11th Annual Systems Engineering Conference
San Diego, CA

20-23 October 2008

Agenda

TUESDAY, 21 OCTOBER 2008

Keynote Addresses:
- HON Charles McQueary, Director, Operational Test & Evaluation;

Plenary Session: Executive Panel
Moderator:
Ms. Kristin Baldwin, Deputy Director, Software Engineering & System Assurance
Panelists:
- Mr. Terry Jaggers, Director, SAF/AQR (Science, Technology & Engineering)
- Mr. Carl Siel, Chief Systems Engineer; ASN(RDA)CHENG
- Mr. Ross Guckert, Assistant Deputy, Acquisition & Systems Integration ASA(ALT)

Luncheon with Speaker in the Regatta Pavilion
- Dr. Ronald Jost, Deputy Assistant Secretary of Defense, C3, Space & Spectrum

BAYVIEW III: SYSTEMS ENGINEERING EFFECTIVENESS
Session 2C1
- 7099- DoD’s Systems and Engineering Revitalization Efforts- An Update Mr. Nicholas M. Torelli, OSD/SSE/ED
- 7475 - The Effectiveness of Systems Engineering on Federal (DoD) System Development Programs - Update 2008, Mr. Ken Ptack
- 7153- Systems Engineering Plan (SEP) and Systems Engineering Management Plan (SEMP) Unification Mr. Chet Bracuto, OSD
- Naval Power 21 Integration & Interoperability Improvement, Mr. Kevin Smith
- 7089 - Systems Engineering for Systems of Systems, Dr. Judith Dahmann, The MITRE Corporation

BAYVIEW II: TEST & EVALUATION IN SYSTEMS ENGINEERING
Session 2C2
- 7100- Implementation of the 2007 Developmental Test & Evaluation Defense Science Board Results: Mr. Chris DiPetto, OUSD/SSE/ED
- 7101 - Test and Evaluation Value Metrics at Acquisition Decision Points: Ms. Darlene Mosser-Kerner, OUSD/SSE/DTE
- 6979 - Integration of Software Intensive Systems: Mr. Tom Wissink, Lockheed Martin
- 6996 - Modeling & Simulation in the Test & Evaluation Master Plan, Mr. Michael Truelove
- 7103 – “New….Improved” Test & Evaluation Master Plan, Ms. Darlene Mosser-Kerner
- 7290 – Mission Based T&E Strategy, Mr. Chris Wilcox

BAYVIEW I: PROGRAM MANAGEMENT
Session 2C3
- 7096 - New Acquisition Policy and Its Impact on Defense Systems Engineering: Ms. Sharon Vannucci, ODUSD/SSE/ED
- An Air Force S&T Directorate’s View on Applying Systems Engineering Principles to its Programs
- High Confidence Technology Transition Planning Through the Use of Stage-Gates (TD-13), Dr. Claudia Kropas-Hughes, HQ, AFMC

MISSION I SYSTEM SAFETY- ESOH & HSI
Session 2C4
- 7096 - New Acquisition Policy and Its Impact on Defense Systems Engineering: Ms. Sharon Vannucci, ODUSD/SSE/ED
MISSION II MODELING & SIMULATION

Session 2C5
- 7172 - Execution of the Acquisition M&S Master Plan- A Progress Report: Mr. James W. Hollenbach, Simulation Strategies, Inc.
- 7440 - Synchronizing Modeling and Simulation Plans Across Navy Acquisition: Dr. Ivar Oswalt, VisiTech
- 7085 - Modeling and Simulation Resource Reuse Business Model: Mr. Dennis P. Shea, Center For Naval Analyses
- 7341 - Crucial Factors in the Design of Net-Centric Systems: Dr. David Hernandez, Tactronics Holdings, LLC
- 7330 – Creating a Systems Architecture for an SOA-based IT System as Part of a Systems Engineering Process, Mr. Robert S. Elinger
- 7451 - Why Design for Testability Sooner?, Mr. Bruce Bardell, BAE Systems
- 7399 – The Challenges of Requirements Decomposition, Ms. Eliza Siu, Northrop Grumman Corporation

MISSION III: NET CENTRIC OPERATIONS

Session 2C6
- 7461- Network Centric Engineering use of the NCOIC (Network Centric Operations Industry Consortium) Processes and Tools in a Logistics Example: Mr. Thomas M. Dlugolecki, SenseResponder LLC
- 7128 - Changing the Value Equation in Engineering and Acquisition to Align Systems of Systems with Dynamic Mission Needs: Mr. Philip J. Boxer, Software Engineering Institute
- 7341 - Crucial Factors in the Design of Net-Centric Systems: Dr. David Hernandez, Tactronics Holdings, LLC
- 7330 – Creating a Systems Architecture for an SOA-based IT System as Part of a Systems Engineering Process, Mr. Robert S. Elinger
- A Service-Oriented Architecture (SOA) Business Model for the U.S. Department of Defense (DoD)

PALM I: REQUIREMENTS DEVELOPMENT & MANAGEMENT

Session 2C7
- 7444- Acquisitions Requirements of Capabilities in a Netcentric Enterprise - Creating a Capabilities Engineering Framework: Mr. Jack M. Van Kirk, SFAE-AV-AS
- 7138- Implications of Capability-based Planning on Requirements Engineering: Mr. Leonard Sadauskas, DoD CIO, IT Investment & Commercial Policy
- 7191- System Concept of Operations: Standards, Practices, and Reality: Ms. Nicole Roberts, L-3 Communications
- 7066 - Two-Step Methodology to Reduce Software System Requirements Defects, Mr. Robert J. Kosman
- 7451 - Why Design for Testability Sooner?, Mr. Bruce Bardell, BAE Systems
- 7399 – The Challenges of Requirements Decomposition, Ms. Eliza Siu, Northrop Grumman Corporation

PALM II: SOFTWARE

Session 2C8
- 7139 - A Framework for Integrating Systems and Software Engineering: Dr. Richard Turner, Stevens Institute of Technology
- 7041 - Software Process Improvement for Acquisition of Naval Software Intensive Systems: Mr. Carl Siel, U.S. Navy, ASN (RDA) CHENG
- 7119 - Architeeting Systems to Meet Expectations – Managing Quality Characteristics To Reduce Risk, Mr. Paul R. Croll, CSC
- 7239 – Systems and Software Design Principles for Large-Scale Mission-Critical Embedded Products from Aerospace and Financial Problems Domains, Mr. Rick Selby, Northrop Grumman Space Technology

WEDNESDAY, 22 OCTOBER 2008

Luncheon with Speaker in the Regatta Pavilion
- Ms. Shannon Cunniff, Director, Emerging Containments: Office of Under Secretary of Defense (Installations and Environment)

BAYVIEW III: SYSTEMS ENGINEERING EFFECTIVENESS

Session 3A1
- 7405 - Systems Engineering: Application in Complex Organizations: Mr. Kevin Roney, Booz Allen Hamilton
- 7065 - Establishing a Systems Engineering Center of Excellence in PEO Ground Combat Systems: Mr. Michael H. Phillips, Jacobs
- 7423- Systems Engineering Capability Development: Mr. Edward Andres, TARDEC

Session 3B1
- 7436- A Process Decision Table for Integrated Systems and Software Engineering: Dr. Barry Boehm, USC-CSSE
- 7190 - A Tool to Enhance Systems Engineering Planning: Ms. Sue O’Brien, The University of Alabama in Huntsville
- 6945- The Role of Chaos and Complexity in Systems Development: Dr. Robert J. Monson, Lockheed Martin

Session 3C1
6878 - Reduction of Total Ownership Costs (R-TOC) and Value Engineering (VE) in Defense System’s Life Cycle: Mr. Chet Bracuto, OSD
7007 - Using Performance-Based Earned Value(R) for Measuring Systems Engineering Effectiveness: Dr. Ronald S. Carson, Boeing
7017-KBAD- A Cost-Effective Way to Conduct Design and Analysis: Dr. Steven Dam, Systems and Proposal Engineering Company
6886 - Air Force Systems Engineering Assessment Model, Mr. Randy Bullard
7030 – Defining 100 Best Practices for SE, Mr. Ian Talbot, AAC/EN
7204 – Advancing Systems Engineering Practice within the Department of Defense: Overview of DoD’s Newest University Affiliated Research Center (UARC), Ms. Sharon Vannucci, ODUSD
7093 – Systems Engineering Performance Measures, Mr. Jim Miller

BAYVIEW II: TEST & EVALUATION IN SYSTEMS ENGINEERING
Session 3A2

6937 - Systems Engineering for Testing in a Joint Mission Environment: Mr. Earl Reyes, OSD/JTEM
7209- Joint Mission Environment Test Capability (JMECT): Mr. Chip Ferguson, JMECT
7351 - End to End System Test Architecture: Dr. Masuma Ahmed, Lockheed Martin

Session 3B2

7011 - Implementing a Methodology to Incorporate Operational Realism in CONOPS & Testing: Mr. William R. Lyders, ASSETT, Inc.
6928 - The Role of T&E in the Requirements Process for System of Systems: Mr. Walter C. Reel, Naval Surface Warfare Center - Dahlgren
7372 - Integrated T&E Process and Tools in the Joint High Speed Vessel Program: Mr. Stephen F. Randolph, Alion Science and Technology

BAYVIEW II: BEST PRACTICES & STANDARDIZATION
Session 3C2

6874 - Why CMMI Isn’t Enough: Ms. Anita Carleton, Software Engineering Institute
6888 - Value Engineering: Enhance DMSMS Solutions: Dr. Jay Mandelbaum, Institute for Defense Analysis
7761- Applying Business Process Modeling to Develop Systems Engineering Guidance for New DoD Acquisition Regulations: Dr. Judith Dahmann, OSD

Session 3D2

7003 - How to Specify Applicable Documents: Mr. James R. van Gaasbeek, Northrop Grumman
7014 - Systems Engineering in the Science and Technology Environment – Best Practices and other Lessons Learned from the Air Force Research Laboratory: Mr. William P. Doyle, General Dynamics
7031-Lessons Learned Doing Systems Engineering Assessments on the Government: Mr. Ian Talbot, AAC/EN

BAYVIEW I: PROGRAM MANAGEMENT
Session 3A3

7438 - The Incremental Commitment Model and Competitive Prototyping: Dr. Barry Boehm, USC
7070 - An Integrated, Knowledge-based Approach to Developing Weapon System Business Cases could Improve Acquisition Outcomes: Mr. Travis J. Masters, U.S. Government Accountability Office
7258 – Joint Service Safety Testing Study Phase II Final Presentation, Ms. Paige V. Ripani, Booz Allen Hamilton

Session 3B3

7340 - "Integrated Management Operating Model (iMOM)", An E-2D Advanced Hawkeye SD&D Program Case Study: Mr. Douglas J. Shaffer, Northrop Grumman
7269- Closing the Gap Between Systems Engineering and Project Management: Mr. Robert W. Ferguson, Software Engineering Institute
7349- The Death of Risk Management: Mr. Michael P. Gaydar, Naval Air Systems Command

Session 3C3

7095 - Evaluating Complex System Development Maturity- The Creation and Implementation of a System Readiness Level for Defense Acquisition Programs: Mr. Eric Forbes, Northrop Grumman
7023- Program Management of Concurrently Developed Complex Systems - Lessons Learned: Mr. Alexander Polack, The Aerospace Corporation

Session 3D3

7385 - Enabling More Effective Weapons Systems Acquisition and Sustainment through an Enterprise Approach: Mr. John Stewart, Oracle
7462 - Applying the Tenets of Military Planning and Execution to Project and Systems Engineering Management: Mr. Philip Lindeman, SAIC
7479 - 360 Degree View of the Technology, Strategy and Business: Mr. Min-Gu Lee, Lockheed Martin

MISSION I: SYSTEM SAFETY- ESOH & HSI
Session 3B4

7211 - Defining a Generic Hazard Tracking Database for Future Programs: Mr. Jeff Walker, Booz Allen Hamilton
7215 - DoD Energy Demand: Addressing the Unintended Consequences: Mr. Thomas Morehouse, Booz Allen Hamilton
7258 - Joint Service Safety Testing Study: Ms. Paige Ripani, Booz Allen Hamilton

Session 3C4
Update on Revisions to MIL-STD 882: Mr. Robert “Bob” Smith, Booz Allen Hamilton

MISSION II: MODELING & SIMULATION
Session 3A5
- 7347 - Deployment of SysML in Tools and Architectures: an Industry Perspective: Mr. Rick Steiner, Raytheon
- 7073 - Standardized Documentation for Verification, Validation, and Accreditation — An Update to the Systems Engineering Community: Mr. Kevin Charlow, Space and Warfare Systems Center-Charleston
- 7052 - Architecture and Model Based Systems Engineering for Lean Results: Mr. Tim Olson, Lean Solutions Institute, Inc.

Session 3B5
- 7026 - Rapid Assessment Approach Using Commander’s Intent to Identify Promising Force Structure Architectures for System Trade Studies: Mr. David A. Blancett, Northrup Grumman
- 7364 - Predictive Modeling: Principles and Practice: Dr. Rick Hefner, Northrop Grumman

Session 3C5
- 7144 - Systems Engineering Analysis of Threat Reduction Systems using a Collaborative Constructive Simulation Environment: Dr. James E. Coolahan, Johns Hopkins University Applied Physics Laboratory
- 7393 - Systems Engineering Approach to Total Vehicle Design and Integration: Mr. Walter J. Budd, BAE Systems

Session 3D5
- 7228 - Total System Modeling: A System Engineering Application of the Higraph Formalism: Mr. Kevin Fogarty, SAIC
- 7077 - Near-field RCS and Fuze Modeling and Simulation: Mr. David Hall, Service Engineering Company
- 7174 - Virtual Battlespace Center for Systems Engineering: Mr. James Hollenbach, Simulation Strategies, Inc.

MISSION III: NET CENTRIC OPERATIONS
Session 3A6
- 6954 - SOAs and Net-Centric Warfare-Similarities, Differences and Conflicts: Mr. James A. Mazzei, The Aerospace Corporation
- 7374 - Capitalizing in Migrating Web Service Environments: Mr. Brian Eleazer, South Carolina Research Authority

Session 3B6
- 6972 - A System Engineering Approach to Develop a Service-Oriented Perspective: Mr. Rob Byrd, SI International
- 7413 - Systems Engineering Approach for Assessing a Warfighter’s Cognitive Performance: Mr. James Buxton, U.S. Army

Session 3C6
- 7105 - Building Net-Ready Information Interoperability Performance Indicator Widgets For DoDAF 2.0 Dashboards: Mr. William B. Anderson, Software Engineering Institute
- 7088 - The Benefit of Collaboration: Integration between the DoDAF and Systems Engineering Communities: Mr. Tim Tritsch, Vitech Corporation
- 7337 - Modeling Cognition in the DoD Architecture Framework for Early Concept Development: Dr. John M. Colombi, Air Force Institute of Technology
- 7046 – Survivable Network Design Framework, Mr. Dennis Moen, Lockheed Martin

PALM I: REQUIREMENTS DEVELOPMENT & MANAGEMENT
Session 3A7
- 7047- Stop the Pain: Take Some Requirements Definition and Management for Project Success: Mr. Scott Derby, AVISTA Incorporated
- 7068- Daily Challenges in Requirements Engineering: Mr. Frank J. Salvatore, High Performance Technologies, Inc.
- 7593- Correlation of Types of Requirements to Verification Methods: Dr. William G. Bail, The MITRE Corporation

Session 3B7
- 7548- Mission Analysis and its Impact on SE Fundamentals: Mr. John T. McDonald, Raytheon
- 7055- How to Write ‘Lean and Mean’ Requirements: Mr. Tim Olson, Lean Solutions Institute, Inc.

PALM I: LOGISTRICS, SUPPORTABILITY & SUSTAINMENT
Session 3C7
- 7180- A Continuous Process View of Systems Engineering for the Sustainment Phase: Mr. Paul d. Ratke, OC - ALC
- 7183- Progress Toward the Development of a Reliability Investment Cost Estimating Relationship: Mr. Andy Long, LMI

Session 3D7
- 7390 - Systems Engineering of Deployed Systems: Mr. Robert K. Finlayson, Johns Hopkins University, Applied Physics Laboratory
- 7383 - Extending Enterprise Systems for an Integrated Logistics Management Environment: Mr. Mike Korzenowski, General Dynamics Land Systems
7455- The Seven Affordability Sins of Logistics System Integration: Dr. Thomas E. Herald, Lockheed Martin

PALM II: SOFTWARE
Session 3A8
- 7114- Building the Next Generation of Software Engineers - Benchmarking Graduate Education: Dr. Arthur Pyster, Stevens Institute of Technology
- 7135 - Improving Work Breakdown Structure (WBS) Guidance for Weapons Systems with Substantial Software Content: Mr. Christopher Miller, OUSD/SE/SSA
- 7232 - ASN (RD&A) Initiatives to Improve Integration of Software Engineering into Defense Acquisition Related Systems Engineering: Dr. John F. Miller, The MITRE Corporation

Session 3B8
- 7198- Software Reuse Readiness Levels: A Framework for Decision Making: Mr. Steven Wong, Northrop Grumman
- 7195 - Counting Software Size: Is it as easy as Busying a Gallon of Gas?: Ms. Lori Vaughan. Northrop Grumman

PAM II: ARCHITECTURE
Session 3C8
- 7136- Architecture Trade-off Analysis Method® (ATAM®) for System Architecture Evaluation: Mr. Michael Gagliardi, Software Engineering Institute
- 7243 - Method for Aligning Architecture Frameworks and System Requirements: Mr. Richard L. Eilers, IBM

Session 3D8
- 7428- Adaptable Architecture for System of Systems: Mr. Bruce Schneider, Applied Physics Lab Johns Hopkins University
- 7285 - Universal Architecture Description Framework: Mr. Jeffrey O. Grady, JOG System Engineering
- 7109 - Applying Open Architecture Concepts to Mission and Ship Systems: Mr. John M. Green, Naval Postgraduate School

THURSDAY, 23 OCTOBER 2008

BAYVIEW III: SYSTEMS ENGINEERING EFFECTIVENESS
Session 4A1
- 7697 - Enhancing Systems Engineering in the Department of Defense: Mr. Ceasar Sharper, ODUSD /SSE
- 7186 - Air Force Implementation of NRC “Pre-A SE” Study Committee Recommendations: Mr. Jeff Loren, AF/AQRE
- 7281-A Holistic Approach to System Development: Mr. Douglas T. Wong, NASA Johnson Space Center

Session 4B1
- 7004 - Operational Concepts: Mr. James R. van Gaasbeek, Northrop Grumman
- 7296 - The Dangers of Oversimplifying Availability: Dr. Jeffrey M. Harris, General Dynamics
- 7214-Developing and Maintaining the Technical Baseline: Mr. Michael G. Ucchino, Air Force Institute of Technology

Session 4C1
- 7289 - Process Tailoring Patterns and Frameworks for Accelerating Systems Engineering Processes: Mr. Larry J. Earnest, Northrop Grumman
- 7054 - Using Lean Principles and Process Models to Achieve Measurable Results: Mr. Tim Olson, Lean Solutions Institute, Inc.
- 7265- Rocket Motor Development Cycle Time - Business Process Review: Mr. Jose Gonzalez, OUSD/PSA/LW&M

BAYVIEW II: BEST PRACTICES & STANDARDIZATION
Session 4A2
- 7111 - Improving Process Utilizations with Tools: Mr. Frank J. Salvatore, High Performance Technologies, Inc.
- 7179 - Integration of Systems and Software Engineering: Implications from Standards and Models Applied to DoDs’ Acquisition Programs: Mr. Donald Gantzer, ODUSD/SSE

Session 4B2
- 7325 - Applying CMMI High Maturity Practices and Leveraging LEAN Six Sigma: Mrs. Ann Hennon, BAE Systems
- 7422 - NDIA CMMI Working Group: Status and Plans: Mr. Geoff Draper, Harris Corporation
- 7441 – Process Enrichment Boot Camp, Mr. Victor Elias, High Performance Technology, Inc
- 7446 – Best Practices Clearinghouse: Making Lessons Learned Come Alive and Be Practical, Mr. Forrest Shull, Fraunhofer Center, Maryland

MISSION II: EDUCATION & TRAINING
Session 4A5
- 6944 - Establishing the Need for Functional Analysis in Systems Development: Dr. Robert J. Monson, Lockheed Martin
- 6946 - Improving Systems Engineering Execution and Knowledge Management: Mr. Steven C. Head, Boeing

Session 4B5
MISSION III: ENTERPRISE HEALTH MANAGEMENT
Session 4A6
- 7580 - Engineering Solutions for Fleet Readiness Centers utilizing an Avionics Rapid Action Team Innovation Cell: Mr. Bill Birurakis, PIDESO
- 7447 - Prognostics as an Approach to Improve Mission Readiness and Availability: Mr. Sony Mathew, Center for Advance Life Cycle Engineering
- 7613 - Prognostics Based Health Assessment System Approaches: Mr. Ronald D. Newman, VSE Corporation

Session 4B6
- 7520 - NDIA ID Electronic Prognostics (E-Prog) Task Follow-on Study to Quantify Weapon System Benefits: Mr. Paul Howard, Paul L. Howard Enterprises
- 7597 - Enterprise Health Management Emerging Technology Transition Enabling Plan: Mr. Chris H. Reisig, Boeing

PALM I: LOGISTICS, SUPPORTABILITY & SUSTAINMENT
Session 4A7
- 7481 - Defining the Prognostics Health Management Enterprise Architecture: Mr. Ethan Xu, Raytheon
- 7131 - Sustaining Systems Engineering - The A-10 Example: Dr. David R. Jacques, Air Force Institute of Technology

Session 4B7
- 7207 - Sustainment Engineering versus Systems Engineering, Is There A Difference?: Ms. Karen B. Bausman, AF Center for Systems Engineering
- 7064 - Reliability Growth Analysis of Mobile Gun System during PVT: Dr. Dmitry Tananko, GDLS

PALM II: ARCHITECTURE
Session 4A8
- 7453 - Open Architecture in Electronics Systems: Mr. Bruce R. Bardell, BAE Systems
- 7069 - The Value of Architecture: Mr. Frank J. Salvatore, High Performance Technology, Inc.

