STAFF SUMMARY SHEET

TO ACTION SIGNATURE (Surname), GRADE AND DATE TO ACTION SIGNATURE (Surname), GRADE AND DATE
1 USAF/DFAN sig Kurt, P 17 MAR 2014
2 USAF/DFER approve Krause, C 18 MAR 2014
3 USAF/DFAN action (Author / Originator)

SURNAME OF ACTION OFFICER AND GRADE SYMBOL PHONE TYPIST'S INITIALS SUSPENSE DATE
Kurt P. Rouser, Lt Col, USAF Hq USAF/DFAN 333-8489 kpr 20140321

SUBJECT
Clearance for Material for Public Release USAFA-DF-PA-185 DATE 20140317

SUMMARY
1. PURPOSE. To provide security and policy review on the document at Tab 1 prior to release to the public.

2. BACKGROUND.

Authors: Connor Wiese, Michael McClearn, Giovanni Allevato, Richard Guttman and Kurt P. Rouser

Title: Passive Turbulence Generating Grid Arrangements in a Turbine Cascade Wind Tunnel

Circle one: Abstract Tech Report Journal Article Speech Paper Presentation Poster

Thesis/Dissertation Book Other: ____________

Check all that apply (For Communications Purposes):

[] CRADA (Cooperative Research and Development Agreement) exists

[] Photo/Video Opportunities [] STEM-outreach Related [] New Invention/Discovery/Patent

Description: Paper for 2014 American Institute of Aeronautics and Astronautics (AIAA) Region V Student Conference

Release Information: AIAA Region V Student Conference, Minneapolis, MN, 2-4 Apr 2014

Previous Clearance information: None

3. DISCUSSION. N/A

4. RECOMMENDATION. Sign coord block above indicating document is suitable for public release. Suitability is based solely on the document being unclassified, not jeopardizing DoD interests, and accurately portraying official party.

Thomas E. McLaughlin, Ph. D. 1 Tab
Director, Aeronautics Research Center 1. Paper for AIAA Region V Student Conference

AF IMT 1768, 19840901, V5 PREVIOUS EDITION WILL BE USED.
Passive Turbulence Generating Grid Arrangements in a Turbine Cascade Wind Tunnel

Connor J. Wiese, Michael J. McClearn, Giovanni Allevato, and Richard T. Gutman III
United States Air Force Academy, USAFA, CO, 80841

