
Washington 25, D. C.

Dr. L. A. McClaine
The Merrill Company
(Arthur D. Little, Inc.)
322 Battery Street
San Francisco 11, California

Dr. G. F. Jans
Rensselaer Polytechnic Institute
Troy, New York
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>MERCURY REDUCTION OF TITANIUM TETRABROMIDE</td>
<td>2</td>
</tr>
<tr>
<td>Experimental</td>
<td>2</td>
</tr>
<tr>
<td>Discussion</td>
<td>4</td>
</tr>
<tr>
<td>FUTURE WORK</td>
<td>9</td>
</tr>
</tbody>
</table>
THE PHYSICAL AND CHEMICAL PROPERTIES OF TITANIUM BROMIDES AND TITANIUM IODIDES

by

J. M. Blocher, Jr., N. D. Veigel, E. H. Hall, and I. E. Campbell

SUMMARY

Data obtained in a study of the mercury reduction of titanium tetrabromide were used to calculate the difference in the heats of formation of TiBr$_4$(s) and TiBr$_3$(s). After confirmation, these results will be combined with the heat of formation of TiBr$_4$(s) now being determined at the National Bureau of Standards to obtain the value for the heat of formation of TiBr$_3$(s). Tentative values are included in this report.

Tests are being made of modifications of the apparatus for the determination of the disproportionation pressure of TiBr$_3$ in order that reliable pressure-temperature-composition data can be obtained which will be combined with the above to give the heat of formation of TiBr$_2$(s).

INTRODUCTION

As initially planned, the thermodynamic properties of the titanium bromides were to have been determined by studying the equilibria:

\[
\begin{align*}
\text{TiBr}_3(s) + \frac{1}{2} \text{Hg}_2\text{Br}_2(s) &= \text{Hg}(l) + \text{TiBr}_4(g) \\
2\text{TiBr}_3(s) &= \text{TiBr}_4(g) + \text{TiBr}_2(s) \\
3\text{TiBr}_2(s) &= 2\text{TiBr}_3(g) + \text{Ti}(s)
\end{align*}
\]

(1) (2) (3)

Acceptable values of the heat of formation of Hg$_2$Br$_2$ were available*, and exploratory work with the mercury-reduction reaction (Equation 1) indicated that reliable experimental results could be obtained.

The disproportionation of TiBr$_3$ (Equation 2) had also been studied. However, this system is not "well behaved" and further work will be necessary to establish a reliable value of the heat of disproportionation.

*Circular 500, National Bureau of Standards.
The disproportionation of TiBr₂ (Equation 3) was to have been studied to complete the determination of the relative thermodynamic properties of the titanium bromides. However, this system would undoubtedly be still more difficult to work with than the tribromide disproportionation. Therefore, it was desirable that another reaction be chosen to complete the picture.

Fortunately, reliable values for the heat of formation of TiBr₄ should result from the work in progress at the National Bureau of Standards by E. J. Prosen and his associates*. With this information available, only the heats of reaction of Equations (1) and (2) will be necessary to determine the heats of formation of the three titanium bromides.

Details of recent work on the tribromide disproportionation were given in Status Report No. 5. During the present report period, tests were made of several techniques for obtaining reliable pressure-temperature-composition data. However, no experimental measurements were made. The major effort during the report period was concentrated on the determination of the equilibrium TiBr₄ pressure in the mercury reduction reaction (Equation 1).

MERCURY REDUCTION OF TITANIUM TETRABROMIDE

Experimental

To identify the solid phases in equilibrium with liquid mercury and TiBr₄ vapor, samples of the reaction product were subjected to X-ray-diffraction analysis at temperatures from 150° to 250°C, at which the equilibrium pressure of TiBr₄ is easily measured. TiBr₃ and Hg₂Br₂ were identified as solid phases and no unidentified lines remained which might indicate complicating factors.

Measurements of the equilibrium pressure were made in the apparatus shown in Figure 1. The cell was carefully cleaned and outgassed and then charged with mercury by distillation from a reservoir attached at Point A. A small amount of pure TiBr₄ was also distilled into the cell and allowed to react with the mercury to form a surface coating of Hg₂Br₂ and TiBr₃, after which the cell was sealed off at A and separated from the filling apparatus. The purpose of the flexible rubber tubing connecting the cell to the vacuum and controlled-pressure system was to permit outgassing by inverting the cell and evacuating the system.