Session 4B8
- 7365 - Enabling the Successful Transition from Architecture to Concept Design: Mr. Chris Ryder, Johns Hopkins University Applied Physics Laboratory
- 7029 - Concurrent Increment Sequencing and Synchronization with Design Structure Matrices in Software-Intensive System Development: Dr. Peter Hantos, The Aerospace Corporation
11th Annual Systems Engineering Conference

Promoting national security since 1919
IN CONJUNCTION WITH:

CONFERENCE OBJECTIVES
This conference seeks to create an interactive forum for Program Managers, Systems Engineers, Software Engineers, Chief Scientists, and Engineers and Managers from government, industry, and the academic communities whose interests converge on Defense acquisition, from capabilities analysis through operations and disposal. This conference will provide the opportunity to learn from one’s peers on latest techniques and methodologies, and help shape policy and guidance through the exchange of innovative procedures and lessons learned to address the following current issues:

• Effectiveness of Systems Engineering
• Program Management
• Architectures
• Requirements Development & Management
• Interoperability & Systems Integration
• Software & Software-intensive Systems
• Network Centric Operations
• System-of-Systems Engineering
• Modeling & Simulation
• Integrated Risk Management
• Aging Aircraft
• Logistics & Supportability including Performance Based Logistics
• Life Cycle Systems Management
• Improved Cycle Times for Design, Manufacture, & Repair Process
• Sustainment & Upgrade of Legacy Systems
• Application of Government & Industry “Best Practices” Tools, Methodologies, & Technologies
• System Safety – Environment, Safety & Occupational Health & Human Systems Integration
• Improved Mission Readiness & Systems Availability
• Enterprise Health management & Integrated Diagnostics
• Systems Engineering Training & Education
• Capability Maturity Model Integration (CMMI)
• Integrated Systems Engineering, Test, & Supportability Discipline
• Application of DoD Initiatives:
 - Performance Based Business Environment
 - System Safety
 - Open Systems
 - Simulation Based Acquisition
 - COTS Integration

BACKGROUND
The Department of Defense has been undertaking a major transformation of our military capability over the past few years in response to the new world environment and unforeseen, ever-changing threats. The ability to effect this transformation can only be realized if our Defense Systems—space, air, land, sea, and under sea—can effectively satisfy mission area and capability requirements, and achieve and sustain a high degree of interoperability, systems integration, readiness, availability, and systems safety, with affordable cost. We believe that the greatest opportunity to achieve these objectives for new and legacy systems is through strong technical management embodied in systems engineering methodologies and processes, on the part of both industry and the DoD, in not only the technical arms but the management & program management arms. Strong emphasis on systems engineering across the full acquisition life cycle, from concept development & refinement through deployment & sustainment, is a key enabler of improved performance in the overall acquisition process and effectiveness. The Systems Engineering Conference is an annual event targeted at exploring the role of technical planning and execution in Defense programs and systems from a variety of perspectives, academic and pragmatic, by the entire Defense systems engineering community.
GENERAL INFORMATION

CONFERENCE ATTIRE
Appropriate dress for this conference is business casual for civilians and class B uniform for military.
During conference registration and check-in, each participant will be issued an identification badge. Please be prepared to present a picture ID. Badges must be worn at all conference functions.

CONFERENCE PROCEEDINGS
Proceedings will be available on the web through the Defense Technical Information Center (DTIC), and will be available one to two weeks after the conference. You will receive notification via e-mail once proceedings are posted and available on the web.

OTHER INFORMATION
Conference Chair: Mr. Bob Rassa, Raytheon
Conference Technical Program Co-Chairs: Dr. Thomas Christian, USAF; Technical Advisor, Systems Engineering, USAF AFMC/ASC; Mr. Steve Henry, Northrop Grumman
Plenary: Ms. Kristen Baldwin, OSD/SSE
Systems Engineering Effectiveness: Mr. Al Brown, Boeing; Ms. Sharon Vannucci, OSD
Logistics Supportability & Sustainment: Mr. Joel Moorvich, Raytheon
Involving Test & Evaluation in SE: John Lohse, Raytheon; Darlene Mosser-Kerner, OSD
Program Management: Mr. Hal Wilson, Northrop Grumman
Modeling & Simulation: Mr. Jim Hollenbach, SIMSTRAT, Inc.; Mr. Gary Belie, Lockheed Martin
Net Centric Operations: Mr. Jack Zavin, ASD(NII); Dr. Rich Eilers, IBM
Best Practices & Standardization: To be announced
Software: Mr. Paul Croll, CSC
Education & Training in SE: Mr. Mike Ucchino, USAF/AFIT/CSE
Enterprise Health Management: Mr. Dennis Hecht, Boeing; Mr. Howard Savage, Savage Consulting
System Safety, ESOH & HIS: Mr. Sherman Forbes, USAF; Ms. Paige Ripani, Booz Allen Hamilton
Requirements Development & Management: Mr. Bob Scheurer, Boeing
Architecture: Mr. Joe Kuncel, Northrop Grumman; Mr. John Palmer, Boeing
Practical SE Experience: To be Announced
CONFERENCE AGENDA

SUNDAY, OCTOBER 19, 2008

5:00 pm - 7:00 pm Registration for Tutorials and General Conference
 (Tutorials are an additional $250.00 registration fee)

MONDAY, OCTOBER 20, 2008

7:00 am - 5:00 pm Registration

7:00 am - 8:00 am Continental Breakfast for Tutorial Attendees ONLY
 (Tutorials are an additional $250.00 registration fee)

8:00 am - 12:00 pm Tutorial Tracks
 (Please refer to the following pages for Tutorial Schedule)

12:00 pm - 1:00 pm Lunch for Tutorial Attendees ONLY

1:00 pm - 5:00 pm Tutorial Tracks Continued

5:00 pm - 6:00 pm Reception in the Regency Annex (Open to All Participants)

TUESDAY, OCTOBER 21, 2008

7:15 am - 5:00 pm Registration

7:15 am - 8:15 am Continental Breakfast

8:15 am - 8:30 am Introductions & Opening Remarks:
 Mr. Sam Campagna, Director, Operations, NDIA;
 Mr. Bob Rassa, Director, Systems Supportability, Raytheon; Chair, Systems Engineering Division

8:30 am - 9:45 am Keynote Addresses:
 HON Charles McQueary, Director, Operational Test & Evaluation;
 Gen Les Lyles, USAF (Ret)

9:45 am - 10:15 am Break

10:15 am - 12:15 pm Plenary Session: Executive Panel
 Moderator:
 Ms. Kristin Baldwin, Deputy Director, Software Engineering & System Assurance
 Panelists:
 Mr. Terry Jaggers, Director, SAF/AQR (Science, Technology & Engineering)
 Mr. Carl Siel, Chief Systems Engineer; ASN(RDA)CHENG
 Mr. Kelly Miller, Director, Systems Engineering, NSA
 Mr. Ross Guckert, Assistant Deputy, Acquisition & Systems Integration ASA(ALT)

12:15 pm - 1:30 pm Luncheon with Speaker in the Regatta Pavilion
 Dr. Ronald Jost, Deputy Assistant Secretary of Defense, C3, Space & Spectrum

1:30 pm - 5:15 pm Concurrent Sessions
 (Please refer to the following pages for session schedule)

5:15 pm - 6:30 pm Reception in the Regatta Pavilion
CONFERENCE AGENDA, CONTINUED

WEDNESDAY, OCTOBER 22, 2008

7:00 am - 5:00 pm Registration
7:00 am - 8:00 am Continental Breakfast
8:00 am - 12:00 pm Concurrent Sessions
 (Please refer to the following pages for session schedule)
12:00 pm - 1:30 pm Luncheon with Speaker in the Regatta Pavilion
 Ms. Shannon Cunniff, Director, Emerging Containments: Office of Under Secretary of Defense
 (Installations and Environment)
1:30 pm - 5:15 pm Concurrent Sessions
 (Please refer to the following pages for session schedule)

THURSDAY, OCTOBER 23, 2008

7:00 am - 3:00 pm Registration
7:00 am - 8:00 am Continental Breakfast
8:00 am - 12:00 pm Concurrent Sessions
 (Please refer to the following pages for session schedule)
12:00 pm - 1:00 pm Awards Lunch in the Regatta Pavilion
1:00 pm - 3:00 pm Concurrent Sessions
 (Please refer to the following pages for session schedule)
3:00 pm Conference Adjourns
Tutorial Sessions - Monday, October 20, 2008

8:00 am - 9:45 am

Bayview III	7025 - Introduction to SysML & Object Oriented Systems Engineering Methodology (OOSEM) (Part 1)	7025 - Introduction to SysML & Object Oriented Systems Engineering Methodology (OOSEM) (Part 2)
Bayview II	7033 - ULCM (Unified Life Cycle Modeling) for Defense Acquisition (Part 1)	7033 - ULCM (Unified Life Cycle Modeling) for Defense Acquisition (Part 2)
Bayview I	6987 - Development and Configuration Management of Requirements (Part 1)	6987 - Development and Configuration Management of Requirements (Part 2)
Mission I	7071 - Introduction to the Capability Test Methodology: Methods and Processes for Testing in a Joint Environment (Part 1)	7071 - Introduction to the Capability Test Methodology: Methods and Processes for Testing in a Joint Environment (Part 2)
Mission II	7209 - Joint Mission Environment Test Capability (JMETC), Providing Efficiency and Cost Savings with a Distributed Test Infrastructure (Part 1)	7209 - Joint Mission Environment Test Capability (JMETC), Providing Efficiency and Cost Savings with a Distributed Test Infrastructure (Part 2)
Palm II	6975 - Early Verification: The Road to Program Success (Part 1)	6975 - Early Verification: The Road to Program Success (Part 2)

10:15 am - 11:45 am

Bayview III	7025 - Introduction to SysML & Object Oriented Systems Engineering Methodology (OOSEM) (Part 3)
Bayview II	7044 - A Model-Based Systems Engineering Roadmap for Developing DoDAF Architectures (Part 1)
Bayview I	6987 - Development and Configuration Management of Requirements (Part 1)
Mission I	7071 - Introduction to the Capability Test Methodology: Methods and Processes for Testing in a Joint Environment (Part 2)
Mission II	7209 - Joint Mission Environment Test Capability (JMETC), Providing Efficiency and Cost Savings with a Distributed Test Infrastructure (Part 2)
Palm II	6975 - Early Verification: The Road to Program Success (Part 2)

1:00 pm - 2:45 pm

Bayview III	7025 - Introduction to SysML & Object Oriented Systems Engineering Methodology (OOSEM) (Part 4)
Bayview II	7044 - A Model-Based Systems Engineering Roadmap for Developing DoDAF Architectures (Part 2)
Bayview I	6987 - Development and Configuration Management of Requirements (Part 2)
Mission I	7071 - Introduction to the Capability Test Methodology: Methods and Processes for Testing in a Joint Environment (Part 3)
Mission II	7209 - Joint Mission Environment Test Capability (JMETC), Providing Efficiency and Cost Savings with a Distributed Test Infrastructure (Part 3)
Palm II	6975 - Early Verification: The Road to Program Success (Part 3)

3:15 pm - 5:00 pm

<p>| Bayview III | 7025 - Introduction to SysML & Object Oriented Systems Engineering Methodology (OOSEM) (Part 5) |
| Bayview II | 7044 - A Model-Based Systems Engineering Roadmap for Developing DoDAF Architectures (Part 3) |
| Bayview I | 6987 - Development and Configuration Management of Requirements (Part 3) |
| Mission I | 7071 - Introduction to the Capability Test Methodology: Methods and Processes for Testing in a Joint Environment (Part 4) |
| Mission II | 7209 - Joint Mission Environment Test Capability (JMETC), Providing Efficiency and Cost Savings with a Distributed Test Infrastructure (Part 4) |
| Palm II | 6975 - Early Verification: The Road to Program Success (Part 4) |</p>
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Speaker/root</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 3A1</td>
<td>Systems Engineering Effectiveness in Complex Organizations</td>
<td>Mr. Edward Andrews, TARDEC</td>
</tr>
<tr>
<td>Session 3A2</td>
<td>Systems Engineering Effectiveness Session 3A2</td>
<td>Mr. Kevin Roney, Booz Allen Hamilton</td>
</tr>
<tr>
<td>Session 3A3</td>
<td>Systems Engineering Effectiveness Session 3A3</td>
<td>Dr. Robert J. Monson, Lockheed Martin</td>
</tr>
<tr>
<td>Session 3A4</td>
<td>Systems Engineering Effectiveness Session 3A4</td>
<td>Mr. Michael H. Phillips, Jacobs</td>
</tr>
<tr>
<td>Session 3A5</td>
<td>Systems Engineering Effectiveness Session 3A5</td>
<td>Mr. Walter C. Reel, Naval Surface Warfare Center - Dahlgren</td>
</tr>
<tr>
<td>Session 3A6</td>
<td>Systems Engineering Effectiveness Session 3A6</td>
<td>Mr. Michael P. Gaydar, Naval Air Systems Command</td>
</tr>
<tr>
<td>Session 3A7</td>
<td>Systems Engineering Effectiveness Session 3A7</td>
<td>Dr. Barry Boehm, USC</td>
</tr>
<tr>
<td>Session 3A8</td>
<td>Systems Engineering Effectiveness Session 3A8</td>
<td>Mr. Thomas Morehouse, Booz Allen Hamilton</td>
</tr>
<tr>
<td>Session 3A9</td>
<td>Systems Engineering Effectiveness Session 3A9</td>
<td>Mr. Jeff Walker, Booz Allen Hamilton</td>
</tr>
<tr>
<td>Session 3B1</td>
<td>Systems Engineering Effectiveness Session 3B1</td>
<td>Dr. Barry Boehm, USC</td>
</tr>
<tr>
<td>Session 3B2</td>
<td>Systems Engineering Effectiveness Session 3B2</td>
<td>Mr. Michael E. Groff, Lockheed Martin</td>
</tr>
<tr>
<td>Session 3B3</td>
<td>Systems Engineering Effectiveness Session 3B3</td>
<td>Mr. Robert W. Ferguson, Software Engineering Institute</td>
</tr>
<tr>
<td>Session 3B4</td>
<td>Systems Engineering Effectiveness Session 3B4</td>
<td>Mr. Rick Steiner, Raytheon</td>
</tr>
<tr>
<td>Session 3B5</td>
<td>Systems Engineering Effectiveness Session 3B5</td>
<td>Mr. Nathaniel C. Horner, The Johns Hopkins University Applied Physics Laboratory</td>
</tr>
<tr>
<td>Session 3B6</td>
<td>Systems Engineering Effectiveness Session 3B6</td>
<td>Mr. Frank J. Salvatore, High Performance Computing Center-Grumman</td>
</tr>
<tr>
<td>Session 3B7</td>
<td>Systems Engineering Effectiveness Session 3B7</td>
<td>Mr. John T. McDonald, Raltek, Maximm Communication</td>
</tr>
<tr>
<td>Session 3B8</td>
<td>Systems Engineering Effectiveness Session 3B8</td>
<td>Mr. Allen L. Monk, 301 International</td>
</tr>
<tr>
<td>Session 3B9</td>
<td>Systems Engineering Effectiveness Session 3B9</td>
<td>Mr. William G. Bail, The MITRE Corporation</td>
</tr>
<tr>
<td>Session 3C1</td>
<td>Systems Engineering Effectiveness Session 3C1</td>
<td>Mr. Walt Okon, OSD/NII/A&I</td>
</tr>
<tr>
<td>Session 3C2</td>
<td>Systems Engineering Effectiveness Session 3C2</td>
<td>Mr. Rob Byrd, SI International</td>
</tr>
<tr>
<td>Session 3C3</td>
<td>Systems Engineering Effectiveness Session 3C3</td>
<td>Mr. Tim Olson, Lean Solutions Inc.</td>
</tr>
<tr>
<td>Session 3C4</td>
<td>Systems Engineering Effectiveness Session 3C4</td>
<td>Mr. John T. McDonald, Raltek, Maximm Communication</td>
</tr>
<tr>
<td>Session 3C5</td>
<td>Systems Engineering Effectiveness Session 3C5</td>
<td>Mr. Michael G. Reynolds, David Management Services Inc.</td>
</tr>
<tr>
<td>Session 3C6</td>
<td>Systems Engineering Effectiveness Session 3C6</td>
<td>Mr. Michael P. Gaydar, Naval Air Systems Command</td>
</tr>
<tr>
<td>Session 3C7</td>
<td>Systems Engineering Effectiveness Session 3C7</td>
<td>Mr. James Mason, US Army</td>
</tr>
<tr>
<td>Session 3C8</td>
<td>Systems Engineering Effectiveness Session 3C8</td>
<td>Ms. Lori Vaughan, Northrop Grumman</td>
</tr>
<tr>
<td>Session 3C9</td>
<td>Systems Engineering Effectiveness Session 3C9</td>
<td>Dr. William G. Bail, The MITRE Corporation</td>
</tr>
</tbody>
</table>

Break in the Registry Annex
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Topic</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 pm - 9:15 pm</td>
<td>Session 3D1</td>
<td>Systems Engineering Efficiency in the Department of Defense</td>
<td>Mr. William B. Anderson, Software Engineering Institute</td>
</tr>
<tr>
<td>7:45 pm - 9:15 pm</td>
<td>Session 3D2</td>
<td>A Cost-Effective Way to Conduct Design and Analysis</td>
<td>Dr. Robert J. Finlayson, Johns Hopkins University, Applied Physics Laboratory</td>
</tr>
<tr>
<td>8:00 pm - 9:15 pm</td>
<td>Session 3D3</td>
<td>Best Practices for System Life Cycle</td>
<td>Mr. John M. Green, Naval Postgraduate School</td>
</tr>
<tr>
<td>8:15 pm - 9:15 pm</td>
<td>Session 3D4</td>
<td>Enhancing the Tean of Military Planning and Executive Engineering Management</td>
<td>Dr. Ronald S. Carson, Boeing</td>
</tr>
</tbody>
</table>

Wednesday, October 22, 2008
Thursday, October 23, 2008

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
<th>Topic</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30 pm</td>
<td>4C1</td>
<td>Bayview III</td>
<td>7289 - Process Tailoring Patterns and Frameworks for Accelerating Systems Engineering Processes</td>
<td>Mr. Larry J. Earnest, Northrop Grumman</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7054 - Using Lean Principles and Process Models to Achieve Measurable Results</td>
<td>Mr. Tim Olson, Lean Solutions Institute, Inc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7265 - Rocket Motor Development Cycle Time - Business Process Review</td>
<td>Mr. Jose Gonzalez, OUSD/PSA/ FWS/M</td>
</tr>
<tr>
<td>2:00 pm</td>
<td>4C2</td>
<td>Bayview II</td>
<td>7441 - Process Enrichment Boot Camp - An Intensive Introduction to a Generic, Enterprise-wide, Strategic Communication and Continuous Improvement Methodology</td>
<td>Mr. Victor Elias, High Performance Technologies Inc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7466 - Making Lessons Learned Come Alive and be Practical</td>
<td>Mr. Forest Shull, Fraunhofer Center Maryland</td>
</tr>
<tr>
<td>2:30 pm</td>
<td>4C3</td>
<td>Bayview I</td>
<td>7067 - Estimating Systems Engineering Level Of Effort</td>
<td>Mr. Frank Salvatore, High Performance Technologies, Inc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7189 - The Integrated Natural Environment Authoritative Representation Process (INEARP) and Beyond</td>
<td>Maj James Everitt, Air & Space Natural Environment M&S Executive Agent</td>
</tr>
<tr>
<td>3:00 pm</td>
<td>4C4</td>
<td>Mission I</td>
<td>7417 - VIRGINIA (SSN-774) Class Systems Engineering to Reduce Total Ownership Cost</td>
<td>Mr. Steve Lose, Naval Sea Systems Command</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7463 - The C-17 PIO Team</td>
<td>Mr. David Murray, Boeing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7497 - Accuracy Control Tools, Technology, and Processes used for Addressing Hull Fairness</td>
<td>Mr. Stephen H. Hankins, Northrop Grumman</td>
</tr>
<tr>
<td>3:30 pm</td>
<td>4C5</td>
<td>Mission II</td>
<td>7308 - PeaceKeeper Intercontinental Ballistic Missile Systems Engineering Case Study</td>
<td>Mr. Charles M. Garland, Air Force Center for Systems Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7474 - CAPTURE of Critical Engineering Skills and Knowledge</td>
<td>Mrs. Ann Hennon, BAE Systems,</td>
</tr>
</tbody>
</table>
Lockheed Martin is a premier systems integrator and global security enterprise principally engaged in the research, design, development, manufacture, integration and sustainment of advanced technology systems, products and services.