and

Kurt P. Rouser
United States Air Force Academy, USAFA, CO, 80841

Turbine cascade wind tunnels simulate Reynolds number and turbulence for the examination of flow phenomena such as boundary layer separation on the trailing portion of low pressure turbine blades. Axial chord-based Reynolds numbers considered in this study were 50k and 100k. Various passive, square-bar turbulence generating grid arrangements were explored to simulate turbulence in a turbine cascade test-section inlet, including two grid orientations: perpendicular to the inlet flow and parallel to the turbine cascade. A novel T-Bar turbulence grid configuration oriented parallel to the cascade was shown to produce better test section inlet flowfield uniformity than that produced by a perpendicular mesh grid. Improved periodicity in blade-to-blade surface pressure coefficient profiles was also observed with the parallel T-Bar grid.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>bias error</td>
</tr>
<tr>
<td>B1</td>
<td>inlet camber angle</td>
</tr>
<tr>
<td>B2</td>
<td>exit camber angle</td>
</tr>
<tr>
<td>C</td>
<td>true chord</td>
</tr>
<tr>
<td>C1</td>
<td>blade surface pressure coefficient</td>
</tr>
<tr>
<td>C2</td>
<td>axial chord length</td>
</tr>
<tr>
<td>d</td>
<td>grid element diameter</td>
</tr>
<tr>
<td>N</td>
<td>number of samples</td>
</tr>
<tr>
<td>m</td>
<td>mesh width</td>
</tr>
<tr>
<td>P</td>
<td>precision error</td>
</tr>
<tr>
<td>P1</td>
<td>static pressure</td>
</tr>
<tr>
<td>P2</td>
<td>total pressure</td>
</tr>
<tr>
<td>Pinf</td>
<td>free stream total pressure</td>
</tr>
<tr>
<td>Pr</td>
<td>pitchwise spacing</td>
</tr>
<tr>
<td>q</td>
<td>inlet dynamic pressure</td>
</tr>
<tr>
<td>ReCh</td>
<td>axial chord based Reynolds number</td>
</tr>
<tr>
<td>S</td>
<td>suction surface length</td>
</tr>
<tr>
<td>Tu</td>
<td>free stream turbulence intensity</td>
</tr>
<tr>
<td>T</td>
<td>static temperature</td>
</tr>
<tr>
<td>U</td>
<td>total error</td>
</tr>
<tr>
<td>V</td>
<td>mean velocity</td>
</tr>
<tr>
<td>Vf</td>
<td>free stream velocity (from dynamic pressure)</td>
</tr>
<tr>
<td>VfN</td>
<td>free stream velocity (from hotwire)</td>
</tr>
<tr>
<td>v</td>
<td>normalized inlet velocity</td>
</tr>
<tr>
<td>x</td>
<td>upstream grid location</td>
</tr>
<tr>
<td>y</td>
<td>pitchwise location</td>
</tr>
<tr>
<td>p</td>
<td>flow density</td>
</tr>
<tr>
<td>ρ</td>
<td>root mean square of free stream velocity</td>
</tr>
<tr>
<td>µ</td>
<td>flow viscosity</td>
</tr>
</tbody>
</table>

I. Introduction and Background

Turbine Cascade Wind Tunnels (CWT) are similar to conventional wind tunnels except the test section of interest is in a corner. Figure 1 shows the United States Air Force Academy (USafa) closed-loop CWT. Turbine cascade facilities are used to simulate turbine operating conditions for the study of flow phenomena such as...
boundary layer separation over the trailing portion of a turbine suction surface. In addition to Reynolds number, turbulence must also be simulated because turbine performance is sensitive to both. Turbines are susceptible to adverse flow effects at low Reynolds numbers and low turbulence intensities.

A. Turbulence Generation

An extensive study by P.E. Roach2 characterized turbulence generating grids in conventional wind tunnels. Figure 2 shows the relationship between turbulence intensity (Tu) and upstream grid location, x, normalized by diameter, d, of grid elements. Experimental turbulence intensity is defined in Eq. 1, and Roach observed the correlation shown in Eq. 2. Turbulence is generated by vortex shedding as flow passes through a grid, as shown in Fig. 1. Roach found that the minimum upstream grid location, normalized by the grid mesh width, m, is 10, ensuring that vortices are fully mixed upstream of the test article.

$$Tu = \frac{\sigma_u}{\overline{u}}$$ \hspace{1cm} (1)

$$Tu = 1.13(x/d)^{-6/7}$$ \hspace{1cm} (2)

Figure 1. Schematic of USAFA Cascade Wind Tunnel1

Figure 2. Turbulence Decay as a Function of x/d (left)2 and Generation of Turbulence by Grids (right)
B. Turbine Cascade Theory

Baugn, et al.\(^7\), showed that two-dimensional (2-D) turbine blade interactions can be simulated with a cassette of high aspect ratio blades. Figure 3 shows the relation between flow effects in a three-dimensional (3-D) turbine and a cascade blade. Cascade blades represent a mid-span airfoil of a 3-D turbine extruded spanwise so that the blade wake and surface boundary layers can be isolated from the other 3-D effects, as tabulated in Fig. 3. Furthermore, by evaluating only the middle third span of the blade, the ceiling and floor effects in the tunnel can be mitigated. A CWT test section inlet must have uniform flowfield properties. The inlet conditions of interest upstream of the cascade include velocity and turbulence intensity.