The cell was used as a null indicator, the pressure above the bromides being balanced by a measured pressure of inert gas which was varied until

Private communication, March 7, 1955.
Rubber tubing to vacuum

10-mm. Pyrex

40-mm. Pyrex

Hg₂ Br₂ (s)
+ Tl Br₃ (s)

Hg

Scale: 1/2

FIGURE 1. MERCURY REDUCTION CELL
the mercury level in the 10-mm tube was returned to the position occupied at zero pressure differential. Data for the correction for the thermal expansion of mercury were obtained with mercury alone in the cell by determining the mercury level in the 10-mm tubing as a function of temperature under zero pressure differential. As a check on the reliability of the technique, and of the prediction that the partial pressure of HgBr$_2$(g) is negligible*, the cell was charged with mercury and bromine to form a scum of Hg$_2$Br$_2$ over the mercury surface. The pressure-temperature data given in Table 1 indicate that only the partial pressure of mercury is significant although there appears to be a small systematic error in the experimental values. This saturated mercury vapor pressure is exerted, along with the equilibrium TiBr$_4$ pressure, in the mercury-reduction reaction, and must be subtracted from the total pressure to obtain the partial pressure of TiBr$_4$.

The cell was thermostatted to ±0.2°C. in a salt bath whose temperature was measured by a calibrated Chromel-Alumel thermocouple. The data obtained with two separate preparations (Runs A and B) are given in Table 2 and Figure 2.

Discusison

In order to extrapolate the experimental data to 298.2*K.*, it is necessary to obtain a value for the ΔC_p of reaction. Unfortunately, reliable values for the heat capacities of TiBr$_3$ and Hg$_2$Br$_2$ are not available. However, values obtained by estimation should be entirely satisfactory for this purpose. The heat capacity of Hg$_2$Br$_2$ was taken as the average (24.8 cal./mole/deg. at 298.2*K.) of those of Hg$_2$Cl$_2$ and Hg$_2$I$_2$ given in National Bureau of Standards Circular 500. The heat capacity of TiBr$_3$ (also 24.8 cal./mole/deg. at 298.2*K.) was estimated by adding 0.8 cal./deg./gram-atom to the heat capacity of TiCl$_3$ obtained by averaging the heat capacities given for VCl$_3$ and AlCl$_3$. The heat capacity of mercury is also given in Circular 500. That of TiBr$_4$(g) was obtained by calculation from spectroscopic data as discussed previously**. The resulting value of $\Delta C_p = -6.5$ was taken to be constant over the temperature range of the measurements.

Owing to the uncertainty in the zero setting during Run A, together with the fact that the charge in the cell became depleted at higher temperatures, the values obtained in that run are shown only for purposes of indicating a rough check on the measurements of Run B. Treatment of the data from Run B gives, for Equation (1),

*Calculations based on the data given by Brewer (National Nuclear Energy Series, Vol. IV-19B, McGraw-Hill, 1950) indicate a HgBr$_2$ pressure, for example, of 0.13 mm. at 225°C.

**Status Report No. 3, October 1, 1954, p. 10.
TABLE 1. TOTAL PRESSURE OVER Hg(ℓ) AND Hg₂Br₂(s)

<table>
<thead>
<tr>
<th>Temperature, °C</th>
<th>P_{total}^{(a)} mm. of Hg</th>
<th>P_{Hg(g)}^{(b)} mm. of Hg</th>
<th>P_{total} - P_{Hg} mm. of Hg</th>
<th>(\frac{\Delta P}{P}), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>236.5</td>
<td>52.3</td>
<td>51.6</td>
<td>0.7</td>
<td>1.35</td>
</tr>
<tr>
<td>238.1</td>
<td>54.4</td>
<td>54.0</td>
<td>0.5</td>
<td>0.93</td>
</tr>
<tr>
<td>246.2</td>
<td>67.3</td>
<td>67.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>254.5</td>
<td>83.9</td>
<td>83.7</td>
<td>0.2</td>
<td>0.24</td>
</tr>
<tr>
<td>257.9</td>
<td>91.7</td>
<td>91.2</td>
<td>0.5</td>
<td>0.55</td>
</tr>
<tr>
<td>274.1</td>
<td>137.1</td>
<td>136.4</td>
<td>0.7</td>
<td>0.52</td>
</tr>
</tbody>
</table>

(a) Observed pressure corrected for latitude, and for thermal expansion of mercury in the cell and in the manometer.