Headquartered in Bethesda, Maryland, Lockheed Martin employs 140,000 people worldwide. Distinguished by whole-system thinking and action, a passion for invention and disciplined performance, Lockheed Martin strives to earn a reputation as the partner of choice, supplier of choice and employer of choice in the global marketplace.

Lockheed Martin is led by Robert J. Stevens, Chairman, President and Chief Executive Officer. The Corporation reported 2007 sales of $41.9 billion.

Governments worldwide are involved in meeting vital strategic goals to defend the peace, make their borders and homeland secure or manage large Information Technology infrastructure projects. Lockheed Martin has more than 300 alliances, joint ventures and other partnerships in 75 countries.

In our approach to global partnerships, Lockheed Martin seeks to establish a long-term presence, provide quality jobs in-country, earn the trust of customers, develop industrial alliances for growth, and match corporate breadth with customer priorities.

Lockheed Martin’s operating units are organized into four broad business areas with diverse lines of business.

- Electronic Systems: missiles and fire control, maritime systems/sensors, platform integration, simulation/training, and energy programs
- Aeronautics: combat aircraft, air mobility, special mission and reconnaissance aircraft, advanced development programs, and sustainment operations/services
- Space Systems: launch services, satellites, and strategic/defensive missile systems.
- Information Systems & Global Services: Information Systems, Global Services, and Mission Solutions.
<table>
<thead>
<tr>
<th>Track</th>
<th>Abstract</th>
<th>Paper Title</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A1, 1C1</td>
<td>7025</td>
<td>Introduction to SysML & Object Oriented Systems Engineering Methodology (OOSEM)</td>
<td>Dr. Abe Meilich</td>
</tr>
<tr>
<td>1A2</td>
<td>7033</td>
<td>ULCM (Unified Life Cycle Modeling) for Defense Acquisition</td>
<td>Dr. Peter Hantos</td>
</tr>
<tr>
<td>1A3</td>
<td>7050</td>
<td>How to Define Practical Metrics Using NASA JPL as an Example</td>
<td>Mr. Tim Olson Dr. Jairus Hihn</td>
</tr>
<tr>
<td>1A4</td>
<td>7071</td>
<td>Introduction to the Capability Test Methodology: Methods and Processes for Testing in a Joint Environment Tutorial</td>
<td>Lt Col Jay R. Gendron</td>
</tr>
<tr>
<td>1A5</td>
<td>7209</td>
<td>Joint Mission Environment Test Capability (JMETC), Providing efficiency and cost savings with a distributed test infrastructure</td>
<td>Mr. Chip Ferguson</td>
</tr>
<tr>
<td>1A6</td>
<td>7294</td>
<td>FMESA: The Method Framework for Engineering System Architectures</td>
<td>Mr. Donald G Firesmith</td>
</tr>
<tr>
<td>1A7, 1C7</td>
<td>6877</td>
<td>(TUTORIAL 8 HOURS) Gap Analysis and Its Conceptual Foundations: Integrating Sound Management Methods with Systems Engineering Best Practices</td>
<td>Mr. Gary Langford</td>
</tr>
<tr>
<td>1A8</td>
<td>6975</td>
<td>Early Verification: The Road to Program Success - A Tutorial</td>
<td>Mr. Stephen J Scukanec Mr. James R Vangaasbeek</td>
</tr>
<tr>
<td>1C2</td>
<td>7044</td>
<td>A Model-Based Systems Engineering Roadmap for Developing DoDAF Architectures</td>
<td>Mr. Tim Tritsch</td>
</tr>
<tr>
<td>1C3</td>
<td>6987</td>
<td>Development and Configuration Management of Requirements</td>
<td>Mr. Al Florence Dr. Bill Bail</td>
</tr>
<tr>
<td>1C5</td>
<td>7210</td>
<td>Engineering Systems of Systems</td>
<td>Mr. Soumya Simanta Ms. Grace Lewis Mr. Dennis Smith Pat Place Mr. Ed Morris</td>
</tr>
<tr>
<td>1C6</td>
<td>7366</td>
<td>Tutorial: Systems Engineering Applications in supporting the Joint Capabilities Integration and Development System (JCIDS)</td>
<td>Mr. Chris Ryder</td>
</tr>
<tr>
<td>1C8</td>
<td>6970</td>
<td>Universal Architecture Description Framework Tutorial</td>
<td>Mr. Jeffrey O Grady</td>
</tr>
<tr>
<td>2B8</td>
<td>7198</td>
<td>Software Reuse Readiness Levels: A Framework for Decision Making</td>
<td>Mr. Steven Wong Mr. Dean Caccavo</td>
</tr>
<tr>
<td>2C1</td>
<td>7099</td>
<td>DoD’s Systems and Software Engineering Revitalization Efforts—An Update</td>
<td>Mr. Nicholas (Nic) M. Torelli, Jr.</td>
</tr>
<tr>
<td>2C1</td>
<td>7153</td>
<td>Systems Engineering Plan (SEP) and Systems Engineering Management Plan (SEMP) Unification</td>
<td>Mr Chet Bracuto Mr. Robert Scheurer</td>
</tr>
<tr>
<td>2C1</td>
<td>7475</td>
<td>The Effectiveness of Systems Engineering: on Federal (DoD) System Development Programs – Update 2008</td>
<td>Mr. Ken Ptack</td>
</tr>
<tr>
<td>2C2</td>
<td>7100</td>
<td>Implementation of the 2007 Developmental Test & Evaluation Defense Science Board Results</td>
<td>Mr. Chris DiPetto</td>
</tr>
<tr>
<td>2C2</td>
<td>7101</td>
<td>Test and Evaluation Value Metrics at Acquisition Decision Points</td>
<td>Ms. Darlene Mosser-Kerner Mr. William Eischens</td>
</tr>
<tr>
<td>2C2</td>
<td>6979</td>
<td>Integration of Software Intensive Systems</td>
<td>Mr. Tom Wissink</td>
</tr>
<tr>
<td>2C3</td>
<td>7418</td>
<td>DON Acquisition Reform and its Impact on CANES System Engineering</td>
<td>CDR Philip Turner Mr. Dennis Almazan Mr. Jose Davila</td>
</tr>
<tr>
<td>2C3</td>
<td>6919</td>
<td>Improving the Quality of DOD Weapon Systems</td>
<td>Ms. Cheryl K Andrew Mr. Michael J Sullivan</td>
</tr>
<tr>
<td>2C3</td>
<td>7096</td>
<td>New Acquisition Policy and Its Impact on Defense Systems Engineering</td>
<td>Ms. Sharon Vannucci</td>
</tr>
<tr>
<td>Page</td>
<td>Session</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2C4</td>
<td>6997</td>
<td>Human Systems Integration and Model Based Systems Engineering</td>
<td>Dr. Abraham W Meilich</td>
</tr>
<tr>
<td>2C4</td>
<td>7035</td>
<td>The Special Operational Airworthiness Release (SOAR) Process, A</td>
<td>Dr. Thomas F Christian, Mr. Gary L. Bailey, Mr. Al E Owens</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systems Engineering Approach</td>
<td></td>
</tr>
<tr>
<td>2C4</td>
<td>7084</td>
<td>Human Reliability Analysis and the Advanced Man Portable Air Defense</td>
<td>Mr. Christopher A Brown</td>
</tr>
<tr>
<td></td>
<td></td>
<td>System: A Case Study</td>
<td></td>
</tr>
<tr>
<td>2C5</td>
<td>7172</td>
<td>Execution of the Acquisition M&S Master Plan - A Progress Report</td>
<td>Mr. James W Hollenbach, Mr. Michael R Truelove</td>
</tr>
<tr>
<td>2C5</td>
<td>7085</td>
<td>Modeling and Simulation Resource Reuse Business Model</td>
<td>Mr. Dennis P Shea</td>
</tr>
<tr>
<td>2C5</td>
<td>7440</td>
<td>Synchronizing Modeling and Simulation Plans Across Navy Acquisition</td>
<td>Dr. Ivar Oswalt, Dr. Robert R Tyler</td>
</tr>
<tr>
<td>2C6</td>
<td>7461</td>
<td>Title of Abstract: Network Centric Engineering use of the NCOIC</td>
<td>Mr. Thomas M Dlugolecki, Mr. John Yanosy, Mr. Hans Polzer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Network Centric Operations Industry Consortium) Processes and Tools</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>in a Logistics Example</td>
<td></td>
</tr>
<tr>
<td>2C6</td>
<td>7341</td>
<td>Crucial Factors In The Design Of Net-Centric Systems</td>
<td>Dr. David Hernandez</td>
</tr>
<tr>
<td>2C6</td>
<td>7128</td>
<td>Changing the value equation in engineering and acquisition to align</td>
<td>Mr. Philip J Boxer, Ms. Suzanne Garcia, Mr. William Anderson, Mr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>systems of systems with dynamic mission needs</td>
<td>Patrick Kirwan</td>
</tr>
<tr>
<td>2C7</td>
<td>7444</td>
<td>Acquisition Requirements for Capabilities in a Netcentric Enterprise</td>
<td>Mr. Jack M Van Kirk, Mr. Ira A Monarch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-- Creating a Capabilities Engineering Framework</td>
<td></td>
</tr>
<tr>
<td>2C7</td>
<td>7191</td>
<td>System Concept of Operations: Standards, Practices, and Reality</td>
<td>Ms. Nicole Roberts</td>
</tr>
<tr>
<td>2C7</td>
<td>7138</td>
<td>Implications of Capability-based Planning on Requirements Engineering</td>
<td>Mr. Leonard Sadauskas</td>
</tr>
<tr>
<td>2C8</td>
<td>7041</td>
<td>Software Process Improvement for Acquisition of Naval Software</td>
<td>Mr. Carl Siel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intensive Systems</td>
<td></td>
</tr>
<tr>
<td>2C8</td>
<td>7137</td>
<td>DoD Software Engineering and System Assurance</td>
<td>Ms. Kristen J. Baldwin</td>
</tr>
<tr>
<td>2C8</td>
<td>7139</td>
<td>A Framework for Integrating Systems and Software Engineering</td>
<td>Dr. Arthur Pyster, Dr. Richard Turner</td>
</tr>
<tr>
<td>2D1</td>
<td>6986</td>
<td>Technology Readiness Assessments for Systems of Systems</td>
<td>Dr. Jay Mandelbaum</td>
</tr>
<tr>
<td>2D1</td>
<td>7042</td>
<td>Establishing a Departmental-Level Systems-of-Systems Engineering</td>
<td>Mr. Carl Siel, Mr. John Kevin Smith</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Management Construct for the Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>2D1</td>
<td>7089</td>
<td>Systems of Systems: Update on the DoD Systems of Systems SE</td>
<td>Dr. Judith s Dahmann</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guide and Future Direction</td>
<td></td>
</tr>
<tr>
<td>2D2</td>
<td>7290</td>
<td>Mission-Based Test and Evaluation Strategy: An Interagency Developed</td>
<td>Mr. Christopher M Wilcox, Mr. John W Beilfuss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Process to Link Mission Capability with System Functional Requirements</td>
<td></td>
</tr>
<tr>
<td>2D2</td>
<td>6996</td>
<td>Modeling & Simulation in the Test & Evaluation Master Plan</td>
<td>Mr. Michael R Truelove</td>
</tr>
<tr>
<td>2D2</td>
<td>7103</td>
<td>New Test and Evaluation Master Plan Guidance</td>
<td>Ms. Darlene S Mosser-Kerner</td>
</tr>
<tr>
<td>2D3</td>
<td>7002</td>
<td>Systems Engineering Re-Vitalization At The Defense Contract</td>
<td>Mr. Lawrence F. Cianciolo, Mr. Shaun Lanham</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Management Agency</td>
<td></td>
</tr>
<tr>
<td>Track</td>
<td>Session</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2D3</td>
<td>7223</td>
<td>An Air Force S&T Directorate’s View on Applying Systems Engineering Principles to its Programs</td>
<td>Dr. James C Malas, Mr. Robert L Rapson, Capt Ronald Pendleton, Mr. Bryan DeHoff, Ms. Carol Ventresca</td>
</tr>
<tr>
<td>2D3</td>
<td>7320</td>
<td>Air Force Initiative – High Confidence Technology Transition Planning Through the Use of Stage-Gates</td>
<td>Dr. Claudia V Kropas-Hughes, Ms. Lynda T Rutledge, Mr. George H Sarmiento</td>
</tr>
<tr>
<td>2D4</td>
<td>7092</td>
<td>Systems Engineering to Ensure Aircraft Airworthiness</td>
<td>Mr. James C Miller</td>
</tr>
<tr>
<td>2D4</td>
<td>7161</td>
<td>ESOH in Acquisition – OSD Expectations for Implementing DoDI 5000.02</td>
<td>Ms. Patricia Huheey, Ms. Karen Gill</td>
</tr>
<tr>
<td>2D4</td>
<td>7222</td>
<td>What the Systems Engineer Needs to Know About Integrating Environment, Safety, and Occupational Health (ESOH) into Systems Engineering (SE) Using the System Safety Methodology</td>
<td>Mr. Sherman G. Forbes</td>
</tr>
<tr>
<td>2D5</td>
<td>7404</td>
<td>Joint Rapid Scenario Generation Systems Engineering Vision</td>
<td>Mr. Ralph O’Connell, Mr. Warren Bizub, Mr. Ken Goad, Mr. Michael Winslow, Ms. Leslie Winters</td>
</tr>
<tr>
<td>2D5</td>
<td>7467</td>
<td>Systems Engineering Across Army Modeling and Simulation</td>
<td>Mr. Van Sullivan, LTC Favio Lopez</td>
</tr>
<tr>
<td>2D5</td>
<td>7175</td>
<td>LVC Architecture Roadmap - A Path Forward for Distributed Simulation</td>
<td>Mr. James W Hollenbach</td>
</tr>
<tr>
<td>2D6</td>
<td>7016</td>
<td>A Service-Oriented Architecture (SOA) Business Model for DoD</td>
<td>Dr. Steven H Dam</td>
</tr>
<tr>
<td>2D6</td>
<td>7330</td>
<td>Creating a Systems Architecture for an SOA-based IT System as Part of a Systems Engineering Process</td>
<td>Dr. Robert S. Ellinger, Mr. Gabriel Hoffman</td>
</tr>
<tr>
<td>2D6</td>
<td>7414</td>
<td>An IT Governance Solution</td>
<td>Mr. Paul Byrnes</td>
</tr>
<tr>
<td>2D7</td>
<td>7451</td>
<td>Why Design for Testability Earlier?</td>
<td>Mr. Bruce R Bardell</td>
</tr>
<tr>
<td>2D7</td>
<td>7399</td>
<td>The Challenges in Requirements Decomposition</td>
<td>Mrs. Eliza Siu</td>
</tr>
<tr>
<td>2D7</td>
<td>6998</td>
<td>Quantifying the Impact of System Engineering Changes</td>
<td>Dr. Mark R Blackburn</td>
</tr>
<tr>
<td>2D7</td>
<td>7066</td>
<td>Two-Step Methodology to Reduce Software Requirement Defects</td>
<td>Mr. Robert J Kosman</td>
</tr>
<tr>
<td>2D8</td>
<td>7119</td>
<td>Architecting Systems to Meet Expectations - Managing Quality Characteristics To Reduce Risk</td>
<td>Mr. Paul Croll</td>
</tr>
<tr>
<td>2D8</td>
<td>7239</td>
<td>Systems and Software Design Principles for Large-Scale Mission-Critical Embedded Products from Aerospace and Financial Problem Domains</td>
<td>Dr. Richard W Selby</td>
</tr>
<tr>
<td>3A1</td>
<td>7065</td>
<td>Establishing a Systems Engineering Center of Excellence in PEO Ground Combat Systems</td>
<td>Mr. Michael H Phillips</td>
</tr>
<tr>
<td>3A1</td>
<td>7405</td>
<td>Systems Engineering: Application in complex organizations</td>
<td>Mr. Kevin Roney, Mr. Robert Parrish</td>
</tr>
<tr>
<td>Track</td>
<td>Session</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3A1</td>
<td>7423</td>
<td>Systems Engineering Capability Development</td>
<td>Mr. Edward Andres, Mr. Troy Peterson, Ms. Harsha Desai, Mr. Scott Welles</td>
</tr>
<tr>
<td>3A2</td>
<td>7351</td>
<td>End to End System Test Architecture</td>
<td>Dr. Masuma Ahmed</td>
</tr>
<tr>
<td>3A2</td>
<td>6937</td>
<td>Systems Engineering for Testing in a Joint Mission Environment</td>
<td>Mr. Earl Reyes</td>
</tr>
<tr>
<td>3A3</td>
<td>7438</td>
<td>The Incremental Commitment Model and Competitive Prototyping</td>
<td>Dr. Barry Boehm, Ms. Jo Ann Lane</td>
</tr>
<tr>
<td>3A3</td>
<td>7116</td>
<td>Exploration of Customer Capability Gaps Through Experimentation</td>
<td>Mr. Michael E. Groff</td>
</tr>
<tr>
<td>3A3</td>
<td>7070</td>
<td>An integrated, knowledge-based approach to developing weapon system business cases could improve acquisition outcomes</td>
<td>Mr. Travis J Masters, Mr. Michael J Sullivan, Mr. John E Oppenheim</td>
</tr>
<tr>
<td>3A4</td>
<td>7720</td>
<td>Systemic Root Cause Analysis Leads to Acquisition Improvement Recommendations</td>
<td>Ms. Laura M Dwinnell, Mr. David R Castellano, Mr. Hal Wilson</td>
</tr>
<tr>
<td>3A4</td>
<td>7721</td>
<td>Systemic Root Cause Analysis Leads to Acquisition Improvement Recommendations (Part 2)</td>
<td>Mr. Peter Nolte</td>
</tr>
<tr>
<td>3A5</td>
<td>7073</td>
<td>Standardized Documentation for Verification, Validation, and Accreditation — An Update to the Systems Engineering Community</td>
<td>Mr. Kevin Charlow, Mr. Curtis Blais, Mr. David Broyles, Ms. Marcy Stutzman</td>
</tr>
<tr>
<td>3A5</td>
<td>7052</td>
<td>Presentation: “Architecture and Model Based Systems Engineering for Lean Results”</td>
<td>Mr. Tim Olson</td>
</tr>
<tr>
<td>3A5</td>
<td>7347</td>
<td>Deployment of SysML in Tools and Architectures: an Industry Perspective</td>
<td>Mr. Rick Steiner</td>
</tr>
<tr>
<td>3A6</td>
<td>6954</td>
<td>SOAs and Net-Centric Warfare-Similarities, Differences and Conflicts</td>
<td>Mr. James A Mazzei, Ms. Camille O Keely, Mr. James L Ayers</td>
</tr>
<tr>
<td>3A6</td>
<td>7477</td>
<td>Service Oriented Architecture - The good, bad, and ugly of the word’s largest SOA attempt (DoD NECC)</td>
<td>Col Allan L. Mink, II, USAF (Ret)</td>
</tr>
<tr>
<td>3A6</td>
<td>7374</td>
<td>Capitalizing in Migrating Web Service Environments</td>
<td>Mr. Brian Eleazer</td>
</tr>
<tr>
<td>3A7</td>
<td>7047</td>
<td>Stop the Pain: Take Some Requirements Definition and Management for Project Success</td>
<td>Mr. Scott Derby</td>
</tr>
<tr>
<td>3A7</td>
<td>7593</td>
<td>Correlation of Types of requirements to Verification Methods</td>
<td>Dr. William G Bail</td>
</tr>
<tr>
<td>3A7</td>
<td>7068</td>
<td>Daily Challenges in Requirements Engineering</td>
<td>Mr. Frank J Salvatore</td>
</tr>
<tr>
<td>3A8</td>
<td>7232</td>
<td>ASN (RD&A) Initiatives to Improve Integration of Software Engineering into Defense Acquisition Related Systems Engineering</td>
<td>Dr. John F Miller, Mr. Archibald McKinlay, VI</td>
</tr>
<tr>
<td>3A8</td>
<td>7135</td>
<td>Improving Work Breakdown Structure (WBS) Guidance for Weapons Systems with Substantial Software Content</td>
<td>Mr. Christopher Miller</td>
</tr>
<tr>
<td>3A8</td>
<td>7714</td>
<td>Building the Next Generation of Software Engineers - Benchmarking Graduate Education</td>
<td>Dr. Arthur Pyster, Dr. Richard Turner</td>
</tr>
<tr>
<td>3B1</td>
<td>6945</td>
<td>The Role of Chaos and Complexity in Systems Development</td>
<td>Dr. Robert J. Monson</td>
</tr>
<tr>
<td>3B1</td>
<td>7190</td>
<td>A Tool to Enhance Systems Engineering Planning</td>
<td>Ms. Sue O’Brien, Dr. Dawn Sabados, Dr. James Snider, Maj. Gen., ret.</td>
</tr>
<tr>
<td>Track</td>
<td>Session</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---</td>
<td>---------</td>
</tr>
</tbody>
</table>
| 3B1 | 7436 | A Process Decision Table for Integrated Systems and Software Engineering | Dr. Barry Boehm
 | | Ms. Jo Ann Lane | | |
| 3B2 | 7372 | Integrated T&E process and tools in the Joint High Speed Vessel Program | Mr. Stephen F Randolph |