![Cascade Blade]

Figure 3. Relation between 3-D Turbine and 2-D Simulation

CWT blade surface pressure coefficient \(C_p\) is useful to evaluate turbine flowfields. Butler, et al.\(^4\), defined \(C_p\) as shown in Eq. 3; however, in this current study \(C_p\) is given by Eq. 4, such that local dynamic pressure is normalized by the inlet dynamic pressure. Butler, et al.\(^4\), previously showed \(C_p\) results from the USAFA CWT as shown in Fig. 4, using a turbulence generating grid placed upstream of the turbine cascade and oriented perpendicular to the flow.

![Cp North Blade and Cp South Blade]

Figure 4. Example Pressure Coefficient Results\(^4\)

\[
C_p = \frac{p_{local} - p_{ref}}{q_{in}} \quad (3)
\]

\[
\bar{C}_p = \frac{p_{tot} - p_{2}}{q_f} \quad (4)
\]

C. Turbine Airfoil Theory

The underside of the turbine airfoil as shown in Fig. 5 is the pressure surface, and the upper side is the suction surface. The suction surface length (S) is defined as the distance along the suction surface from the leading edge to the trailing edge, and axial chord length (C) is the straight line distance from the leading to trailing edge.
Axial chord-based Reynolds number (Re_{cx}) is defined in Eq. 5, with ρ as flow density, V_{x} as inlet velocity, and μ is viscosity. At low Reynolds numbers, flow is laminar, and large turning angles associated with low pressure turbines (LPTs) cause an adverse pressure gradient over the trailing portion of the suction surface. Boundary layer separation may occur because the flow does not have enough momentum to stay attached. Separation is affected by the inlet turbulence intensity and the Reynolds number such that separation is more pronounced at both lower Reynolds numbers and turbulence intensities.

$$Re_{cx} = \frac{\rho V_{x} C_x}{\mu}$$

(5)

D. Objectives

The objective of this study was to evaluate various turbulence generating grid configurations in a CWT. Two grids were studied at three upstream locations with $Re = 50k$ and $Re = 100k$, one grid oriented perpendicular to the flow and the other parallel to the turbine cascade. The grids were evaluated based on turbulence intensity and inlet velocity uniformity. Furthermore, C_p results show the sensitivity of turbine blade flowfields to grid configuration.

II. Set-up and Procedure

A. Facility

The USAFA CWT shown in Fig. 1 is driven by a variable-frequency, variable-pitch fan adjusted to achieve desired Re_{cx} within the test section. The heat exchanger ensures thermal equilibrium such that the temperature inside the test section is adjusted to match the ambient temperature by regulating cooling water flow rate through heat exchanger piping. The stilling chamber ensures that air flow is straight and steady. Air flow passes through the turbulence grid, installed at an upstream distance to generate desired turbulence intensity.

Figure 6 shows Langston blades installed in the USAFA CWT test section, spaced equally pitchwise to approximate the arrangement in an actual turbine. The center blade is the test article, with surface measurements being taken on each adjacent blade. A variable tail board is located downstream of the cassette, and can be adjusted to change the exit cross-sectional area. Adjustment of the variable tail board affects the flow upstream of the cassette and thus affects periodicity. The USAFA CWT can utilize both perpendicular and parallel oriented grids. Grid distance from the test section is measured in terms of x/d, from the center test article to the middle of the grid.
The north and south blades adjacent to the center blade each contain 40 surface pressure taps, allowing pressure coefficients to be determined along the blade suction and pressure surfaces. Pressure taps are instrumented with 20" of H2O and 10" of H2O pressure transducers connected to PSI 8400, which transfers data to a data acquisition computer located next to the tunnel. Two probe configurations are shown in Fig. 6 for inlet traverse measurements. The fixed inlet probe contains three co-located measurement devices: a thermocouple, a pitot-static probe, and a Kiel probe, while the traversing probe contains a Kiel probe and a hotwire anemometer. The traversing Kiel probe is differenced against the static pressure collected by the fixed inlet probe. The entire probe suite is instrumented with three, 1-torr Baratron pressure transducers. Additionally, the ambient temperature and pressure readings were collected using a Heise barometer and thermometer.

