Potential Energy Surfaces and Dynamics For Energetic Ionic Liquids

Mark S. Gordon
Iowa State University, Department of Chemistry
201 Spedding Hall, Ames, IA 50011

04/09/2012
Final Report

DISTRIBUTION A: Distribution approved for public release.
Title and Subtitle:
Potential Energy Surfaces and Dynamics For Energetic Ionic Liquids

Performing Organization:
Iowa State University, Department of Chemistry
201 Spedding Hall, Ames, IA 50011

Sponsoring/Monitoring Agency:
Air Force Office of Scientific Research
801 North Randolph Street, Room 732
Arlington VA 22203-1977

Abstract:
Several new methods were developed and applied to high energy ionic liquids. The fragment molecular orbital (FMO) method can be applied to very large species while retaining high accuracy. The FMO method has been extended to open shell species and has been interfaced with our effective fragment potential (EFP) solvent method. We are systematically developing the key features of GAMESS for graphical processing unit (GPU) architecture. Electron repulsion integrals and the Hartree-Fock method are now completed. Applications to triazolium-based and Al13 based ionic liquids have been developed and others are under study.

Subject Terms:

Security Classification of:

Limitation of Abstract:

Number of Pages:

Name of Responsible Person:

Telephone Number (Include area code):

Distribution:
DISTRIBUTION A: Distribution approved for public release.
INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including day, month, if available. Must cite at lest the year and be Year 2000 compliant, e.g., 30-06-1998; xx-08-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as final, technical, interim, memorandum, master's thesis, progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as they appear in the report, e.g. 1F665702D1257.

5c. PROGRAM ELEMENT NUMBER. Enter all program element numbers as they appear in the report, e.g. AFOSR-82-1234.

5d. PROJECT NUMBER. Enter all project numbers as they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSOR/MONITOR'S AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the organization(s) financially responsible for and monitoring the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S). Enter report number as assigned by the sponsoring/monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

13. SUPPLEMENTARY NOTES. Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.

14. ABSTRACT. A brief (approximately 200 words) factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.
The main focus of this research is on the design and study of highly energetic species that have the potential to be novel new fuels. Of special importance are energetic ionic liquids. Progress was made in both theory/code development and applications. The **theory/code developments** include advances in *ab initio* quantum chemistry and dynamics and in novel computational approaches.

Quantum Chemistry and Dynamics1-4,18,19. There are several ways that one can expand the sizes of molecular systems that are amenable to accurate quantum mechanics (QM) methods. Two such approaches are to subdivide the system into tractable pieces ("fragments") and the development of highly scalable (parallel) algorithms. Two successful fragmentation methods, the fragment and molecular orbital (FMO) method1,3,18,19 and the symmetric fragmentation method1,2,18 (SFM) have been developed and applied to a variety of interesting problems. The FMO approach, which has been implemented for most levels of electronic structure theory, avoids arbitrary procedures like hydrogen atom capping and employs distance cut-offs as criteria for invoking approximations for expensive two-electron integrals. We have extended the method to open shell species3,19. The method can include all two-body (FMO2), three-body (FMO3), etc., interactions explicitly, as computer resources allow. Because each fragment can be assigned to a different compute node, the method scales linearly with system size, and it can take advantage of multi-level parallelism. The FMO method has also been interfaced with both implicit and explicit solvent methods. A very important application is to energetic ionic liquids (EIL). The EILs of interest to us are fairly complicated: polynitrogen cyclic cations combined with oxygen-rich anions. To obtain a realistic connection with experiments requires the simulation of at least large clusters, if not the actual condensed phase. The FMO method is proving to be invaluable for this effort1. The SFM1,2, which was designed for the study of large molecule dynamics employs hydrogen capping and is similarly extensible to 2-, 3-, etc., body interactions. SFM is also inherently parallel. The Grow program, which uses a modified Shepard interpolation to construct potential energy surfaces for ground and excited electronic states, has been interfaced with the MCSCF method in GAMESS, in order to enable multi-state dynamics studies. The EFP method, discussed below, has been interfaced with the FMO method4.