| 3B2 | 7011 | Implementing a Methodology to Incorporate Operational Realism in CONOPS & Testing | Mr. William R Lyders |
| 3B2 | 6928 | The Role of T&E in the Requirements Process for System of Systems | MSG Walter C. Reel, Jr |
| 3B3 | 7269 | Closing the gap between systems engineering and project management | Mr. Robert W Ferguson |
| 3B3 | 7349 | The Death of Risk Management | Mr. Michael P Gaydar |
| 3B3 | 7340 | “Integrated Management Operating Model (iMOM)”, An E-2D Advanced Hawkeye SD&D Program Case Study | Mr. Douglas J Shaffer |
| 3B4 | 7215 | DoD Energy Demand: Addressing the Unintended Consequences | Mr. Thomas Morehouse |
| 3B4 | 7216 | Acquisition and Technology Programs Task Force Funded Initiatives | Ms. Lucy Rodriguez |
| 3B4 | 7211 | Defining a Generic Hazard Tracking Database for Future Programs | Mr. Jeff Walker |
| 3B5 | 7364 | Predictive Modeling: Principles and Practice | Dr. Rick Hefner
 | | Mr. Philip Paul |
| | | Mr. Rasheed Baqui | Prem Daniel
 | | Arun Durairaj |
| 3B5 | 7082 | Domain Modeling: A Roadmap to Convergence | Mr. Nathaniel C Horner
 | | Mr. J. Stephen Topper |
| 3B5 | 7026 | Rapid Assessment Approach Using Commander’s Intent to Identify Promising Force Structure Architectures for System Trade Studies | Mr. David A Blancett
 | | Mr. Kurt Dittmer | | |
| 3B6 | 7048 | Requisite EcoSystem alterations for SOA in the DoD/IC domain | Mr. Charles Long |
| 3B6 | 6972 | A System Engineering Approach to Develop a Service-Oriented Perspective | Mr. Rob Byrd |
| 3B6 | 7122 | Department of Defense (DoD) Architecture Framework (DoDAF); Delivering Architectures to the World | Mr. Walt Okon |
| 3B7 | 7548 | Mission Analysis and its Impact on SE Fundamentals | Mr. John T McDonald
 | | Mr. David W Rhodes |
| 3B7 | 7055 | Presentation: “How to Write ‘Lean and Mean’ Requirements” | Mr. Tim Olson |
| 3B8 | 7195 | Counting Software Size: Is it as easy as buying a gallon of gas? | Ms. Lori Vaughan
 | | Mr. Dean Caccavo |
| 3C1 | 7007 | Using Performance-Based Earned Value(R) for Measuring Systems Engineering Effectiveness | Dr. Ronald S Carson
 | | Mr. Bojan Zlicaric |
| 3C1 | 7017 | KBAD – A Cost-Effective Way to Conduct Design and Analysis | Dr. Steven Dam |
| 3C1 | 6878 | Reduction of Total Ownership Costs (R-TOC) | Mr. Chet Bracuto
 | | Dr. Jay Mandelbaum |
| 3C2 | 6888 | Value Engineering: Enhance DMSMS Solutions | Dr. Jay Mandelbaum
<pre><code> | | Dr. Danny L. Reed |
</code></pre>
<table>
<thead>
<tr>
<th>Session</th>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
| 3C2 | 6874 | Why CMMI isn’t enough | Mr. Timothy A Chick
Mrs. Anita D Carleton |
| 3C2 | 7761 | Applying Business Process Modeling to Develop Systems Engineering | Dr. Judith S Dahmann
Aumber Bhatti |
| 3C3 | 7023 | Program Management of Concurrently Developed Complex Systems – Lessons Learned | Mr. Alexander Polack |
| 3C3 | 7095 | Evaluating Complex System Development Maturity – The Creation and Implementation of a System Readiness Level for Defense Acquisition Programs | Mr. Eric Forbes
Mr. Kenneth Michaud
Mr. Peter Gentile |
| 3C3 | 7344 | Complex System Development Program Assessments and Support: A Forensics Perspective | Dr. Dinesh Verma
Ms. Laura Dwinnel
Mr. Mark Weitekamp
Mr. Glynn James
Mr. Tom Parry |
| 3C4 | 7378 | A Culture Shift – Strengthening the “Jointness” in Weapon Safety Reviews | Ms. Mary Ellen Caro |
| 3C4 | 7433 | Learning From NASA Mishaps: What Separates Success From Failure? | Ms. Faith Chandler |
| 3C4 | 7226 | Way Ahead for DoD Acquisition Efforts to Integrate Environment, Safety, and Occupational Health (ESOH) Considerations into Systems Engineering Using the DoD Standard Practice for System Safety | Mr. Sherman G Forbes |
| 3C5 | 7393 | Systems Engineering Approach to Total Vehicle Design and Integration | Mr. Walter J Budd |
| 3C5 | 7144 | Systems Engineering Analysis of Threat Reduction Systems using a Collaborative Constructive Simulation Environment | Dr. James E. Coolahan
Dr. Andrew C. K. Wiedlea
Dr. Roger L. West
Dr. Joseph G. Kovalchik |
| 3C5 | 7335 | Model-Based Specification for Legacy Networks | Mr. Robert M Kane
Mr. Martin A Kane |
| 3C6 | 7105 | Building Net-Ready Information Interoperability Performance Indicator Widgets For DODAF 2.0 Dashboards | Mr. William B Anderson
Mr. Jayson Durham
Dr. David Zubrow |
| 3C6 | 7337 | Modeling Cognition in the DoD Architecture Framework for Early Concept Development | Dr. John M Colombi
Dr. Joseph W Carl |
| 3C6 | 7088 | The Benefit of Collaboration: Integration between the DoDAF and Systems Engineering Communities | Mr. Tim Tritsch |
| 3C7 | 7180 | A continuous process view of systems engineering for the sustainment phase | Mr. Paul D Ratke |
| 3C7 | 7183 | Progress Toward the Development of a Reliability Investment Cost Estimating Relationship | Mr. E. Andrew Long
Dr. David A. Lee
Mr. James Forbes |
| 3C7 | 7235 | Future Combat Systems (FCS) Logistics Systems | Ms. Soo R. Yoon |
| 3C8 | 7243 | Method for Aligning Architecture Frameworks and System Requirements | Mr. Richard L Eilers
Mr. Mark Rhaodes
Mr. Kevin Hall
Dr. Samer Minkara |
<table>
<thead>
<tr>
<th>Code</th>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
| 3C8 | 7136 | Architecture Trade-off Analysis Method® (ATAM®) for System Architecture Evaluation | Mr. Michael Gagliardi
Mr. William Wood
Mr. John Klein |
| 3C8 | 7081 | Littoral Combat Ship (LCS) Mission Modules Integration: An Open Architecture Approach | Mr. Cecil Whitfield
Mr. Jose Casals
Mr. Kenneth Montogomery |
| 3D1 | 6886 | Air Force Systems Engineer Assessment Model (AF SEAM) | Mr. Randall Bullard
Mr. George Freeman |
| 3D1 | 7204 | Advancing Systems Engineering Practice within the Department of Defense: Overview of DoD’s Newest University Affiliated Research Center (UARC) | Ms. Sharon Vannucci
Mr. Dennis Barnabe |
| 3D1 | 7030 | Defining 100 Best Practices for Systems Engineering | Mr. Ian Talbot |
| 3D1 | 7093 | Systems Engineering Performance Measures | Mr. James C Miller |
| 3D2 | 7003 | Applicable Documents | Mr. James R van Gaasbeek |
| 3D2 | 7014 | Systems Engineering in the Science and Technology Environment – Best Practices and other Lessons Learned from the Air Force Research Laboratory | Mr. William P Doyle
Mr. Michael C Bartmess |
| 3D2 | 7031 | Lessons Learned Doing Systems Engineering Assessments on the Government | Mr. Ian Talbot |
| 3D3 | 7462 | Applying the Tenets of Military Planning and Execution to Project and Systems Engineering Management | Mr. Philip Lindeman |
| 3D3 | 7479 | 360 degree view of the technology, strategy and business | Mr. Min-Gu Lee |
| 3D3 | 7385 | Enabling More Effective Weapons Systems Acquisition and Sustainment through an Enterprise Approach | Mr. John Stewart
Mr. Pat Morris
Mr. John Liss
Mr. Rich Fredricks
Dr. Iraj Hirmanpour |
| 3D4 | 7515 | The Intersection of System Safety, Lean Engineering, and Ergonomics | Dr. Lee Ostrom
Ms. Cathy Rothwell |
| 3D4 | 7258 | Joint Service Safety Testing Study | Ms. Paige Ripani |
| 3D4 | 7442 | What Systems Engineers Need to Know About System Environmental Noise | Ms. Lynn Engelman |
| 3D5 | 7228 | Total System Modeling: A System Engineering Application of the Higraph Formalism | Mr. Kevin Fogarty
Dr. Mark Austin |
| 3D5 | 7174 | Virtual Battlespace Center for Systems Engineering | Mr. James W Hollenbach |
| 3D5 | 7077 | Near-field RCS and Fuze Modeling and Simulation | Mr. David Hall
Ms. Dorothy L. Saitz |
| 3D6 | 7413 | Systems Engineering Approach for Assessing a Warfighter’s Cognitive Performance | Mr. James Buxton
Mr. Kevin Roney
Mr. Albert A Sciarretta |
<p>| 3D6 | 7280 | Multiple Information Agents for Real-Time, Dynamic Situational Awareness: Architectures for Real-Time Warfighter Support | Dr. James A Crowder |
| 3D6 | 7046 | Cost-Effective Survivable Network Design Framework | Dr. Dennis M Moen |</p>
<table>
<thead>
<tr>
<th>Session</th>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D6</td>
<td>7377</td>
<td>The Joint Surface Warfare JCTD: Maturing Weapon Data Link Concepts into Operational Capability</td>
<td>Mr. Robert K. Finlayson, III</td>
</tr>
<tr>
<td>3D7</td>
<td>7383</td>
<td>Extending Enterprise Systems for an Integrated Logistics Management Environment</td>
<td>Mr. Mike Korzenowski, Mr. Kurt Hansen, Mr. James Garrity</td>
</tr>
<tr>
<td>3D7</td>
<td>7390</td>
<td>Systems Engineering of Deployed Systems</td>
<td>Mr. Robert K. Finlayson, III, Mr. Bryan E. Herdlick</td>
</tr>
<tr>
<td>3D7</td>
<td>7455</td>
<td>The Seven Affordability Sins of Logistics System Integration</td>
<td>Dr. Thomas E. Herald, Jr., Mr. Joseph S. Bobinis, PMP</td>
</tr>
<tr>
<td>3D8</td>
<td>7428</td>
<td>Adaptable Architecture for System of Systems</td>
<td>Mr. Bruce Schneider, Mr. Joe Wolfrom</td>
</tr>
<tr>
<td>3D8</td>
<td>7109</td>
<td>Applying Open Architecture Concepts to Mission and Ship Systems</td>
<td>Mr. John M Green, Mr. Gregory A. Miller</td>
</tr>
<tr>
<td>3D8</td>
<td>7273</td>
<td>US Air Force Global Persistent Attack Architecture, Process, & Risk Analysis</td>
<td>Major Jeffrey D Havlicek, Major Brian Hazel, Major John Eller, Mr. Brendan Rooney</td>
</tr>
<tr>
<td>3D8</td>
<td>7285</td>
<td>Universal Architecture Description Framework</td>
<td>Mr. Jeffrey O. Grady, CSEP</td>
</tr>
<tr>
<td>4A1</td>
<td>7186</td>
<td>Air Force Implementation of NRC “Pre-A SE” Study Committee Recommendations</td>
<td>Mr. Jeff Loren</td>
</tr>
<tr>
<td>4A1</td>
<td>7697</td>
<td>Enhancing Systems Engineering in the Department of Defense</td>
<td>Mr. Cesar Sharper</td>
</tr>
<tr>
<td>4A1</td>
<td>7281</td>
<td>A Holistic Approach to System Development</td>
<td>Mr. Douglas T Wong</td>
</tr>
<tr>
<td>4A2</td>
<td>7179</td>
<td>Integration of Systems and Software Engineering: Implications from Standards and Models Applied to DoD’s Acquisition Programs</td>
<td>Mr. Donald J Gantzer, Ms. Lisa Reuss</td>
</tr>
<tr>
<td>4A2</td>
<td>7111</td>
<td>Improving Process Utilizations with Tools</td>
<td>Mr. Frank J Salvatore, Mr. Richard Swanson</td>
</tr>
<tr>
<td>4A3</td>
<td>7158</td>
<td>Achieving Success for Program Managers: Integrating Work Breakdown Structure, Schedule, and Work packages</td>
<td>Mr. Philip J Simpkins</td>
</tr>
<tr>
<td>4A3</td>
<td>7113</td>
<td>Lessons Learned in EVM Control Account Analysis and Design</td>
<td>Mr. Thomas R Cowles</td>
</tr>
<tr>
<td>4A3</td>
<td>7010</td>
<td>Integrating Systems Engineering with Earned Value Management</td>
<td>Mr. Paul Solomon</td>
</tr>
<tr>
<td>4A4</td>
<td>6984</td>
<td>Evaluation of an Immersive Virtual Collaboration Environment for System Development</td>
<td>Mr. Redge Bartholomew</td>
</tr>
<tr>
<td>4A4</td>
<td>6881</td>
<td>A Systems Engineering Approach For Balancing Powered Trailer Requirements</td>
<td>Mr. Dana F Peterson, CSEP</td>
</tr>
<tr>
<td>4A4</td>
<td>7028</td>
<td>Semi Autonomous Unmanned Aerial Systems with Collaborating Behaviors</td>
<td>MAJ Edward B Teague</td>
</tr>
<tr>
<td>4A5</td>
<td>6944</td>
<td>Establishing the Need for Functional Analysis in Systems Development</td>
<td>Dr. Robert J. Monson, Mr. David Lindstrom</td>
</tr>
<tr>
<td>4A5</td>
<td>6946</td>
<td>Improving Systems Engineering Execution and Knowledge Management</td>
<td>Mr. Steven C Head, Mr. Bill Virostko</td>
</tr>
<tr>
<td>Session</td>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>4A5</td>
<td>7034</td>
<td>Modeling and Simulation Education for the Acquisition/T&E Community</td>
<td>Dr. David H. Olwell, Ms. Jean M. Johnson</td>
</tr>
<tr>
<td>4A6</td>
<td>7613</td>
<td>Prognostics Based Health Assessment System Approaches</td>
<td>Mr. Ronald D Newman, Ms. Mary Nolan, Mr. Greg DeMare</td>
</tr>
<tr>
<td>4A6</td>
<td>7447</td>
<td>Prognostics as an Approach to Improve Mission Readiness and Availability</td>
<td>Mr. Sony Mathew, Dr. Michael G Pecht</td>
</tr>
<tr>
<td>4A6</td>
<td>7580</td>
<td>Engineering Solutions for Fleet Readiness Centers utilizing an Avionics Rapid Action Team Innovation Cell</td>
<td>Mr. William Birurakis, Jr., Mr. Stu Paul</td>
</tr>
<tr>
<td>4A7</td>
<td>7481</td>
<td>Defining the Prognostics Health Management Enterprise Architecture</td>
<td>Mr. Ethan Xu</td>
</tr>
<tr>
<td>4A7</td>
<td>7131</td>
<td>Sustaining Systems Engineering - The A-10 Example</td>
<td>Dr. David R Jacques</td>
</tr>
<tr>
<td>4A8</td>
<td>7069</td>
<td>The Value of Architecture</td>
<td>Mr. Frank J Salvatore</td>
</tr>
<tr>
<td>4A8</td>
<td>7401</td>
<td>Enabling Systems Engineering with an integrated Approach to Knowledge Discovery and Architecture Framework</td>
<td>Mr. Michael R Collins, Mr. John M. Green</td>
</tr>
<tr>
<td>4A8</td>
<td>7453</td>
<td>Open Architecture in Electronics Systems</td>
<td>Mr. Bruce R Bardell</td>
</tr>
<tr>
<td>4B1</td>
<td>7004</td>
<td>Operational Concepts</td>
<td>Mr. James R van Gaasbeek</td>
</tr>
<tr>
<td>4B1</td>
<td>7214</td>
<td>Developing and Maintaining the Technical Baseline</td>
<td>Mr. Michael G Ucchino</td>
</tr>
<tr>
<td>4B1</td>
<td>7296</td>
<td>The dangers of oversimplifying availability</td>
<td>Dr. Jeffrey M Harris</td>
</tr>
<tr>
<td>4B2</td>
<td>7325</td>
<td>Applying CMMI High Maturity Practices and Leveraging LEAN Six Sigma</td>
<td>Mrs. Ann Hennon</td>
</tr>
<tr>
<td>4B3</td>
<td>7363</td>
<td>Integrated Risk and Opportunity Management</td>
<td>Ms. Audrey Dorofee, Mr. Christopher Alberts</td>
</tr>
<tr>
<td>4B3</td>
<td>7459</td>
<td>Multi-Factor Risk Management</td>
<td>Ms. Laura West, Ms. Felicia Hong</td>
</tr>
<tr>
<td>4B4</td>
<td>7063</td>
<td>Product Platforms in Support of Rapid Response to DOD In-Theatre Force Protection Needs</td>
<td>Dr. Steven B Shooter, Mr. Stephen Luckowski, Mr. Thomas Kiel</td>
</tr>
<tr>
<td>4B4</td>
<td>7102</td>
<td>Reengineering Electronic Warfare: Shifting From Platform- To Capability-Centric Engineering</td>
<td>Mr. William B Anderson, Mr. Joseph Elm, Lt. Michael Thompson, Mr. John Hawrylak, Mr. Ray Williams</td>
</tr>
<tr>
<td>4B4</td>
<td>7278</td>
<td>Integrating Metrics with Qualitative Temporal Reasoning for Constraint-Based Expert Systems</td>
<td>Dr. James A Crowder</td>
</tr>
<tr>
<td>4B5</td>
<td>7094</td>
<td>Development and Validation of a Systems Engineering Competency Model</td>
<td>Dr. Don Gelosh</td>
</tr>
<tr>
<td>4B5</td>
<td>7098</td>
<td>Accelerate Performance Improvements: Systems Engineering Skills Competency Analysis and Training Program Development</td>
<td>Mr. Steven A Diebold, Mr. Wendell Mullison</td>
</tr>
<tr>
<td>4B5</td>
<td>7130</td>
<td>Concept Definition - A Historical Perspective</td>
<td>Dr. David R Jacques</td>
</tr>
<tr>
<td>4B6</td>
<td>7520</td>
<td>NDIA ID Electronic Prognostics (E-Prog) Task Follow-on Study to Quantify Weapon System Benefits.</td>
<td>Mr. Paul L Howard</td>
</tr>
<tr>
<td>Code</td>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| 4B6 | 7597 | Enterprise Health Management Emerging Technology Transition Enabling Plan | Mr. Chris M Reisig
| | | | Mr. Thomas Dabney
| | | | Dr. James Dill |
| 4B7 | 7188 | Reliability Centered Maintenance applied to the CH-47 Chinook Helicopter–Universal principles that go beyond Equipment Maintenance | Ms. Nancy Regan |
| 4B7 | 7064 | Reliability Growth Analysis of Mobile Gun System during PVT | Dr. Dmitry Tananko
| | | | Mr. Sharad Kumar
| | | | Mr. John Paulson
| | | | Ms. Jenny Chang |
| 4B8 | 7079 | The Benefits of Synergizing Naval Open Architecture Practices and Principles with Systems Engineering Processes | Mr. Mike Dettman |
| 4B8 | 7029 | Concurrent Increment Sequencing and Synchronization with Design Structure Matrices in Software-Intensive System Development | Dr. Peter Hantos |
| 4B8 | 7365 | Enabling the Successful Transition from Architecture to Concept Design | Mr. Chris Ryder |
| 4C1 | 7054 | Presentation: “Using Lean Principles and Process Models to Achieve Measurable Results” | Mr. Tim Olson |
| 4C1 | 7265 | Rocket Motor Development Cycle Time - Business Process Review | Mr. Jose Gonzalez |
| 4C1 | 7289 | Process Tailoring Patterns and Frameworks for Accelerating Systems Engineering Processes | Mr. Larry J Earnest |
| 4C2 | 7400 | Systems Engineering Initiative – How do you implement a new lessons learned process and tool on a legacy program? | Mr. Ray A Polo
| | | | Mr. Christian A Stillings
| | | | Ms. Marybeth Catoline
| | | | Mr. Dale Retrum |
| 4C2 | 7422 | NDIA CMMI Working Group: Status and Plans | Mr Geoff Draper |
| 4C2 | 7441 | Process Enrichment Boot Camp - An intensive introduction to a generic, enterprise-wide, strategic communication and continuous improvement methodology | Mr. Victor A. Elias |
| 4C2 | 7446 | Making Lessons Learned Come Alive and be Practical | Mr. Forrest Shull
| | | | Ms. Michele A Shaw
| | | | Mr. Raimund L Feldmann |
| 4C4 | 7417 | VIRGINIA (SSN-774) Class Systems Engineering to Reduce Total Ownership Cost | Mr. George M. Drakeley, III
| | | | Mr. Steve Lose
| | | | Mr. George L Becker |
| 4C4 | 7497 | Accuracy Control Tools, Technology, and Processes used for Addressing Hull Fairness | Mr. Stephan H Hankins
| | | | Mr. Jimmy R. Sharp |
| 4C4 | 7463 | The C-17 PIO Team | Mr. David Murray |
| 4C5 | 7308 | PeaceKeeper Intercontinental Ballistic Missile Systems Engineering Case Study | Mr. Charles M Garland |
| 4C5 | 7474 | Capture of Critical Engineering Skills and Knowledge | Mrs Ann Hennon |
Promotional Partner

LOCKHEED MARTIN
Why CMMI Isn’t Enough?