B. Procedures

For a pressure coefficient test, the first step was to properly orient and secure the desired turbulence generating grid. The turbulence generating grids utilized in this study are shown in Fig. 7. These grids are a perpendicular mesh grid (PMG) and a parallel T-bar grid (PTG). The T-Bar grid was constructed using discrete, non-overlapping horizontal elements, mounted on a parallel array of square bars; so that the grid area projected on the flow field is equal to the perpendicular mesh grid. The fan speed was adjusted so that the corresponding velocity yielded the desired Reynolds number. Once the desired temperature and Reynolds numbers were achieved, data was collected using the PSI 8400 system.

The air velocity was measured using a hotwire calibrated in-situ. Every run required a hot wire calibration which consisted of increasing the Re_{el} in increments of 10,000, starting at 15,000 and going to 125,000. These data files were then graphed and fitted with a 4th order polynomial curve.

TunnelVision was used for traverse control and LabView for data collection. Velocity, pressure and temperature data were collected at 1200Hz for 40.96 seconds at each pitchwise location.
III. Results and Discussion

A. Inlet Turbulence and Velocity Profiles

Figure 8 shows the inlet turbulence intensity (T_u) and normalized inlet velocity (V_N) profiles for clean tunnel, PMG, and TBG runs at an axial chord-based Reynolds number of 100k. The grids were located at an x/d location of 164. At these conditions, the clean tunnel inlet profiles exhibit good uniformity across the inlet. The PMG exhibits uniform turbulence intensity. However, at the inboard section of the traverse, there is a slight increase in turbulence intensity due to the decreasing grid x/d across the inboard half of the PMG, pitchwise-relative to the cascade. Additionally, the normalized velocity profile exhibits poor uniformity when compared to the clean tunnel configuration. The TBG turbulence intensity profile remains constant across the inlet due to the constant x/d pitchwise-relative to the cascade. It is apparent that at these conditions, the TBG produces a more uniform inlet than that of the PMG.

$$V_N = \frac{V_t}{V_i}$$ \hspace{1cm} (6)

Figure 9 shows the inlet turbulence intensity and normalized inlet velocity profiles for PMG and TBG runs at an axial chord-based Reynolds number of 50k, and a grid x/d of 164. With the decrease in axial chord-based Reynolds number, the change in turbulence intensity characteristics were minimal, and were consistent with Roach7, such that turbulence intensity was independent of free-stream velocity. Unlike the $Re_{ch} = 100k$ run, both grids exhibit uniform normalized velocity profiles across the inlet, except at pitchwise locations less than $y/p = -1.8$. The turbulence intensity profile generated by the TBG is constant across the inlet, similar to the $Re_{ch} = 100k$ run. As Reynolds number decreased the TBG provided a more uniform inlet than that of the PMG.