Solvent Effects and Intermolecular Interactions4-6. The EFP method5 is among the most sophisticated methods for treating intermolecular interactions, including solvent effects. The general (EFP2) method includes all important interaction types, including Coulomb, induction, exchange repulsion, dispersion, and charge transfer. This has been accomplished without the use of any empirically fitted parameters, so an EFP can be generated for any type of system, including charged species. Many-body effects are incorporated via the induction term that is iterated to self-consistency. The ground state EFP2-QM interaction is partially complete, with the energy and analytic gradient implemented for the Coulomb and induction terms, and the energy for the exchange
repulsion. The modified Fock operator and the gradient have been derived for the exchange repulsion-QM gradient. The EF2-QM dispersion energy has been derived and the coding is in progress. The EFP and FMO methods have been interfaced. We have demonstrated that the EFP method is able to capture both 2- and 3-body interactions very well. This means EFP can greatly reduce the computational cost of calculating 3-body interactions rather than the correlated methods. In the SFM, for example, one can calculate all inter-fragment interactions with EFP and maintain high accuracy. We have demonstrated that the EFP method is able to capture both 2- and 3-body interactions very well. This means EFP can greatly reduce the computational cost of calculating 3-body interactions rather than the correlated methods. In the SFM, for example, one can calculate all inter-fragment interactions with EFP and maintain high accuracy.

Novel Computational Methods. One way to increase the applicability of ab initio electronic structure methods to more complex species is to develop novel algorithms that take advantage of modern computer technology. Our new advances in this direction include a parallel analytic Hartree-Fock Hessian, parallel analytic gradients for restricted open shell second order perturbation theory, and parallel closed shell coupled cluster CCSD(T) theory. Our recent advances in scalable electronic structure have been summarized in a review paper. New advances will include improved scalable coupled cluster algorithms for both open and closed shells, including completely renormalized methods that are capable of breaking single bonds, and our novel, new multi-reference methods. A major new direction is the development and implementation of electronic structure methods that can take advantage of modern computing architectures. One such architecture, embodied in the BlueGene series and the Cray XT series, combines low-cost cores with low heat output to engineer computer systems with tens of thousands of cores. We have demonstrated that the MP2 code in GAMESS can take great advantage of such architectures. Very recently, we have implemented the FMO method on the BG/P system at Argonne National Laboratory, demonstrating that we can efficiently use 20,000 cores. We are also in the process of developing many features of GAMESS on graphical processing unit (GPU) technology. We have developed and implemented new GPU code for the high angular momentum two-electron integrals that are so important for high-level ab initio calculations. We have also developed a new Hartree-Fock code with much improved efficiency on both CPU and GPU architecture. Similar efforts are under way for second order perturbation theory and coupled cluster codes. An important side benefit of these developments is that we have significantly improved the original CPU codes.

The applications that were addressed include studies of ionic liquids, novel anionic species, and electrospray processes. An important aspect of studying ionic liquids is that simple models, such as small clusters, cannot realistically model the liquid. Earlier studies in our group showed, for example, that one cation combined with one anion is unstable, with a proton typically jumping spontaneously from the cation to the anion to form a neutral pair. As noted above, studying multiple cation-anion pairs is computationally challenging. However, we performed a high-level calculation of the double pair with 1,2,4-triazolium as the cation and dintirimide as the anion. We showed, using a combination of MP2 and CCSD(T), that this species forms a π−stacked arrangement, with the two positively charged rings facing each other like a benzene dimmer sandwich compound. This species, at the CCSD(T) level of theory, is fully 6 kcal/mol lower in energy than the corresponding neutral formed by a double proton transfer. This suggests that two ion pairs at least begin to show some resemblance to the liquid. We are now using the FMO method to examine larger clusters. We have also used the EFP method to systematically study benzene-benzene interactions, in which one...
benzene ring has one substituent16. The interaction energies and geometries are in good agreement with experiment. Castleman has proposed that Al\textsubscript{13}− behaves as a “superhalide” that might functions as an appealing anion. The only previous studies of this species have employed density functional theory, which is an inappropriate method for such species. We have therefore employed MP2 and CCSD(T) to explore the potential energy surfaces of both Al\textsubscript{13}− and Al\textsubscript{13} neutral. This allows us to calculate the ionization potential with high accuracy and to predict the structures of both anion and neutral, at a much reliable level of theory than heretofore reported17.

In a joint experiment-theory study14, we analyzed the clustering of I− with 1-4 formamide molecules in order to interpret field-ion evaporation of these species.
References

DISTRIBUTION A: Distribution approved for public release.