Systems Engineering Conference
October 20-23, 2008

Anita Carleton
Tim Chick
Performance Results of CMMI – Based Process Improvement

<table>
<thead>
<tr>
<th>Performance Category</th>
<th>Median Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>34%</td>
</tr>
<tr>
<td>Schedule</td>
<td>50%</td>
</tr>
<tr>
<td>Productivity</td>
<td>61%</td>
</tr>
<tr>
<td>Quality</td>
<td>48%</td>
</tr>
<tr>
<td>Customer Satisfaction</td>
<td>14%</td>
</tr>
<tr>
<td>Return on Investment</td>
<td>4:1</td>
</tr>
</tbody>
</table>

Source: http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tr004.pdf
Why results vary - 1

Two different approaches to CMMI based Process Improvement:

- Bureaucratic improvement that comes to life only when assessments are to be performed
- Improvement efforts that are based on achieving business objectives which are embedded into the culture of an organization and actively supported by the entire staff
Why results vary - 2

Bureaucratic Improvement

Bureaucratic Improvements can be very successful in changing the organizational culture. However, it doesn’t fundamentally change the developers’ individual behavior or processes.

Resulting in continued quality, cost, and schedule issues. Because ultimately only the developers can control the quality of the product, which directly impacts the cost and schedule.
How to get the performance you expect using CMMI

Improvement efforts that are based on achieving business objectives which are embedded into the culture of an organization and actively supported by the entire staff:

Achieving a maturity rating doesn’t guarantee improved performance

To get high performance, you need to build a solid foundation from the beginning

Performance becomes an enabler for high maturity
Definitions

High Performance –
High performance means obtaining superior outcomes.

High Maturity –
Implementing the concepts and practices at levels 4 and 5 of CMMI.

High Maturity Practices –
The "specific practices" and "generic practices" at levels 4 and 5 of CMMI.
Align Business Objectives

Are we getting more business moving to a higher maturity?
Are we shipping (releasing) higher quality products?
Do we have better performance?
Do our products have more functionality?
Are we reducing our costs?
Are we meeting our schedules?

How do we get high performance from high maturity?
Prerequisites for High Performance

Before an organization can perform high maturity activities, it must:

- Gather and use data at all organizational levels
- Defined operational processes that specify how and when the data are gathered
- Faithfully execute the defined processes

This implies that individuals and teams gather data on their own and use the data to plan and perform work
To Get High Performance, Address Team and Individual Discipline

A high-performing organization must be built of high performing teams.

High performing teams must be built of high-performing individuals.

High-performing individuals must be disciplined to gather and use their own data.

Operationalizing CMMI Practices

What does operationalize mean?

• To put something to use

What are characteristics of an “operationalized” process?

• The people who use the process own the process and have the authority to adapt and improve it.

• The “process owners” are in the best position to understand the process strengths and weaknesses.

• If people “own the process,” they will be more willing to fairly evaluate process changes.
Once you collect data, what do you do with it?

Discussion:

• Why do you need to periodically review your process data?

• How often should you review your process data?

• What happens if you review your process data too often? too seldom?

If you have already set goals, you start by understanding your performance against those goals.
Analyzing Performance

Analyze your performance with respect to size estimation, effort estimation, and quality management to:

• understand your current performance
• identify your highest-priority areas for improvement
• establish challenging but achievable goals, and
• define corresponding improvement actions to meet those goals
• define actions to address challenges you will face in making those changes
Analysis of Size Estimating Accuracy

Review your performance on size estimating accuracy. For example:

- How much did your size estimating accuracy change? Why?
- Do I have a tendency to add/miss entire parts?
- Do I have a tendency to misjudge the relative size of parts?
- Do I need to calculate relative size range data using my historical data?
- Based on my historical size-estimating accuracy data, what is a realistic size-estimating goal for me?
- How can I change my process to meet that goal?
Analysis of Time Estimating Accuracy

Review your performance on effort estimating accuracy. For example:

• How much did your effort estimating accuracy change? Why?
• Is my productivity stable? Why or why not?
• How can I stabilize my productivity?
• How much are my time estimates affected by the accuracy of my size estimates? (Would multiple regression help me?)
• Based on my historical time-estimating accuracy data, what is a realistic time-estimating goal for me?
• How can I change my process to meet that goal?
Defect and Yield Analysis

For example:

- What type of defects do I inject during design and coding?
- What trends are apparent in defects per size unit (e.g., KLOC) found in reviews, compile, and test?
- What trends are apparent in total defects per size unit?
- How do my defect removal rates (defects removed/hour) compare for design review, code review, compile, and test?
- What are my review rates for design review and code review?
- What are my defect-removal leverages for design review, code review, and compile versus unit test?
- Is there any relationship between yield and review rate for design and code reviews?
Leading vs. Lagging Indicators
Case Study - 1

Cumulative Earned Value

- Cumulative Planned Value
- Cumulative EV
- Cumulative Predicted Earned Value
- Baseline Cumulative Plan Value

Weeks:
- 12/11/2006
- 12/18/2006
- 12/25/2006
- 1/1/2007
A team is in week 2 of 7 month plan.

The team is behind 10% in Earned Value but the projected date for project completion is 2 years late—what is the problem?

The team on average is only getting a little more than half of their planned on-project task hours.

(1) Understand why the predicted project completion is two years late?

(2) Why aren’t team members achieving planned on-project task hours?
Case Study – How Do You Get This Information?

From having operationally, defined processes (e.g., development process)

From basic, measurement data
- Operational measures (size, effort, schedule, quality)
- Measurement Definitions (task hour, defect, …)

From tools
- To record and analyze data

From having a realistic plan
- Developed by team members who use their own data for estimating and planning
Operational Definition

Task Hour

- Count effort applied to a specific project task
- Do not count
 - Break time
 - Project tasks not in the earned value plan
 - Non-project tasks
Operational Definition

Earned Value

- Planned Value for task = estimated effort (cost) for task divided by sum of estimated effort for all project tasks

- Earned Value credited when task is complete

- In this definition Earned value always approaches 1.0 as the project nears completion
Each Week: (Actual – Planned) Effort [hours]

The team addressed the project effort problem.
Variation

Moving Range

hour Deviation from Plan

Week

Moving Range

Linear (Moving Range)
Week 8, Schedule Progress (Earned Value)

After initially falling farther behind, weekly progress stabilizes.
Weekly Status Report

Weekly status reviews:

• Plan assumptions
 – Effort plan
 – Upcoming work tasks

• Project status
 – Actual effort
 – Earned Value
 – Cost Performance

• Projections based on status and history
The team actions have been effective:

- Cumulative hours have not caught up
- The team is 9% ahead of schedule
- The predicted end date is now 2 months late rather than 2 years
Are They Following Their Process?

Plan and Actual Time in Phase

Phase Requirements through System Test

Time (minutes)

Plan
Actual

Why CMMI isn’t enough
© 2008 Carnegie Mellon University
Size Estimation

Estimated vs Actual Size [LOC]

\[y = 0.45 \times + 1349.3 \]

\[R^2 = 0.125 \]
Case Study Wrap-up

Teams and individuals need to assess performance with respect to goals:

- Did we achieve our performance goals? Why or why not?

- Where do we need to improve? What could we do differently? How would it change our performance?

- What kind of analyses need to be performed?
Summary

Build high performance through teams
Enable high maturity capabilities by building a solid foundation
CMMI and TSP are mutually reinforcing—
 • CMMI provides the principles for process improvement and organizational focus
 • TSP can be useful for providing team discipline and operationalizing CMMI practices
Questions?

Tim Chick
tchick@sei.cmu.edu
412-268-1473

PSP/TSP website:
http://www.sei.cmu.edu/tsp
NAVAIR Benefits from TSP

<table>
<thead>
<tr>
<th>Program</th>
<th>Size of Program</th>
<th>Defect Density (Defects/KSLOC)</th>
<th>Cost Savings from Reduced Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV JMPS</td>
<td>443 KSLOC</td>
<td>0.59</td>
<td>$2,177,169</td>
</tr>
<tr>
<td>P-3C</td>
<td>383 KSLOC</td>
<td>0.6</td>
<td>$1,478,243</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program</th>
<th>Schedule Variance</th>
<th>Cost Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVJMPS</td>
<td>0.5% overrun</td>
<td>1.5% overrun</td>
</tr>
<tr>
<td>H2.0</td>
<td>1.1% overrun</td>
<td>6.9% overrun</td>
</tr>
</tbody>
</table>
Quality Benefits

- TSP dramatically reduces the effort and schedule for system test.
- Most defects are removed during reviews and inspections at a cost of 2 to 25 minutes per defect.
- System test removal costs run from to 2 to 20 hours per defect.
- These benefits continue after delivery.
 - lower support costs
 - satisfied customer
 - better resource utilization

![TSP System Test Performance Comparison w/Table](chart.png)

<table>
<thead>
<tr>
<th></th>
<th>System Test % of Effort</th>
<th>System Test % of Schedule</th>
<th>Failure COQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP Min.</td>
<td>2%</td>
<td>8%</td>
<td>4%</td>
</tr>
<tr>
<td>TSP Avg.</td>
<td>4%</td>
<td>18%</td>
<td>17%</td>
</tr>
<tr>
<td>TSP Max.</td>
<td>7%</td>
<td>25%</td>
<td>28%</td>
</tr>
<tr>
<td>Typical Projects</td>
<td>40%</td>
<td>40%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Source: CMU/SEI-TR-2003-014
Reviews and Inspections Save Time

- Xerox found that TSP quality management practices reduced the cost of poor quality by finding and removing defects earlier when costs are lower.
Intuit Quality Improvement

- TSP reduced defects found in system test by 60% over the previous two releases of QuickBooks 2007 release.
- Intuit has also recently reported a savings of $20M from a reduction in customer support calls on QuickBooks 2007.

Results at Intuit: Improved Quality

In 2007 ~60% fewer defects were found in System Test than the previous two releases.
Intuit Productivity Improvement

- By putting a quality product into system test Intuit improved productivity and reduced cost while delivering 33% more functionality than planned.

Results at Intuit: Productivity

- During 2007 over 60% of Intuit’s Small Business Division used TSP
- TSP was a major contributor to the QuickBooks 2007 release
- It was the smoothest release anyone can remember:
 - On time delivery of all planned scope
 - 13 new features were added during the cycle (33% of initial scope)
 - Saved $700K in temporary testing staff expenses
 - Level of automated testing coverage was doubled compared to previous year

Focused improvements helped deliver a great release
Improving Task Hours

- At Allied Signal average task hours per developer per week were improved from 9.6 hours to 15.1 hours through quiet time, process documentation, more efficient meetings, etc.
- This is equivalent to a 57% increase in productivity.
- If you didn’t have such detailed information, would you even know that you had a problem? Or an opportunity for such dramatic improvement?
Intuit Test Schedule Reduction

- From data on over 40 TSP teams, Intuit has found that
 - post code-complete effort is 8% instead of 33% of the project
 - for TSP projects, standard test times are cut from 4 months to 1 week
- Testing time is reduced from four months to one month.
Microsoft Schedule Improvement

- First-time TSP projects at Microsoft had a 10 times better mean schedule error than non-TSP projects at Microsoft as reflected in the following table.

<table>
<thead>
<tr>
<th>Microsoft Schedule Results</th>
<th>Non-TSP Projects</th>
<th>TSP Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Released on Time</td>
<td>42%</td>
<td>66%</td>
</tr>
<tr>
<td>Average Days Late</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>Mean Schedule Error</td>
<td>10%</td>
<td>1%</td>
</tr>
<tr>
<td>Sample Size</td>
<td>80</td>
<td>15</td>
</tr>
</tbody>
</table>

Source: Microsoft
Work-Life Balance

- People are your most important resource.
- Finding and retaining good people is critical to long-term success.
- Intuit found that TSP improved work-life balance, a key factor in job satisfaction.

Results at Intuit: Improved Work-Life Balance

- Half as many weekend source check-ins (<3%)
- Reduced $ on dinners as measured by PSS - “Pizza Slices Served”

12,000 pizza slices served last year

VS

~30 pizza slices this year

TSP helped improved employee work life balance
Intuit TSP Survey Results

- Improved work-life balance with TSP is reflected in job satisfaction surveys.

"Engineers love it... Once they adopt it they can’t imagine going back"

Source: Intuit
Reduction of Total Ownership Costs (R-TOC) and Value Engineering (VE) in the Defense System’s Life Cycle

Mr. Chet Bracuto
Office of the Secretary of Defense
Acquisition, Technology & Logistics
Systems and Software Engineering

Dr. Danny Reed
Institute for Defense Analyses

October 22, 2008
R-TOC Genesis

- Initiated in 1999 by the USD(AT&L) to address:
 - O&S cost growth at expense of force modernization and readiness
 - O&S budget constraints limit programs to near-term, critical solutions only
 - R-TOC program seeks to seed O&S cost avoidance solutions that have broader impact
 - Thirty Pilot Programs
USD(AT&L) FY 2005 R-TOC Goal

- USD(AT&L) Goal: “…reduce the O&S cost of fielded systems (excluding manpower and fuel) by 20% (compared to current FY 1998 levels) by the year 2005.”
- “Overall, each Service’s O&S reduction plans will be based on tradeoffs among these three areas for savings:
 1. Reduced demand from weapon systems via reliability and maintainability improvements
 2. Reduced supply chain response times, leading to reduced spares, system support footprint, and depot needs
 3. Competitive sourcing of product support, leading to streamlining and overhead reductions”
FY 2005 O&S Savings

- FY 2005 cost avoidances exceeded $2.1B
- Projected life cycle cost avoidances will exceed $76B, for the R-TOC Pilot Programs

O&S Costs Can Be Reduced!!

Life Cycle Savings Provides a Focus on Long Term Benefits
New Strategic Direction

• With the successful completion of the Pilot Programs FY 2005 goal, a new direction was needed
• Strategic Directions:
 – New goal for FY 2010
 – Focus on life cycle O&S cost reductions
 – Focus on institutionalization
 – Direct funding for long-term savings projects
USD(AT&L) FY 2010 R-TOC Goal

- USD(AT&L) Goal: “Maximize cost avoidance on total defense systems FY 2010 O&S costs from an FY 2004 baseline, by offsetting 30% of predicted inflation.”
 - Goal extends to all defense systems on program-by-program basis
 - 15 Special Interest Programs (SIPs) designated lead programs to “show the way” towards achieving the goal
 - SIPs are monitored through semi-annual reports and quarterly R-TOC Forums
 - Services will include this goal in their reviews
- Ultimately expand to all defense systems
- $25M/year R-TOC PE created
Army
• Bradley A3 Upgrades
• UH-60M – Upgrade
• Stryker
• UAVS
• Guardrail

Navy
• H-1 Upgrades
• V-22
• F/A-18E/F
• H-60
• ASE
• Common Ship

Air Force
• Global Hawk
• Engines (2)
• F-16

Joint
• F-35 (JSF)
Status of R-TOC SIP Program Savings
UH-60M Composite Tailcone

Program Description

Problem: The currently proposed metal tailcone for the UH-60M’s, MH-60S’s and MH-60R’s are labor intensive to manufacture and require thousands of parts and fasteners.

Solution: Incorporate a composite tailcone into the UH-60M, MH-60S and MH-60R fleets.

Benefits

- Cost savings of $60,000.00 per new production aircraft.
- Fewer parts and fasteners
- No corrosion or fatigue maintenance
- Weight Reduction (50 pounds)

Investment/ROI

Investment: $2.35M

Life Cycle ROI: 33:1
Overview/Problem

- USN does not have a consistent objective method to determine material condition and its impact on mission / warfare area
- USN has multiple antiquated software tools and systems to validate, screen and broker work candidates depending on platform type and coast
- USN has no objective method to determine future material condition readiness when routine maintenance is not performed

Solution

- Model each ship using a hierarchical structure that will show the impact of each shipboard equipment on material condition readiness
- Provide a single validation, screening and brokering tool for use across all ship platforms
- Allow for a near term predictive nature in modeling accounting for failure to perform routine maintenance

Investment/ROI

Investment: $0.5M

Life Cycle ROI: 34:1
Intermittent Fault Detection & Isolation System (IFDIS)

Overview/Issue
- Unable to duplicate discrepancy on No Fault Found (NFF) LRU’s
- Bad Actor LRU’s continued to be recycled through the repair cycle process

Solution
- Develop maintenance tool to augment traditional testing methods
- Will identify and isolate intermittent faults on end items
- Repeats Vigorous Test scenario

Investment/ROI
- **Investment:** $2.20M
- **Life Cycle ROI:** 22:1
R-TOC Projects Cost Reductions

<table>
<thead>
<tr>
<th></th>
<th>FY2006</th>
<th>FY2007</th>
<th>FY2008</th>
<th>FY2009</th>
<th>FY2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Army</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC ROI</td>
<td>34:1</td>
<td>48:1</td>
<td>27:1</td>
<td>64:1</td>
<td>32:1</td>
</tr>
<tr>
<td>LC Savings</td>
<td>$1,730M</td>
<td>$179M</td>
<td>$295M</td>
<td>$714M</td>
<td>$345M</td>
</tr>
<tr>
<td>DoN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC ROI</td>
<td>60:1</td>
<td>35:1</td>
<td>21:1</td>
<td>50:1</td>
<td>61:1</td>
</tr>
<tr>
<td>LC Savings</td>
<td>$155M</td>
<td>$95M</td>
<td>$359M</td>
<td>$735M</td>
<td>$463M</td>
</tr>
<tr>
<td>Air Force</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC ROI</td>
<td>100:1</td>
<td>108:1</td>
<td>33:1</td>
<td>100:1</td>
<td>68:1</td>
</tr>
<tr>
<td>LC Savings</td>
<td>$2,205M</td>
<td>$261M</td>
<td>$522M</td>
<td>$557M</td>
<td>$718M</td>
</tr>
<tr>
<td>DoD Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROC</td>
<td>71:1</td>
<td>75:1</td>
<td>28:1</td>
<td>69:1</td>
<td>58:1</td>
</tr>
<tr>
<td>Total Savings</td>
<td>$4,090M</td>
<td>$535M</td>
<td>$1,176M</td>
<td>$2,006M</td>
<td>$1,527M</td>
</tr>
</tbody>
</table>

DoD TOTAL FY06-10

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Cycle Savings</td>
<td>$9,334M</td>
</tr>
<tr>
<td>Average LC ROI</td>
<td>80:1</td>
</tr>
</tbody>
</table>
Initiatives Contributing to R-TOC

• Lean Enterprise Value
• Six Sigma
• Supply Chain Management
• DoD Manufacturing Technology (ManTech)
• Value Engineering
 – Law Requires
 – FAR provisions offer contractual incentives
 – OMB Directs Implementation
 – Strategic Plan guides DoD
 – Methodology offers an approach to partner with industry
Value Engineering is an R-TOC Best Practice

• VE provides:
 – Cost reduction (VEPs and VECPs)
 – Product or process improvement
 • Higher quality
 • Reduced cycle time
 – Better means and materials for maintenance
 • Increased reliability
 • Greater safety
 • Less environmental impact
Value Engineering - An organized effort directed at analyzing the functions of systems, equipment, facilities, services, and supplies for the purpose of achieving the essential functions at the lowest life cycle cost consistent with required performance, reliability, quality, and safety. OMB Circular A-131

VE Goal: Lower the government’s costs, improve value & provide cost effective solutions to problems in design, development, fielding, support, & disposal
VE Authority

- Office of Federal Procurement Policy Act 41 USC 432 – Each executive agency shall establish & maintain cost-effective VE procedures & processes
- Public Law Implemented by OMB Circular A-131
- All Agencies Will:
 - Establish and maintain a VE Program
 - Develop annual plans
 - Budget for VE
 - Encourage VECPs
 - Encourage VEPs
 - Identify and report results
 - Provide training
- OMB Circular A-131 implemented by the DoD through VE Strategic Plan
DoD VE Strategic Plan

- Signed by USD (AT&L)

Objectives

1. Improve the Value Proposition for Defense Systems

2. Align Industry and Government Value Propositions in Defense Systems

3. Increase Value Engineering Expertise

SAVINGS GOAL = 1.5% OF TOA ANNUALLY
DoD VE Savings and Cost Avoidance

Over $36B
VE – An Industry Example

1998 Toyota Corolla - VE Project

• Problems: Increased material costs, production time issues

• Objective: Correct problems using VE
 – Lighter by 10%
 – 25% Fewer engine parts
 – Faster production
 – Better fuel economy
 – Decreased emissions
 – 15% Horsepower increase
 – Costs $1,000 less to make than in 1997
The Materiel Development Decision precedes entry into any phase of the acquisition framework.