TABLE 2. EQUILIBRIUM TiBr₄ PRESSURE IN MERCURY REDUCTION REACTION

<table>
<thead>
<tr>
<th>Run(a)</th>
<th>Temperature, °K.</th>
<th>PTiBr₄, mm. of Hg</th>
<th></th>
<th>-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>449.3</td>
<td>6.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>443.4</td>
<td>4.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>430.5</td>
<td>1.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>472.3</td>
<td>21.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>466.0</td>
<td>16.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>463.3</td>
<td>14.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>446.8</td>
<td>5.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>462.7</td>
<td>12.0</td>
<td>6.9166</td>
<td>91.4126</td>
</tr>
<tr>
<td>B</td>
<td>475.7</td>
<td>25.0</td>
<td>7.2745</td>
<td>91.4170</td>
</tr>
<tr>
<td>B</td>
<td>492.2</td>
<td>60.8</td>
<td>7.7089</td>
<td>91.4552</td>
</tr>
<tr>
<td>B</td>
<td>459.4</td>
<td>10.0</td>
<td>6.8272</td>
<td>91.4332</td>
</tr>
<tr>
<td>B</td>
<td>449.7</td>
<td>5.6</td>
<td>6.5450</td>
<td>91.4408</td>
</tr>
<tr>
<td>B</td>
<td>491.0</td>
<td>56.5</td>
<td>7.6738</td>
<td>91.4318</td>
</tr>
<tr>
<td>B</td>
<td>510.7</td>
<td>139.8</td>
<td>8.1253</td>
<td>91.3170</td>
</tr>
<tr>
<td>B</td>
<td>444.1</td>
<td>3.7</td>
<td>6.3474</td>
<td>91.3120</td>
</tr>
</tbody>
</table>

Avg. = \(\frac{91.4024}{\pm 0.052} \)

(a) Data listed in order taken.
FIGURE 2. EQUILIBRIUM TiBr₄ PRESSURE IN MERCURY REDUCTION REACTION
\[
\log p_{\text{atm.}} = -6044.9/T - 3.271 \log T + 19.979
\]

\[\Delta H^\circ = 27.66 \pm 0.21 \text{ kcal./mol}\]

\[\Delta H_{298.2} = 25.72 \pm 0.21 \text{ kcal./mol}\]

\[\Delta S_{298.2} = 47.86 \text{ e.u.}\]

Since entropy values can be estimated with much greater certainty than can heats of reaction, comparison of the entropy change obtained in the above work with that calculated from the best available information gives a good indication of the reliability of the experimental data. In calculating the entropy change for the reaction given by Equation (1), the values at 298.2*K. for Hg (l) = 18.5 e.u. and 1/2 Hg_2Br_2(s) = 25.45 e.u. were taken from Circular 500. The value for TiBr_4(g) = 95.02 e.u. was calculated for spectroscopic data*, and that for TiBr_3(s) = 43 was taken from Brewer**. The difference between the experimental value, \[\Delta S_{298.2} = 47.86 \text{ e.u.}\], and the calculated value, 45.07, is well within the \(\pm 7\) e.u. uncertainty in the estimated entropy of TiBr_3.

The internal consistency of the data is indicated by the small deviation in the I values given in Table 2.

The above results may be combined with the heat of formation of Hg_2Br_2 (-49.42 kcal./mol.) and the heats of vaporization and fusion of TiBr_4 as determined at Battelle (13.02, and 3.06 kcal./mol., respectively, at 298.2***), to yield, for the reaction

\[1/2 \text{Br}_2(l) + \text{TiBr}_3(s) = \text{TiBr}_4(s), \ \Delta H_{298.2} = -15.07 \text{ kcal./mol.}\]

E. J. Prosen and his associates at the National Bureau of Standards have recently obtained**** for

\[2\text{Br}_2(l) + \text{Ti}(a) = \text{TiBr}_4(s), \ \Delta H_{298.2} = -147.8 \pm 1.3 \text{ kcal./mol.}\]

This may be combined with the above data to give the heat of formation of TiBr_3(s):

\[3/2 \text{Br}_2(l) + \text{Ti}(a) = \text{TiBr}_3(s), \ \Delta H_{298.2} = -132.7 \text{ kcal./mol.}\]

These results must be considered to be tentative, since additional measurements will be required to establish their precision. However, they are presented here with the thought that they may be useful to others.

**Brewer, loc. cit.
FUTURE WORK

Additional data will be obtained for the equilibrium TiBr$_4$ pressure in the mercury reduction reaction.

The equipment used to determine the disproportionation pressure of TiBr$_3$ will be modified to obtain more reliable pressure-temperature-composition data.

Original data are contained in Battelle Laboratory Record Book No. 10105, pp. 51-75.

JMB:NDV:EHH:IEC/mm