![Figure 8. $Re = 100k$ Inlet Profiles for Clean Tunnel (Left), PMG at $x/d = 164$ (Center), and TBG at $x/d = 164$ (Right)](image)
Figures 9 and 10 show the effect of decreasing grid \(x/d \) on inlet turbulence intensity and normalized inlet velocity at \(Re_{ch} = 100k \). As noted at a grid \(x/d \) of 164, the PMG turbulence intensity increases on the inboard half of the grid, pitchwise-relative to the cascade, while the TBG exhibits relatively constant turbulence intensity pitchwise relative to the cascade. Additionally, like the \(x/d = 164 \) condition, the TBG exhibits better inlet velocity uniformity than the PMG. At an \(x/d \) location of 64, the grids exhibited similar trends. However, the effect of decreasing \(x/d \) pitchwise-relative to the grid was more pronounced for the PMG because the effect of non-constant \(x/d \) on turbulence intensity is more pronounced at smaller \(x/d \) locations. The PMG inlet velocity profile, however, was more uniform at \(x/d = 64 \) than at \(x/d = 164 \). The TBG exhibited more uniform turbulence intensity and velocity profiles than the PMG. However, at an \(x/d \) of 64, both turbulence intensity and inlet velocity increased with outboard pitchwise location, relative to the cascade. This trend is likely due to the TBG not being mounted perfectly parallel to the cascade. However, when compared to the PMG, the TBG produces more favorable inlet profiles. Additionally, at no time was the tunnel velocity expected to exceed 15 m/s, correlating to a \(\sim M = 0.0132 \), well within the incompressible flow regime.

Figures 10 and 11 show the effect of decreasing grid \(x/d \) on inlet turbulence intensity and normalized inlet velocity at \(Re_{ch} = 100k \). As noted at a grid \(x/d \) of 164, the PMG turbulence intensity increases on the inboard half of the grid, pitchwise-relative to the cascade, while the TBG exhibits relatively constant turbulence intensity pitchwise relative to the cascade. Additionally, like the \(x/d = 164 \) condition, the TBG exhibits better inlet velocity uniformity than the PMG. At an \(x/d \) location of 64, the grids exhibited similar trends. However, the effect of decreasing \(x/d \) pitchwise-relative to the grid was more pronounced for the PMG because the effect of non-constant \(x/d \) on turbulence intensity is more pronounced at smaller \(x/d \) locations. The PMG inlet velocity profile, however, was more uniform at \(x/d = 64 \) than at \(x/d = 164 \). The TBG exhibited more uniform turbulence intensity and velocity profiles than the PMG. However, at an \(x/d \) of 64, both turbulence intensity and inlet velocity increased with outboard pitchwise location, relative to the cascade. This trend is likely due to the TBG not being mounted perfectly parallel to the cascade. However, when compared to the PMG, the TBG produces more favorable inlet profiles. Additionally, at no time was the tunnel velocity expected to exceed 15 m/s, correlating to a \(\sim M = 0.0132 \), well within the incompressible flow regime.
B. Surface Pressure Coefficient Analysis

Figure 12 compares C_p results for the clean tunnel, perpendicular mesh, and parallel T-bar grids yields some specific trends. At a higher inlet velocities, only minimal turbulence is required to maintain flow attachment. The clean tunnel profile, as seen in the left most picture in Fig. 12, has a turbulence intensity of approximately 4%. The perpendicular mesh (center) and parallel T-bar (right) have only fractional increases in turbulence. Figure 12 shows that all three configurations have a similar level of periodicity. The primary difference between the three configurations is the difference in suction surface peak. The perpendicular mesh generates the greatest magnitude but when comparing all three, the parallel T-bar looks most similar to the clean tunnel.

Figure 12. Clean Tunnel (Left), PMG (Center), and TBG (Right) C_p Results at $Re = 100k$ and $x/d = 164$

Figure 13 shows results for the perpendicular mesh and parallel T-bar grid configurations at a $Re = 50k$. The suction surface peak for both cases drops from the 100k values, but there is still enough flow momentum to prevent full separation. This leads to the conclusion that Reynolds number is not the most important factor for C_p.

Figure 13. PMG (Left) and TBG (Right) C_p results at $Re = 50k$ and $x/d = 164
Figure 14 shows the same configurations for $Re = 100k$ and a smaller x/d value which increases the level of turbulence seen at the test section. Figure 14 has nearly the same level of periodicity as Fig. 13, but shows elevated suction surface peaks. The higher turbulence intensities result in more acceleration over the suction surface of the blade.