- Entrance criteria met before entering phase
- Evolutionary Acquisition or Single Step to Full Capability

= Decision Point
△ = Milestone Review
VE in Systems Engineering

• VE methodology is an effective tool for making systems engineering decisions
 – Reduce cost
 – Increase productivity
 – Improve quality related features

While…meeting or exceeding functional performance capabilities

• VE is applicable at any point in the life cycle

How…making SE trades
VE and R-TOC in Systems Engineering

• VE and R-TOC Early in the Life Cycle – Material Solution Analysis
 – Analysis of Alternatives – evaluate functions vs. requirements
 – Challenge needs/ensure requirements are valid
 – SE trades
 • Develop cost of alternatives
 – Consider life cycle cost implications – (R-TOC)

Savings For All Production Units
VE and R-TOC in Systems Engineering

• VE and R-TOC During Technology Development
 – Analyze value of requirements/specifications
 • Can these be tailored?
 – Cost as an independent variable
 – Compare function, cost and worth of technologies
 – Consider life cycle cost implications of new technologies – R-TOC
VE and R-TOC in Systems Engineering

- VE and R-TOC During Engineering and Manufacturing Development and Demonstration
 - Identify technical approaches
 - Eliminate unnecessary design restrictions
 - Estimate cost of functions
 - Identify alternatives
 - Evaluate design concepts – O&S life cycle concepts (R-TOC)
 - Search for new technologies
 - Simplify designs
VE and R-TOC in Systems Engineering

• **VE and R-TOC During Production and Deployment**
 – Evaluate and improve manufacturing processes, methods and materials

• **VE and R-TOC During Operations and Support**
 – Analyze advances in technologies
 – Evaluate modifications
 – Reduce repair costs – R-TOC
 – Analyze packaging requirements
 – Improve RM&S – R-TOC
 – Analyze/Improve supply chain/logistics footprint – R-TOC
 – Implement CBM – R-TOC
 – Reduce manpower – R-TOC
SUMMARY

• R-TOC and VE provide savings/cost avoidances for DoD
• VE is a tool for Systems Engineering – All Life Cycle Phases
• R-TOC provides a focus on O&S considerations - All Life Cycle Phases
• VE revitalization effort in-work –
 – USD(A&T) memo on compliance with OMB Circular A-131 guidance
 – Joint Analysis Team (JAT)
• OMB A-131 update needed

• R-TOC/VE websites: http://rtoc.ida.org or http://ve.ida.org
• R-TOC / VE Points of Contact: Chet Bracuto: Chet.Bracuto@osd.mil and Danny Reed: dreed@ida.org
Air Force Systems Engineering Assessment Model (AF SEAM)

Randy Bullard
AF Center for Systems Engineering
Randy.bullard@afit.edu
Outline

1. Background
 • AF SEAM Pedigree
 • AF SEAM Goals

2. Model Contents (What is Included)
 • Process Areas (PAs)
 • Practices (Specific)
 • Practices (Generic)
 • References (What)
 • Other Information/Elaboration
 • Typical Work Products
 • Methodology
AF SEAM Background

- In 2006, AFMC Engineering Council Action Item to:
 - Provide an AF-wide SE Assessment Model
 - Involve AF Centers (product and logistics)
 - Leverage current CMMI®-based models in use at AF Centers
 - Baseline Process capability & usage

- **Definition of AF Systems Engineering Assessment Model:**
 - A single AF-wide tool which can be used for the assessment and improvement of systems engineering processes in a program/project.
AF SEAM Goals

- Goals
 - Ensure a Consistent Understanding of SE
 - Ensure Core SE Processes are in Place and Being Practiced
 - Document repeatable SE “Best Practices” across AF
 - Identify Opportunities for Continuous Improvement
 - Clarify Roles and Responsibilities
 - Improve Program Performance & Reduce Technical Risk
Why We Need SE Assessment

• Lack of Disciplined System Engineering (SE) has been a major contributor to poor program performance
• Many Problems Have Surfaced Repeatedly with AF Programs
 • Missed or Poorly Validated Requirements
 • Poor Planning Fundamentals
 • Lack of Integrated Risk Management
 • Lack of Rigorous Process
 • Lack of Process Flow Down
• Restoring SE Discipline in AF Programs Is Key to Improved Performance and Credibility
• Restoring Disciplined SE
 • Clear Definition of Expectations
 • Well Aligned with Policy

• Established Assessment Methods & Tools
 • Best Practices Baseline
 • Driving Improvement

• Moving towards
 • Deeper Understanding of SE Processes
 • More Efficient Programs
Why AF SEAM

• AF SEAM is a composite of Industry & DoD SE best practices
 • Maps to CMMI -ACQ 1.2 & -DEV 1.2
 • Consistent w/ Industry and DoD guidance

• Advantages to using AF SEAM
 • Streamlining of CMMI process areas to AF programs
 • AF-centric w/ end-to-end life cycle coverage
 • More focused document requires less program overhead
 • Does not require SEI certified assessors

• Impact to AF programs
 • Assure programs are achieving desired outcomes
 • Ensure program teams have adequate resources
 • Qualified People, Process Discipline, Tools/Technology
AF SEAM Pedigree

- All AF product Centers selected and tailored some version of the Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI®) to baseline process institutionalization
- SEI CMMI® is the Defense Industry-wide accepted method for process appraisal and improvement
- The SEI CMMI® incorporates principles and practices from recognized industry and US Government system engineering and related standards such as:
 - AFI 63-1201 Life Cycle Systems Engineering
 - Defense Acquisition Guidebook, Chapter 4
 - MIL-STD 499B System Engineering
 - ANSI/EIA 632 Processes for Engineering a System
 - IEEE/EIA 731 Systems Engineering Capability Model
 - INCOSE System Engineering Standard
 - IEEE 1220 Application and Management of the Systems Engineering Process
AF SEAM Content

- Process Areas (PAs)
- Goals
- Practices
- Informative Material
 - Description
 - Typical Work Products
 - Reference Material
 - Other Considerations

Level of Specificity
- Broader
- Most Detailed
Principles & Objectives

Best Practices from Government & Industry

People

with Skills, Training & Motivation

Lean Assessment of Integrated Team

Process & Procedures

the Glue that Holds it Together

Tools & Technology

Baseline Practice of Systems Engineering

the Means to Execute

Continuous Process Improvement
Why Focus on Process?

"If you can't describe what you are doing as a process, you don't know what you are doing."

- W. Edwards Deming
AF SEAM Elements

- **10 Process Areas (PAs)**
 - Based in CMMI process area construct
 - Conforms with AFI 63-1201 & DAG Chapter 4

Process Areas (PAs)

- Configuration Mgmt (CM)
- Decision Analysis (DA)
- Design (D)
- Manufacturing (M)
- Project Planning (PP)
- Requirements (R)
- Risk Mgmt (RM)
- Sustainment (S)
- Tech Mgmt & Ctrl (TMC)
- Verification & Validation (V)

- 34 Goals - *Are Accomplished through the Specific Practices*
- 120 Specific Practices
- 7 Generic Practices (Apply to each Process Area)
AF SEAM Practices

- **Specific Practices** – Each one applies to only one Process Area
- **Each Practice has Informative Material**
 - Description
 - References
 - Typical Work Products
 - Other Considerations
- **Generic Practices**
 - Must be accomplished for each Process Area
 - Ensures specific practices are executed
 - Involves stakeholders
<table>
<thead>
<tr>
<th>Process Area</th>
<th>Goals</th>
<th>Specific Practices</th>
<th>Generic Practices</th>
<th>Total Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Mgmt</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>Decision Analysis</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Design</td>
<td>3</td>
<td>14</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>4</td>
<td>12</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>Project Planning</td>
<td>3</td>
<td>15</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>Requirements</td>
<td>4</td>
<td>13</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>Risk Mgmt</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Sustainment</td>
<td>4</td>
<td>15</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>Tech Mgmt & Control</td>
<td>4</td>
<td>15</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>V & V</td>
<td>5</td>
<td>16</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
<td>120</td>
<td>70</td>
<td>190</td>
</tr>
</tbody>
</table>
Sample Specific Practice

- **RMG1P1** Determine risk sources and categories

- **Description**: Establish categories of risks and risk sources for the project initially and refine the risk structure over time (e.g., schedule, cost, supplier execution, technology readiness, manufacturing readiness, product safety, and issues outside control of team), using Integrated Product Teams. Quantify the risk probability and consequence in terms of cost and schedule.

- **Typical Work Products**:
 - Risk matrix
 - Risk management plan

- **Reference Material**: USAF Operational Risk Management, AFI 90-901

- **Other Considerations**: Consider using Acquisition Center of Excellence Risk Management Workshops when needed. For manufacturing risks consider the capability of planned production processes to meet anticipated design tolerances. Include the supplier’s capacity and capabilities in the analysis.
Generic Practices

1. Establish and maintain the description of a defined process
2. Establish and maintain plans for performing the process
3. Provide adequate resources for performing the process, developing the work products, and providing the services of the process
4. Assign responsibility and authority for performing the process, developing the work products, and providing the services of the process
5. Train the people performing or supporting the processes needed
6. Monitor and control the process against the process plan and take appropriate corrective action
7. Review the activities, status, and results of the process with higher level management and resolve issues
Process Detail Outline

A – B
• Roles/Responsibilities
• Training
 - Leadership
 - Self Assessment

B
SELF ASSESSMENT
• Leadership identifies “area(s)” of self assessment
• Describes self assessment activity
• What needs to be accomplished
• Capture data
• Presentation of results

C
VALIDATION REQUIRED?
YES
NO

D
CONDUCT VALIDATION
• In brief
• Conduct interviews
• Analysis
• Presentation of results

E
POST RESULTS

Feedback

A
START

C – D
• Build Team
• Train team
• Logistics support
• Set schedule
Criteria for Methodology

- Facilitate Self Assessment
- Facilitate Continuous Improvement
- Provide insight into Program/Project Processes & Capability
- Objective Assessment
- Consistent Near and Far Term Approach
- Provide Results that are meaningful for leadership
 - Relevant to PM/PEO/CC
 - Simple
 - Understandable
 - Graphical
- Support Multi-level Measurement & Reporting
 - Program/Project, Squadron, Group, Wing, Center
 - Resource Allocation
 - SE Process Improvement
Defining the Methodology

- Hands Off
- Promulgate Policy
 - Directives
 - Instructions
 - Checklists
 - Guidance
- Expect Compliance

- AF SEAM
 - Collaborative & inclusive
 - Leanest Possible Best Practices “Must Dos”
 - Clearly Stated Expectations
 - Program Team & Assessor Team
 - Training
- Self Assessment of Program with Validation Assessment

Assessment Methods that Balance Time and Effectiveness

Assessment Continuum

Low

Hands Off
Promulgate Policy
Directives
Instructions
Checklists
Guidance
Expect Compliance

AF SEAM
Collaborative & inclusive
Leanest Possible Best Practices “Must Dos”
Clearly Stated Expectations
Program Team & Assessor Team
Training
Self Assessment of Program with Validation Assessment

High

Hands On
Comprehensive Continuous Process Improvement
- Highly Detailed Process Bibles
- Training
Validation Assessment
- Deep Dives
SE Assessment Activities

Phase I
- Planning
 - Read Ahead Package
 - Logistics Planning
 - Training

Phase II
- Self-Assessment
 - Self Assessment Training
 - Project performs self-assessment
 - Provide self-assessment to review team

Phase III
- Independent Validation
 - Team In-Brief
 - Project Brief
 - Review Self-Assessment
 - Collaborative Interviews
 - Document Reviews

Phase IV
- Report Results
 - Consolidate Results
 - Prepare final report / outbrief
 - Deliver Final Results
Assessment Outputs

- Feedback
 - Lessons learned from assessment tool
 - Collaborative review
- Findings
 - Completed assessment tool
 - Strengths
 - Improvement opportunities
 - Output metrics
- Recommendations
- Final outbrief
Specific Practices Summary

<table>
<thead>
<tr>
<th>Percentage (of those practices scored)</th>
<th>75%</th>
<th>50%</th>
<th>79%</th>
<th>73%</th>
<th>87%</th>
<th>86%</th>
<th>100%</th>
<th>67%</th>
<th>83%</th>
<th>93%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>DA</td>
<td>D</td>
<td>M</td>
<td>PP</td>
<td>R</td>
<td>RM</td>
<td>S</td>
<td>TMC</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Specific Goal 1

- **SP 1.1**: 1 1 1 0 1 1 1 1 1 1
- **SP 1.2**: 1 1 1 1 1 1 1 1 1 1
- **SP 1.3**: 1 1 1 1 1 1 1 1 1 1
- **SP 1.4**: N/A 0 1 1 1 1 1 1 1 1
- **SP 1.5**: 0 0 1 1 1 1 1 1 1 1

Specific Goal 2

- **SP 2.1**: 1 1 1 0 1 1 1 0 1 1
- **SP 2.2**: 1 0 0 1 1 1 1 0 1 1
- **SP 2.3**: 0 1 1 1 1 1 1 0 1 1
- **SP 2.4**: 0 1 1 1 1 1 1 0 1 1
- **SP 2.5**: N/A 1 1 1 1 1 1 1 1 1
- **SP 2.6**: 1 1 1 1 1 1 1 1 1 1
- **SP 2.7**: 1 1 1 1 1 1 1 1 1 1
- **SP 2.8**: 1 1 1 1 1 1 1 1 1 1

Specific Goal 3

- **SP 3.1**: 1 1 1 1 1 1 1 0 1 1
- **SP 3.2**: 1 1 1 1 1 1 1 0 1 1
- **SP 3.3**: 1 1 1 1 1 1 1 0 1 1
- **SP 3.4**: 1 1 1 1 1 1 1 0 1 1
- **SP 3.5**: 1 1 1 1 1 1 1 0 1 1

Specific Goal 4

- **SP 4.1**: 1 1 1 1 1 1 1 1 1 1
- **SP 4.2**: 0 1 1 1 1 1 1 1 1 1
- **SP 4.3**: 0 1 1 1 1 1 1 1 1 1
- **SP 4.4**: 1 1 1 1 1 1 1 1 1 1
- **SP 4.5**: 1 1 1 1 1 1 1 1 1 1

Specific Goal 5

- **SP 5.1**: N/A
- **SP 5.2**: N/A
Generic Practices Summary

<table>
<thead>
<tr>
<th>PA/GP</th>
<th>GP1</th>
<th>GP2</th>
<th>GP3</th>
<th>GP4</th>
<th>GP5</th>
<th>GP6</th>
<th>GP7</th>
<th>GP Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>DA</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>PP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>RM</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>TMC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

GP Legend

- **1**: Green
- **0**: Red

PA Legend

- **6-7**: Green
- **4-5**: Yellow
- **<4**: Red
Summary

• Goal is to Continue to Improve Program Performance
 • Too many examples of program performance/issues being tracked back to lack of SE discipline

• Long Term Goal – Revitalize & Institutionalize Systems Engineering
 • Use SE “Best Practices”
 • Assist programs in achieving desired outcomes
 • Assist program teams in resource planning
 • Qualified People
 • Disciplined Processes
 • Tools/Technology
Back Up Slides
<table>
<thead>
<tr>
<th>Center</th>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAC</td>
<td>Ian Talbot</td>
</tr>
<tr>
<td>AEDC</td>
<td>Neil Peery, Maj Mark Jenks</td>
</tr>
<tr>
<td>ASC</td>
<td>Gary Bailey</td>
</tr>
<tr>
<td>AF CSE</td>
<td>Rich Freeman, Randy Bullard</td>
</tr>
<tr>
<td>HQ AFMC</td>
<td>Caroline Buckey</td>
</tr>
<tr>
<td>ESC</td>
<td>Bob Swarz, Bruce Allgood</td>
</tr>
<tr>
<td>OC-ALC</td>
<td>Cal Underwood, Bill Raphael</td>
</tr>
<tr>
<td>OO-ALC</td>
<td>Jim Belford, Mahnaz Maung</td>
</tr>
<tr>
<td>SMC</td>
<td>Linda Taylor</td>
</tr>
<tr>
<td>WR-ALC</td>
<td>Jim Jeter, Ronnie Rogers</td>
</tr>
</tbody>
</table>
Spiral 2

- Capability Enhancement
 - Re-look process areas for improvements
 - Further refine assessment methodology
 - Strengthen inclusion of software
 - Capture and promulgate best practices/lessons learned
 - Review scoring
 - Examine potential use for SE health assessment
 - Migrate to web-based platform

- Resources
 - Funding
 - People
 - Computer Based Training

- Schedule
 - Estimated 1-year effort
 - One member from each Center
 - Working Group meetings held approximately bi-monthly

- Lead POC/Steering Group
 - Staff support
 - Community of Interest
 - Model sustainment (continuous improvement)
Scoring Roll-Up

Specific Practice Assessment Results
XXX Center

Number of Programs

Process Area
CM DA D M PP R RM S TMC V
Scoring Roll-Up

Generic Practice Assessment Results
XXX Center

Number of Programs

Practice Area

GP1 GP2 GP3 GP4 GP5 GP6 GP7
Implementation By Center

<table>
<thead>
<tr>
<th>CENTER</th>
<th>5 AUG 08 - FEEDBACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ AAC</td>
<td>"AAC began integrating AF SEAM in our established program assessment process in January 2008 and expects to complete this integration in FY09."</td>
</tr>
<tr>
<td>✔ AEDC</td>
<td>"We will begin implementing AF SEAM in October."</td>
</tr>
<tr>
<td>✔ ASC</td>
<td>"We are creating a plan to migrate from our current tool to SEAM, tailored with AFMC and ASC specific areas of interest."</td>
</tr>
<tr>
<td>✔ ESC</td>
<td>"We have initiated tailoring efforts to implement AF SEAM by the end of the calendar year. We will be working closely with SMC, our acquisition partner, on the tailoring and implementation effort."</td>
</tr>
<tr>
<td>✔ OC-ALC</td>
<td>"Strongly support, have plans in place, ready to go!"</td>
</tr>
<tr>
<td>✔ OO-ALC</td>
<td>"We are implementing now."</td>
</tr>
<tr>
<td>✔ SMC</td>
<td>"SMC plans to adopt AF SEAM and comply with related policies."</td>
</tr>
<tr>
<td>✔ WR-ALC</td>
<td>"We'll begin implementation at Robins with pilot assessments in F-15 and Avionics."</td>
</tr>
</tbody>
</table>

Development process yielded 100% buy-in
How Value Engineering (VE) Enhances Diminishing Manufacturing Sources and Material Shortages (DMSMS) Solutions

Dr. Jay Mandelbaum

Institute for Defense Analyses
4850 Mark Center Drive • Alexandria, Virginia 22311-1882
Outline

• Introduction to DMSMS
• Introduction to VE
• Relationship of the VE methodology to the DMSMS risk management process
• Real VE examples for DMSMS resolution options
• Conclusions and next steps
Problems DMSMS Addresses

- *Technology improvements*: As new products are developed, the technology used in predecessor products becomes outdated, making it more difficult to maintain the older equipment.

- *Decreasing demand*: The parts needed to repair products may become more difficult and expensive to acquire because fewer are produced as demand for them decreases.

- *Non-availability of materials*: The materials required to manufacture products may no longer be available, or they may be uneconomical to procure.
DMSMS Risk Management Process

Identification and Notification

"Sound the alarm," There must be quick and concise communication between all relevant parties when a DMSMS case first occurs.

Verification

Determine the scope of the problem, discerning which systems will be affected, and to what extent.

Options Analysis

Generate solutions to the problem, collecting data and analyzing case-specific issues such as cost and life expectancy. The best solution may be combination of several traditional methods.

Resolution/ Implementation

Determine a best solution and discern methods for implementing that best solution, including methodologies, financial budgets, expected time frames, and specific responsibilities of the parties involved.

Source: DMSMS Guidebook, p. 3-1.
Outline

• Introduction to DMSMS
 • Introduction to VE
 • Relationship of the VE methodology to the DMSMS risk management process
 • Real VE examples for DMSMS resolution options
 • Conclusions and next steps
What is VE?

- According to Public Law 104-106 value engineering means an analysis of the functions of a program, project, system, product, item of equipment, building, facility, service, or supply of an executive agency, performed by qualified agency or contractor personnel, directed at improving performance, reliability, quality, safety, and life cycle costs.

- Characteristics
 - Systems engineering tool
 - Contractually authorized
 - Employs a simple, flexible and structured methodology
 - Promotes innovation and creativity
 - Incentivizes contractor to help government’s value proposition
An Actual VECP for the Evolved Sea Sparrow Missile (ESSM)

• Background
 – The ESSM is an advanced a radar-guided missile with a high explosive warhead used for surface-to-air anti-missile defense
 – A missile safe and arm fuze prevents an unintended launch and, once launched, arms the warhead when the proper stimuli (e.g., speed, gravitational force) are received

• DMSMS situation
 – ESSM design called for an obsolete mechanical safe and arming fuze
 – Number of suppliers was limited and costs were high
 • Highly skilled artisans were needed for the manufacturing process, and much of the world fuze market had adapted to electronic fuzes

• The contractor proposed a VECP to replace the mechanical safe and arm fuze with an electronic one adapted from the Sidewinder missile
 – Development and implementation costs were $1,873,911; took approximately 2 years to offset
 – Total recurring cost savings equaled $6,832,000, which, when spread over the 1,600 units involved, resulted in a net savings per unit of $4,270
 – Savings shared equally between the Navy and the contractor
Factors Leading to VE Solutions

- Advances in technology
- Excessive cost
- Questioning specifications
- Additional design effort
- Changes in user’s needs
- Feedback from test/use
- Opportunities for design improvements
- Miscellaneous

Problems DMSMS Addresses

- Technology improvements: As new products are developed, the technology used in predecessor products becomes outdated, making it more difficult to maintain the older equipment
- Decreasing demand: The parts needed to repair products may become more difficult and expensive to acquire because fewer are produced as demand for them decreases
- Non-availability of materials: The materials required to manufacture products may no longer be available, or they may be uneconomical to procure
Phases of the VE Methodology (Job Plan)

- Orientation Phase
- Information Phase
- Function Analysis Phase
- Creative Phase
- Evaluation Phase
- Development Phase
- Presentation Phase
- Implementation Phase

Often carried out in a Workshop format
Outline

• Introduction to DMSMS
• Introduction to VE
• Relationship of the VE methodology to the DMSMS risk management process
• Real VE examples for DMSMS resolution options
• Conclusions and next steps
Linking the two Methodologies

Phases of the VE Methodology
- Orientation
- Information
- Function analysis
- Creative
- Evaluation
- Development
- Presentation
- Implementation

Steps in the DMSMS Risk Management Process
- Identification and notification
- Verification
- Options analysis
- Resolution/implementation

There is a strong synergy
Potential VE Contributions to DMSMS

- Finds innovative approaches to problem solving that might not otherwise be considered using the creative elements of the VE methodology
- Incentivizes DoD participants and their industry partners to increase their joint value proposition in achieving best value solutions as part of a successful business relationship
 - Provides businesses with a strong profit-based incentive for using its skilled engineering workforce to mitigate DoD’s DMSMS issues
- Rewards contractors for making investments in DMSMS resolution options
- Allows the DoD to spread non-recurring engineering costs over time, making them far easier to fund
Benefits Realized Regardless of the DMSMS Resolution Option

Source: DMSMS Guidebook p. 4-11
Outline

• Introduction to DMSMS
• Introduction to VE
• Relationship of the VE methodology to the DMSMS risk management process
 • Real VE examples for DMSMS resolution options
• Conclusions and next steps
VE Contributions to an Existing Stock Approach

• Definition
 – The current supplier utilizes on-hand inventories or agrees to continue to produce the item in question
 – Typically use a life-of-type or bridge purchase

• Drawbacks to this approach
 – Costs for material management including packaging, storage, transportation, shelf life, and upkeep of the inventory
 – Difficult to estimate demand

• How VE can help
 – Value engineering incentivizes the contractor to perform the material management function and solves short-term budget problems associated with a quantity purchase
Standard Missile Radome VE Example for Existing Stock Approach

- **Background**
 - The Standard Missile is a surface-to-air air defense weapon is a fleet area air defense and ship self defense weapon
 - The radome is a dome that covers the radar on the outside of the missile

- **DMSMS situation**
 - There are few radome suppliers because of the complexity involved in finishing them to both withstand high heat and acceleration and allow signals to penetrate without distortion
 - Due to reduced program funding, the Navy halved its Standard Missile procurement rate
 - If the radomes were to be purchased on the revised procurement schedule, the unit price would increase by 50 percent due to production slow down
 - The Navy wanted to make a quantity purchase to reduce the overall cost, however it did not have the resources in the current fiscal year

- **The contractor used a VECP to make the quantity radome purchase and sell future radome lots back to the Navy at the lower price, thus leading to significant savings**
 - Total savings was $1,153,500 shared equally by the contractor and the Navy
VE Contributions to a Reclamation Approach

• Definition
 – Examines marginal or out-of-service equipment or supplies as a potential source of DMSMS parts
 – Equipment that is in a long supply, perhaps as a result of a planned product improvement or modernization effort where baseline equipment could be cannibalized

• Drawbacks to this approach
 – Reclaimed parts may be unserviceable or damaged
 – Probably represents only a short-term solution

• How VE can help
 – Value engineering can play an important role in making reclamation feasible
Artillery VE Example for Reclamation Approach

• Background
 – The M795 is a 155-millimeter high-explosive artillery projectile with a high-fragmentation steel body
 – It provides increased effectiveness against major ground-force threats at greater ranges for anti-personnel and anti-materiel targets

• DMSMS situation
 – Because of a world-wide scrap steel shortage, it was difficult to maintain a source for M795 steel

• A VE study was initiated to develop a process to reutilize the steel from a large demilitarization stockpile of surplus M106 8-inch projectile shells
 – The steel could not be reclaimed directly since the projectiles contained trace amounts of explosives
 – A process was developed to decontaminate and mill the surplus M106 projectiles to reclaim the steel
 – M795 production costs were decreased
 – The demilitarization stockpile was reduced
 – Total cost avoidance savings in FY 2006 for the 197,000 projectiles processed amounted to $9.2 million
VE Contributions to an Alternative Source Approach

- **Definition**
 - Items currently in production that are form, fit, function, and interface qualified replacements such as a superseding part listed in a specification or standard
 - May apply to aftermarket or reverse-engineered sources (discussed later)

- **Drawbacks to this approach**
 - Same as existing stock

- **How VE can help**
 - VE can increase the efficiency of the new suppliers’s production process
VE Contributions to an Existing Substitute Approach

• Definition
 – A different part that is *currently* being produced for a different application but is (or can be made) capable of performing fully (in terms of form, fit, and function) in place of the DMSMS item

• Drawbacks to this approach
 – Non-recurring engineering expenses
 – Market conditions may not have a favorable outcome for the new source
 – Qualifying and testing the replacement item
 – The unit cost may be higher

• How VE can help
 – Value engineering function analysis identifies viable options for items to be used as an existing substitute and incentivizes the prime contractor to invest in them -- represents probably the most prevalent use of VE for DoD weapon systems
Phalanx VE Example for Existing Substitute Approach

• Background
 – The Phalanx Close-In-Weapon-System is a fast-reaction, rapid-fire 20-millimeter gun system that provides Navy ships with a terminal defense against anti-ship missiles, fixed-wing aircraft, small gunboats, and helicopters
 – A contract was awarded to retrofit Phalanx with a manual controller to direct fire against targets of opportunity
• The contractor submitted a VECP to replace the standard military controller with a ruggedized commercial derivative
 – On its own initiative, the contractor produced a modified unit
 – Based on the test results, the contractor had confidence that the commercial derivative met all of the technical requirements at a lower cost
 – The military standard controller would cost $7,600, while the commercial derivative was only $2,100
 – Since each gun required three controllers, net savings was $16,500 per system
 – Approximately $2 million in savings were shared by the Navy and the contractor
VE Contributions to an Aftermarket Approach

• Definition
 – The original equipment manufacturer authorizes the assembly of an obsolete part and provides necessary tech data
 – A smaller company might undertake production that is no longer sufficiently profitable for a larger company at a lower price; competition also leads to lower cost

• Drawbacks to this approach
 – Market conditions may not have a favorable outcome for the new source
 – Non-recurring engineering expenses will be incurred
 – The unit cost may be higher

• How VE can help
 – Value engineering enables the development of viable aftermarket sources
AMRAAM VE Example for Aftermarket Approach

• Background
 – AMRAAM is a fire-and-forget air-to-air missile capable of attacking beyond-visual-range targets
 – The Inertial Reference Unit (IRU) accurately measures the missile vertical velocity and position enabling in-flight steering and targeting adjustments

• DMSMS situation
 – Originally, there was only one source for this expensive item
 – The contractor was aware that others were interested in furnishing this item, so the contractor provided the requirements and helped encourage others in the development of the IRU

• The contract contained a mandatory VE program and DoD recognized the value of having a second source for the IRU
 – Approximately $4 million in non-recurring engineering costs were required
 – These efforts saved $2,000 per unit
 – The existence of a second source through the VECP probably prevented the price of the IRU from increasing
VE Contributions to a Reverse Engineering Approach

• Definition
 – A producer obtains and maintains the design, equipment, and process rights to manufacture a replacement item by analyzing the part’s structure, function, and operation

• Drawbacks to this approach
 – Market conditions may not have a favorable outcome for the new source
 – Non-recurring engineering expenses
 – The new unit cost may be higher
 – Intellectual property rights

• How VE can help
 – Value engineering function analysis identifies viable options for reverse engineering parts
Missile VE Example for Reverse Engineering Approach

• Background
 – A defense missile contractor had a sole-source subcontractor for a costly warhead
 – The subcontractor was having problems meeting “insensitive munitions capability” requirements for the warhead to not explode in a fire or if dropped

• With DoD cooperation, a VECP was submitted to develop an alternative, and less expensive, source for the warhead by reverse engineering
 –Insensitive munitions capability improved by using a different process for making the explosive portion of the warhead
 –Approximately $12 million is being invested to develop the new source
 –Estimated savings is $15,000 per warhead
 –Second source also expected to control future cost increases
VE Contributions to a Redesign Approach

• Definition
 – Either eliminate the need for the part in question or replace it with another – may occur at many levels
 • The DMSMS part itself
 • The next higher level configuration item
 • An entire subsystem
 • The end item itself

• Drawbacks to this approach
 – Non-recurring engineering expenses for building and testing the new production capability
 – Qualification and certification to meet requirements

• How VE can help
 – Value engineering function analysis identifies viable minor redesign options and it systematically identifies economically viable opportunities for a major redesign when there is a high degree of interdependence among parts
Early in its production, the AMRAAM missile used an Analog Range Correlator

- The unit was scheduled to be replaced by a Digital Range Correlator as a pre-planned product improvement
- With implementation several years in the future, the contractor was faced with producing the missile using a very difficult to build and extremely sensitive Analog Range Correlator

The contractor submitted a VECP to use an Interim Digital Range Correlator

- Implementation occurred four years in advance of the pre-planned version

Savings

- $13,000 per unit
- Government shared exceeded $100 million
- Contractor received over $20 million in VE incentives after being reimbursed for approximately $9 million in NRE
Outline

• Introduction to DMSMS
• Introduction to VE
• Relationship of the VE methodology to the DMSMS risk management process
• Real VE examples for DMSMS resolution options
 • Conclusions and next steps
VE Enriches DMSMS Resolution Options

- VE is an extremely powerful tool and methodology for
 - Identifying a large number of resolution options
 - Evaluating their potential for solving the problem
 - Developing recommendations
 - Providing incentives for the investments needed for successful implementation

Using the VE methodology provides greater opportunity for developing and implementing innovative solutions to DMSMS problems
A VE / DMSMS Partnership Would be Beneficial

• Nature of the partnership
 – DMSMS community identifies problems
 – VE provides and incentivizes alternative solutions

• Potential actions to develop a partnership
 – Update the DMSMS Guidebook with a comprehensive treatment of VE and its application to DMSMS
 – Incorporate DMSMS examples into the DAU VE distance learning course
 – Incorporate DMSMS into the introductory VE certification training
 – Establish a DMSMS track at the annual VE professional society conference
 – Maintain and strengthen the VE track at the annual DMSMS conference
 – Augment the DAU DMSMS distance learning courses to include a section on VE
 – Include VE lessons in appropriate DAU DMSMS classroom material
Additional Actions

• Outreach to contractors and program managers
• Outreach to the PBL community
 – Use of Value Engineering Program Requirement clause
• Potential DFARS changes
Sources of More Information

- Contractual aspects of value engineering
 - DAU CON 236 (online course)
- VE methodology
 - SAVE International http://www.value-eng.org/
 - Certified facilitators and consultants
- Publications
 - Value Engineering Handbook
 - Contracting Guide to Value Engineering
 - Value Engineering Change Proposals in Supplies or Services Contracts
 - Value Methodology Pocket Guide www.goalqpc.com
- R-TOC/VE websites: http://rtoc.ida.org or http://ve.ida.org
GAO Review of Best Practices for Quality Assurance

11th Annual Systems Engineering Conference
October 21, 2008

Cheryl Andrew
Senior Defense Analyst
Agenda

• GAO Audit Objectives
• Background
• Scope
• Findings
• Conclusions
• Recommendations
Objectives

- Identify the impact of quality problems on selected DOD weapon systems and defense contractors’ practices that contributed to the problems
- Identify practices used by leading commercial companies that can be used to improve the quality of DOD weapon systems
- Identify problems DOD faces in terms of improving quality
- Identify recent DOD initiatives that could improve quality
Background

- A quality product is one that is delivered
 - on time
 - performs as expected
 - performs when need
 - can be obtained at an affordable cost

- MIL-Q-9858A guided DOD quality efforts from the mid-1960’s to the mid-1990’s

- DOD adopted commercial standards (i.e., ISO 9001) in mid-1990’s
Scope

Commercial Manufacturers
- Boeing Commercial
- Cummins, Inc.
- Kenworth Truck Company
- Siemens Medical Solutions
- Space Systems/Loral

Commercial Customers
- American Airlines
- Intelsat

DOD Weapon Systems – Prime*
- ASDS - Northrop Grumman
- ATIRCM/CMWS - BAE
- EFV - General Dynamics
- F-22A – Lockheed Martin
- Global Hawk – Northrop Grumman
- JASSM - Lockheed Martin
- LPD-17 – Northrop Grumman
- MH-60S – Sikorsky
- PAC-3 – Lockheed Martin
- V-22 – Bell/Boeing
- WGS – Boeing

* These contractors are involved with over $1 trillion, or about 76 percent of the $1.5 trillion DOD plans to spend on weapon systems in its current portfolio.
Objective 1: DOD Quality Problems and Prime Contractor Practices that Contributed to Problems

• For the 11 programs we reviewed, quality problems resulted in
 • Over $1.5 billion in cost overruns
 • Up to 5 years of schedule delays
 • Reduced weapon system availability
 • Military personnel deaths

• Prime contractor practices that contributed to problems:
 • Poor systems engineering practices related to requirements analysis, design, and testing
 • Manufacturing processes not in control
 • Supplier quality problems
Objective 1: Expeditionary Fighting Vehicle
Example of Systems Engineering Problem

- Contractor was only able to demonstrate 7.7 hours between operational mission failures during pre-production testing, well short of the 17 hour goal

- Primary problem was part and subsystem interferences

- Root causes
 - subassembly teams claiming the same space
 - inconsistent computer model checks
 - lack of design engineer experience
 - tight engineering model release schedules

- 4-year extension to SDD
- $750 million cost growth
Objective 1: LPD-17
Example of Manufacturing Problems

Over 5,000 quality problems were found

• Faulty hydraulics piping welds due to inexperienced workers and improper documentation
 • Some rework was required
 • All welds had to be re-inspected
 • Could have resulted in injuries
• Peeling non-skid coating due to unclean surfaces and high humidity
 • Rework was required
 • Long-term solution has not been identified

• 3-year delay
• $846 million cost growth
Objective 1: Patriot Advanced Capability-3
Example of Supplier Quality Problem

- Program has experienced a number of problems with the seeker portion of the missile

- A sub-tier supplier accepted non-conforming hardware without authority
 - seeker contractor identified quality problem
 - resulted in rework
 - re-inspection of components

- Same supplier also had poor workmanship and inadequate manufacturing controls
 - Operated in a development rather than a production environment
 - Facility was temporarily shut-down to address management and production problems

- 6-month schedule slip
- Delivery delay of 100 missiles
Objective 2 – Commercial Best Practices – Systems Engineering

Ensure that a product’s requirements are achievable with available resources and technologies

• Siemens Medical Solutions
 • Clear, precise, measurable, comprehensive requirements
 • Quality and reliability requirements prior to commitment

• Boeing Commercial Airplanes
 • “Mistake-proof” designs
 • Rating tool on critical designs

• Space Systems/Loral
 • Reliability assessments
 • Highly accelerated life testing
Commercial Best Practices - Manufacturing

Ensure that a product’s requirements can be produced consistently with high quality and low variability

- Cummins, Inc.
 - Capability growth plan for manufacturing processes
 - Prototypes to validate design and production processes

- Kenworth Truck Company
 - Electronic system for process documents
 - Pictures and engineering specifications
 - Training audits
Commercial Best Practices – Supplier Quality

Ensure that suppliers have the ability to deliver high-quality parts

- Kenworth Truck Company
 - Hold first-tier suppliers accountable for quality problems attributed to lower-tier suppliers

- Boeing Commercial Airplanes
 - 99% part conformance expectations for suppliers
 - Retain higher-performing suppliers

- Siemens Medical Solutions
 - 98% part conformance expectations for suppliers
 - Levy financial penalties against non-conforming suppliers
Objective 3 – Problems DOD Faces When Trying to Improve Quality

- Environment
 - DOD awards cost reimbursement contracts assumes most of the financial risks
 - Reliability is not emphasized at development start
 - Requirements are set without adequate systems engineering knowledge

- Oversight
 - Risk-based approach used to oversee contractors
 - DCMA and service oversight varies by program
 - Information is not aggregated in a manner that would allow DOD to determine overall weapon system quality, prime contractor performance, or systemic problems
Objective 4 – DOD Initiatives that Could Improve Quality

- Concept Decision Reviews
- Time-Defined Acquisition
- Configuration Steering Boards
- Key Performance Parameters/Key System Attributes
- Award and Incentive Fees
- Establishing Reliability Goal and Demonstrating Reliability Prior to Production
- New Reliability, Availability, and Maintainability Policy (7/08)
Conclusions

• Despite adopting commercial quality standards and implementing new requirements and systems engineering policies, DOD still has difficulty acquiring high-quality weapon systems in a cost-efficient and timely manner
• Poor systems engineering, manufacturing control, and supplier quality are the underlying problems
• Improvements in analyzing requirements and successful implementation of several new initiatives could improve outcomes

It is going to take a joint effort between DOD and prime contractors to improve weapon system quality
Recommendations

• As part of the concept decision review initiative, require systems engineering analysis be completed by the prime contractor prior to entering into a development contract

• Establish measures to gauge the success of the concept decision review, time-defined acquisition, and configuration steering board initiatives

• Identify and collect data that provides metrics about the effectiveness of prime contractors’ quality management system by weapon system and business area over time

• Develop evaluation criteria that would allow DOD to score the performance of contractors’ quality management systems based on actual performance
The Role of T&E in the Requirements Process for System of Systems

Walter C. Reel
Test Engineer
NSWCDD - W33
walter.reel@navy.mil

http://www.ctc.com/learnaboutctc/SoSCE.cfm
How do we define testable requirements for System of Systems (SoS) when no one understands exactly how the complex system will operate and integrate once it comes on-line and the human in the loop is added to the equation?
Most problems with SoS designs, (as with most designs), lead us back to the requirements phase.

The synthesis of these very large systems often results in different problems than those presented by the design of a single, but complex, system.

http://thinkingproblemmanagement.blogspot.com/2008/03/differences-between-problems-and.html
In the past the contribution of Test and Evaluation professionals has not come until after the system Detailed Design phase.

It is our recommendation that this be changed and T&E personnel be involved from the beginning of the Requirements and Architecture phase.
The Problem Continued

What do we want the SoS to be able to do?

This is often a very complex question that can have multiple and vague answers that have little meaning when it comes to defining measurable metrics for later testing of our system.

We usually end up with requirements that are too detailed and “Pie in the Sky” requirements that are too vague to implement.

“The system CPU will operate at 500 megahertz.”

“The system will create synergy among multiple sensor systems and enable data fusion at all levels.”
“I need to be able to visualize what my Intel guys are collecting and analyzing so that my understanding of the battle area is current and my decisions are based on accurate, comprehensive, up to date information. I also need to have an understanding of what is changing now, how long things can be expected to remain the same (Dwell Time) and the status of the enemy’s assets as well as my own, and I need this to be a simple process.”
Seems to be a reasonable request, right?

Well let’s look at this primitive need statement and try to do a quick and dirty breakdown of what functionality the Commander is looking for us to incorporate into our C4ISR system to provide these required Command and Control capabilities.

• *Situational Awareness:*
 - Visualization of the Battlespace
 - Near/Real Time Information
 - Sensor Availability
 - Data Fusion
 - Predictive Intelligence
 - Blue Force Intel
 - Order of Battle (OOB)
 - Advanced HSI
Now let’s break down each of these major functionalities into some of their supporting functions.