![Figure 14. PMG (Left) and TBG (Right) Cp results at Re = 100k and x/d = 104](image)

Figure 15 again has the same configurations but at the closest x/d value. As seen previously, there is no apparent difference in periodicity, but another rise in suction surface peak value suggesting that increasing turbulence intensity affects the local acceleration over the suction surface.

![Figure 15. PMG (Left) and TBG (Right) Cp results at Re = 100k and x/d = 64](image)

The C_p results show that Reynolds numbers studied do not cause much change but varying levels of turbulence affect the local flow acceleration over the suction surface. These results match those of Butler, et al. with regards to differential magnitude between pressure and suction surfaces.

C. Uncertainty Analysis

An uncertainty analysis was conducted on turbulence intensity and Reynolds number. Repeatability runs were conducted with the PMG located at an x/d location of 164. Eight repeatability runs were conducted at 50k. Equations 7-9 outline the uncertainty process, where partial derivatives are also known as influence coefficients. Table 1 shows Reynolds number uncertainty with a target Reynolds number of 50k. $Re = 50k$ exhibited the most uncertainty. Table 2 shows turbulence intensity uncertainty at a target Reynolds number of 50k. For turbulence intensity uncertainty, the traversing hotwire was removed and a hotwire was added to the fixed inlet probe. Like Reynolds number uncertainty, the greatest turbulence uncertainty was expected to be at the lower velocities. Reynolds number and turbulence intensity uncertainty were less than 5%.

\[
B_G = \sqrt{\left(\frac{\partial G}{\partial x_1} B_1 \right)^2 + \left(\frac{\partial G}{\partial x_2} B_2 \right)^2 + \cdots + \left(\frac{\partial G}{\partial x_n} B_n \right)^2} \tag{7}
\]

\[
P_G = \sqrt{\left(\frac{\partial G}{\partial x_1} P_1 \right)^2 + \left(\frac{\partial G}{\partial x_2} P_2 \right)^2 + \cdots + \left(\frac{\partial G}{\partial x_n} P_n \right)^2} \tag{8}
\]

\[
U_G = \sqrt{B_G^2 + P_G^2} \tag{9}
\]
Table 1. Reynolds Number Uncertainty for Re = 50k, x/d = 164

<table>
<thead>
<tr>
<th></th>
<th>Average Influence Coefficient</th>
<th>B</th>
<th>P</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_c</td>
<td>0.1039</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p_mbr.</td>
<td>588.14</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>q</td>
<td>0.1203</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T</td>
<td>298.41</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2. Turbulence Intensity Uncertainty for Re = 50k, x/d = 164

<table>
<thead>
<tr>
<th></th>
<th>Average Influence Coefficient</th>
<th>P</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>5.41</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>σ_V</td>
<td>0.22</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T</td>
<td>4.02%</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

IV. Conclusion

This study shows that the TBG produces a more uniform inlet than the PMG at similar test conditions. Additionally, the TBG surface pressure coefficients match clean tunnel data better than the PMG. Therefore, the authors suggest that future CWT studies be conducted with grids mounted parallel to the cascade. Future studies are recommended to evaluate turbulence length scales and turbulence isotropy for parallel T-Bar grids, like that utilized in this study.

Acknowledgements

The authors would like to acknowledge the individuals that assisted in this research. First is Dr. Rolf Søndergaard from AFRL who, in addition to the Air Force Office of Scientific Research, sponsored this research. Second is Dr. Aaron Byerley for advising this research. Dr. Tom McLaughlin assisted the authors with uncertainty analysis. Next the authors would like to thank their machinists Mr. Jeff Falkenstine and Mr. Joe Royall. Computer support was provided by Mr. Grant Grovenberg, and instrumentation support was provided by Mr. Ken Ostasiewski. Finally, the authors would like to thank Bernard Cox-Ferraras and Jeffery Downie; Andrew Gallion and Matthew Destito; and Robert Ashby for their ground-breaking work in the CWT in the spring of 2012, fall of 2012, and the spring of 2013.

References