• Visualization:
 ➢ Maps
 ➢ Overlays
 ➢ Terrain information
 ➢ Weather Information
 ➢ Symbology
 ➢ Movement Representation (Vector)
 ➢ Detail Drill Down
 ➢ Information Filtering and Manipulation
 ➢ DATA Handling
End User Example

• Near/Real Time Information:
 ➢ Direct Sensor feed
 ➢ Single Step Data Sharing
 ➢ Prioritization of Information
 ➢ Latency of Information

http://blog.businessquests.com/marketing_marketing_x0/index.html
• Sensor Availability:

 - Multiple Sensors
 - On Station Time
 - Full Spectrum of Sensor Types
 - Local Sensor Tasking
 - Live Sensor Data Feeds
 - Information on Data Accuracy/Latency
End User Example

http://www-vis.lbl.gov/Vignettes/

• Data Fusion:
 ➢ Autonomous Data Fusion
 ➢ Selectable Data Fusion
 ➢ Fusion C2 Products
 ➢ Fusion C2 Symbology
 ➢ Information Reliability Ratings
End User Example

- Predictive Intelligence:
 - Dwell Time
 - Probable Destination for Moving Units
 - Probable Unit Strength
 - Probable Unit Type
 - Probable Unit Action
 - Predicted Unit Weaknesses
 - Information Reliability Ratings

http://www.berrizbeitia-design.com/art-play.html
End User Example

- Blue Force Intel:
 - Unit Location
 - Unit Movement
 - Unit SITREP
 - Latency of Information

http://www.gdc4s.com/content/detail.cfm?item=35fd8857-c9fe-4036-8739-15f2f8ebd0f6
End User Example

- **OOB:**
 - Known Enemy Unit Locations
 - Known Enemy Unit Equipment
 - Known Enemy Unit Strength
 - Known Enemy Unit Weaknesses
 - Known Enemy Unit Range and Speed
 - Latency and reliability of Information

http://www.globalsecurity.org/military/world/japan/jasdf-orbat.htm
• Advanced HSI:
 - Operators Control Visual Clutter
 - Simple HSI Actions for Data Manipulation, Retrieval, and Storage

We can readily see that many systems will be involved in providing these capabilities to the Command and Control Cell to meet the user’s needs.
“A Command and Control System is required that integrates Near/Real Time Information from Enemy OOB, all deployed Sensors, ISR Data Fusion, Intelligence Analysis, Predictive Intelligence, Blue Force Intel, enemy unit location, and all unit movement data. The system will allow Visualization of this information within the defined Battlespace and allow the operator to manipulate and request information updates and details utilizing simple HSI functionality. The system will be able to filter, store, and transfer information for detailed scrutiny to limit visual clutter.”
The Requirements Definition process now becomes our primary mission.

This process should be conducted utilizing the Integrated Product Team approach and should include all Stakeholders.

If the requirements are too vague System Design will suffer as will construction, test and evaluation.

If the requirements are too specific the ability of the contractor to build a better mousetrap will be hindered and system functionality may suffer.
Requirements Generation

What approach will ensure that the requirements are written so that they properly support the user’s needs and also provide design and testing adequate information to do their job?

Requirements should be written and then evaluated and then re-written and then re-evaluated and then re-written and re-evaluated, etc..., until a consensus is reached by ALL Stakeholders.

We are reminded of the old carpenter’s adage, “measure twice and cut once.”
Collaborating System Interactions

In a SoS world, requirements may already be established for the systems that you will integrate with.

This can often require great negotiating skills, if you are the new kid on the block it is very likely that you will have to make most of the concessions if there are issues with interfacing with fielded systems.
Requirements Generation

Here we see an inherent problem with SoS design and Acquisition:

If we have to incorporate or modify existing systems in order to achieve the desired functionality to fill the user’s need our process will become more time and coordination intensive.

This fact has driven the requirements for Net-Centric Design and Service Oriented Architecture that could ease the integration of multiple Inter/Intra-network systems into a SoS framework
Let’s get back to our discussion and look at Information Exchange Requirements (IERs). In a SoS acquisition IERs become much more important than in most system designs.

IERs tell us who exchanges what information with whom, why the information is necessary, how the information is used, and defines the metrics for the IER.

In SoS there may be hundreds of IERs and to imagine having the resources to test and evaluate all of them is unrealistic. Just as we cannot possibly test all possible combinations of inputs and pre-conditions in a complex software program we will not be able to test all IERs in a complex SoS. Therefore, as with software, we must evaluate the SoS’s states and behaviors against a specification.
A key tool for the definition of how a System of Systems will interface, who it will interface with and what data will be exchanged and the rules for exchanging information among systems is the Department of Defense Architectural Framework (DODAF). The major product areas are defined in the figure above.

Input in the generation of these documents by Test and Evaluation personnel would help to insure that they can be realistically tested and also provide T&E experience to the sponsor during the early generation of system capability definition.
The Role of Test and Evaluation

T&E personnel must be involved from the beginning of the Requirements Definition Phase

Test personnel will be responsible for designing the developmental and operational testing of the system and need to have input into whether or not the requirements being generated can be tested.
Requirements come from many sources;

Sponsors put them in the Acquisition Capabilities documents when defining for the acquisition Program Manager their Key Performance Parameters (KPPs) and other attributes.

Requirements may be determined by the Joint Chiefs of Staff (JCS) as overarching requirements for all programs.

Requirements are derived from discussion with stakeholders and users and they evolve from the process of defining the required system performance.
The Role of Test and Evaluation

Requirements are transformed;

They become Critical Technical Parameters (CTPs) and Software Design or System Specifications (SDS/SS).

Systems are built and tested based on specifications, whether they be software or system.

Specifications define how a system must function and support system requirements.

If requirements are so vague that they cannot be supported by specifications how can the requirement be met or tested?
Testing SoS requires that the system be evaluated for acceptability by the end users, the target audience, the purchasers, and other stakeholders.

It is resource intensive to test all individual IERs, we must rely on testing the outcome of their contribution to the system, as defined in our specifications, to evaluate the systems overall acceptability.

We must know what will not be tested as part of our evaluation in order to examine whether this imposes risk to the performance, or our stakeholders acceptance of the system.
The Role of Test and Evaluation

Other areas for requirements that need to be addressed are the Humans in the Loop (HITL) and Human System Interfaces (HSI).

These provide a whole set of other requirements and can be resource intensive to evaluate. If our SoS require HITL at several different systems’ locations the complexity of the testing is increased greatly.

The performance of most systems, however; is tied to the performance of HITL and to ignore these requirements would add risk to the systems acceptability.
Another dimension of HITL that is not normally designed into testing is the ability of personnel to utilize the system in ways that had not been imagined when the system was designed.

This can be a positive or a negative factor but is a valuable input into the systems’ readiness.

It is important that testing is not always strictly scripted to give the operators latitude when conducting their portion of the evaluation. Doing this will often lead to discoveries testers had not anticipated!
The interdependence of Requirements Definition, Test, and Evaluation takes place throughout the program cycle.

To exclude T&E from the beginning stages of requirements development is to preclude more opportunity for synergy.

To operate in an efficient manner all components of a system must work together; this is a basic definition of a system. Why would we as the systems engineers want to deny this basic truth and eliminate the T&E capability of our acquisition system?
Joint Test and Evaluation Methodology (JTEM)

Systems Engineering for Testing in a Joint Mission Environment (JME)

National Defense Industrial Association
11th Annual Systems Engineering Conference

Test & Evaluation in Systems Engineering Track
October 22, 2008

Earl Reyes
Senior Systems Engineer
757.638.6014
earl.reyes@jte.osd.mil
Overview

- JTEM Problem Statement
- Capability Test Methodology (CTM)
- CTM Systems Engineering Thread
- Summary
Overview

• JTEM Problem Statement
• Capability Test Methodology (CTM)
• CTM Systems Engineering Thread
• Summary
JTEM Problem Statement

Processes and methods for designing and executing tests of systems of systems in the joint mission environment are not well defined or understood. Nor is there a clear understanding of how to assess system performance as it pertains to capabilities supporting joint missions.

Overall Goal: **Recommended Best Practices for a consistent approach to describing, building, and using an appropriate representation of a particular Joint Mission Environment across the acquisition lifecycle.**
Overview

• JTEM Problem Statement
• Capability Test Methodology (CTM)
• CTM Systems Engineering Thread
• Summary
JITEM Capability Test Methodology (CTM) v2.0

6 Steps 14 JITEM Processes

1. Characterize Test
 - Program Introduction Document (PID)
 - Statement of Capabilities (SOC)
 - Develop Test Concept
 - Refine Evaluation Strategy
 - Technical Assessment

2. Plan Test
 - Develop Test Design
 - Perform LVC Distributed Environment Analysis
 - Develop Test Plan

3. Implement LVC-DE
 - Design LVC Distributed Environment Configuration
 - Integrate LVC Distributed Environment

4. Manage Test Execution
 - Develop/Refine Capability Crosswalk
 - Monitoring

5. Evaluate Capability
 - Joint Capability Evaluation (JCE)
 - Analyze Data
 - Evaluate SoS Performance & Joint Mission Effectiveness

6. Joint Mission Environment

LVC – Live, Virtual, Constructive
LVC-DE – Live, Virtual, Constructive Distributed Environment
SoS – System of Systems

jtem@jte.osd.mil
Overview

- JTEM Problem Statement
- Capability Test Methodology (CTM)
- CTM Systems Engineering Thread
- Summary
What is the Joint Mission Environment?

OSD/JS J7
- Analytic Agenda
 - DPS, MSFD, FYAB
- JOpsC Family
 - JOC, JFC, JIC

JS J8/J7 “Capability Lead”
- JCIDS
 - JCD, ICD, CDD, JCIDS DoDAF Views (e.g., OV, SV)
- AOA
- JCAs
- UJTL/Service Task Lists

USJFCOM J8/J7
- TES/TEMP
 - STAR
- JOC-T DoDAF Views

AT&L/Service/Joint Acq Programs
- Methods and Processes

JTEM
- Infrastructure

JMETC
- Infrastructure

Components
- USN/MC Core
 - Sea Environment
 - Air Components
 - Surface Components
 - Subsurface Components
 - CONOPS
 - Link Models
 - Space
- AF-ICE CORE
 - USAF Air Components
 - USAF C2/ISR
 - USAF Weapons
 - USAF Link Models
 - IADS Tools
- Threat Systems
 - NASIC, MSIC, ATSO, NGIC, etc...
- USA 3CE CORE
 - USA Ground Environment
 - USA BMC2
 - USA Platforms
 - USA CONOPS
 - USA Link Models
 - USA Air Components
 - USA Weapons
- Common CORE Tools
 - InterTEC
 - Stealth Viewer
- Common Joint CORE
 - FDCE
 - JSIC
 - JITC

jtem@jte.osd.mil
System Engineering Process

- JFM identifies generic capabilities, environments, behaviors, and tasks
- Logical Design applies the JFM to a use case (e.g., JCAS, JFIRES, etc.) independent of implementation
- Logical Design is transformed into a physical design
- Physical interfaces transformed to executable software
- Physical Design solutions are integrated into a JME (moves to LVC-DE repository for reuse)
JME Foundation Model (JFM)

- Conceptual model to enable implementation-independent reasoning in an idealized framework
- Provides abstract interface descriptions and the logical and quantitative relationships between those interfaces
- The goal of the JFM is to provide a frame of reference for LVC-DE configuration design
- The JFM Description is an evolutionary document that will be modified over time to promote the robustness of the JME

The JFM is a design template to guide the development and reuse of LVC-DE systems.
CTM 0.2: Develop JOC-T

CTM 0
Develop Test & Evaluation Strategy

CTM.0.1
Develop Capability/SoS Description

CTM.0.2
CTM.0.2 Develop JOC-T

CTM.0.2.1
Analyze Mission Objectives

CTM.0.2.2
Analyze Blue

CTM.0.2.3
Analyze Environment

CTM.0.2.4
Analyze Threat

CTM.0.2.5
Compose Joint Operational Context

CTM.0.3
CTM.0.3 Develop Evaluation Strategy

CTM.0.3.1
Identify & Collect Evaluation Inputs

CTM.0.3.2
Develop Critical Joint and Operational Issues

CTM.0.3.3
Establish T&E Strategy Framework

CTM.0.3.4
Develop Risks and Mitigations

CTM.0.4
Develop/Refine Capability Crosswalk

CTM.0.5
Develop Integrated T&E Programmatic Summary
CTM 0.2.1: Analyze Mission Objectives

Recommended Input Info/Sources

0.2 Develop JOC-T

- Joint Operational Context for Test (JOC-T)

Concept of Operations Summary

Analytical Baseline (DPS, MSFD, FYAB)

OV-1 High-Level Operational Concept

Objectives

Products

0.2.1 Analyze Mission

- Operational Overview

0.2.5 Compose Joint Operational Context
CTM 0.2.2: Analyze Blue

<table>
<thead>
<tr>
<th>Recommended Input Info/Sources</th>
<th>Products</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 Develop JOC-T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Joint Operational Context for Test (JOC-T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2.2 Analyze Blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint Tasks</td>
<td>☐ Blue Forces</td>
<td></td>
</tr>
<tr>
<td>Forces and Related Conditions</td>
<td>☐ Blue Actions</td>
<td></td>
</tr>
<tr>
<td>Tasks Steps/Mission Threads (JTA, other sources)</td>
<td>☐ Blue Interactions</td>
<td></td>
</tr>
<tr>
<td>Capability Discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System/SoS Capabilities Required for Current Increment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SoS Synchronization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OV-1 High-Level Graphic</td>
<td>☐ Blue High-Level Graphic (BOV-1)</td>
<td>A</td>
</tr>
<tr>
<td>OV-5 Operational Activity Model</td>
<td>☐ Blue Operational Node Connectivity Model (BOV-5)</td>
<td>B</td>
</tr>
<tr>
<td>OV-2 Operational Node Connectivity Description</td>
<td>☐ Blue Operational Node Connectivity Description (BOV-2)</td>
<td>C</td>
</tr>
<tr>
<td>OV-4 Organizational Relationship Chart</td>
<td>☐ Blue Notional Relationship Chart/Task Organization (BOV-4)</td>
<td>D</td>
</tr>
<tr>
<td>SV-1 System/SoS Interface Description</td>
<td>☐ Blue SoS Interface Description (BSV-1)</td>
<td>E</td>
</tr>
<tr>
<td>SV-5 Operational Activity to System/SoS Function Traceability Matrix</td>
<td>☐ Blue SoS Operational Activity to System/SoS Function Traceability Matrix Description (BSV-5)</td>
<td>F</td>
</tr>
<tr>
<td>SV-4 System/SoS Functionality Description</td>
<td>☐ Blue SoS Functionality Description (BSV-4)</td>
<td>G</td>
</tr>
<tr>
<td>SV-6 System/SoS Data Exchange Matrix</td>
<td>☐ Blue SUT Information Exchange Matrix (BSV-6)</td>
<td>H</td>
</tr>
</tbody>
</table>

0.2.5 Compose Joint Operational Context

jtem@jte.osd.mil
CTM 0.2.3/4: Analyze Environment/Analyze Threat

<table>
<thead>
<tr>
<th>Recommended Input Info/Sources</th>
<th>Products</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capability/SoS Description</td>
<td>□ Joint Operational Context for Test (JOC-T)</td>
<td></td>
</tr>
<tr>
<td>Physical Environment Conditions</td>
<td>□ Physical Environment</td>
<td></td>
</tr>
<tr>
<td>Civil Environment Conditions</td>
<td>□ Civil Environment</td>
<td></td>
</tr>
<tr>
<td>Threat and Operational Environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical Baseline (DPS, MSFD, FYAB)</td>
<td>□ Threat Forces (SoS Threat Assessment)</td>
<td></td>
</tr>
<tr>
<td>Operational Overview</td>
<td>□ Threat Actions (SoS Threat Assessment)</td>
<td></td>
</tr>
<tr>
<td>Threat and Operational Environment</td>
<td>□ Threat Interactions (SoS Threat Assessment)</td>
<td></td>
</tr>
<tr>
<td>Threat Summary</td>
<td>□ Threat High-Level Graphic (TOV-1)</td>
<td>J</td>
</tr>
<tr>
<td>Threat Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System/SoS Threat Assessment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0.2 Develop JOC-T

0.2.3 Analyze Environment

0.2.4 Analyze Threat

0.2.5 Compose Joint Operational Context
CTM 1.4: Technical Assessment

CTM 1.1 Develop Test Concept
- CTM.1.1.1 Establish Overall Test Goal
- CTM.1.1.2 Establish Test Objectives
- CTM.1.1.3 Develop Test Approach

CTM 1.2 Refine Evaluation Strategy
- CTM.1.2.1 Establish Evaluation Basis of Estimate
- CTM.1.2.2 Develop Test Scenario
- CTM.1.2.3 Identify Additional Characterize Test Modeling Requirements

CTM 1.4 Technical Assessment
- CTM.1.4.1 Develop Initial LVC-DE Operational Design Description
- CTM.1.4.2 Develop LVC-DE Alternatives
- CTM.1.4.3 Analysis of Alternatives
- CTM.1.4.4 Identify New Development & Integration Requirements

P / T / R / DRCT

CTM 1
Characterize Test

C / P / T

C / P / T

CTM.1.3 Programmatic Assessment

AND

AND

AND

AND
CTM 1.4: Technical Assessment

1.4 Technical Assessment
- Technical Assessment

1.4.1 Develop Initial LVC-DE Operational Design
- JME Foundation Model
- Previous LVC-DE Estimates
- Program Introduction Document
- LVC-DE OV-1
- LVC-DE OV-4
- LVC-DE OV-5
- Example: B

1.4.2 Develop LVC-DE Alternatives
- LVC-DE OV-1
- LVC-DE OV-4
- LVC-DE OV-5
- Distributed Range Capabilities Matrix
- LVC-DE SV-1
- LVC-DE SV-4a
- LVC-DE SV-4b
- LVC-DE SV-6
- LVC-DE SV-10c
- Example: A, D, E, F, G

1.4.3 Analysis of Alternatives
- Distributed Range Capabilities Matrix
- LVC-DE SV-1
- LVC-DE SV-4a
- LVC-DE SV-4b
- LVC-DE SV-6
- LVC-DE SV-10c
- Example: High Level Schedule, Test Resource Estimate, Technical Recommendation, Statement of Capabilities

1.4.4 Identify New Development and Integration
- LVC-DE SV-1
- LVC-DE SV-4a
- LVC-DE SV-4b
- LVC-DE SV-6
- LVC-DE SV-10c
- Technical Recommendation
- Example: New LVC-DE Enterprise Development Requirements
JTEM Capability Test Methodology (CTM) v2.0

6 Steps 14 JTEM Processes

0. Develop T&E Strategy
- T&E Strategy (TES)
- T&E Master Plan (TEMP)
- Develop Capability/SoS Description
- Develop Joint Operational Context for Test (JOC-T)
- Develop Evaluation Strategy
- Develop/Refine Capability Crosswalk

1. Characterize Test
- Program Introduction Document (PID)
- Statement of Capabilities (SOC)
- Develop Test Concept
- Refine Evaluation Strategy
- Technical Assessment

2. Plan Test
- Develop Test Design
- Perform LVC Distributed Environment Analysis
- Develop Test Plan

3. Implement LVC-DE
- Design LVC Distributed Environment Configuration
- Integrate LVC Distributed Environment

4. Manage Test Execution
- Event Management Plan

5. Evaluate Capability
- Joint Capability Evaluation (JCE)
- Analyze Data
- Evaluate SoS Performance & Joint Mission Effectiveness

Capability Set Focus

Joint Operational Environment

Test Data

Test Concept

Integrated Vignettes
- LVC Distributed Environment Design
- Joint Mission Environment
- Test Control & Monitoring

Event Focus

LVC – Live, Virtual, Constructive
LVC-DE – Live, Virtual, Constructive Distributed Environment
SoS – System of Systems
jtem@jte.osd.mil
CTM 2.2: Perform LVC-DE Analysis

CTM 2.1 Develop Test Design
- Identify Additional Plan Test Modeling Requirements

CTM 2.2 Perform LVC-DE Analysis
- Develop Detailed LVC-DE System Functional Description
- Deconflict Test Resources
- Develop Detailed Cost Estimate

CTM 2.3 Coordinate Test Support

CTM 2.4 Develop Test Plan
- Develop Roles and Responsibilities
- Compose & Coordinate Test Plan
CTM 2.2: Perform LVC-DE Analysis

<table>
<thead>
<tr>
<th>2.2 Perform LVC-DE Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVC-DE Analysis</td>
</tr>
</tbody>
</table>

2.2.1 Develop Detailed LVC-DE Operational Description

- JME Foundation Model
- Data Analysis Plan
- Test Concept
- System and Joint Mission Evaluation Strategy
- LVC-DE OV-1 High Level Operational Concept

<table>
<thead>
<tr>
<th>2.2.1 Develop Detailed LVC-DE Operational Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVC-DE OV-1 (Refined)</td>
</tr>
<tr>
<td>LVC-DE OV-2</td>
</tr>
<tr>
<td>LVC-DE OV-4 (Refined)</td>
</tr>
<tr>
<td>LVC-DE OV-5 (Refined)</td>
</tr>
<tr>
<td>LVC-DE OV-6c</td>
</tr>
<tr>
<td>LVC-DE OV-7</td>
</tr>
</tbody>
</table>

2.2.2 Develop LVC-DE System Functional Description

- LVC-DE OV-1
- LVC-DE OV-2
- LVC-DE OV-4
- LVC-DE OV-6c
- LVC-DE OV-7
- LVC-DE SV-4a (Initial)
- LVC-DE SV-4b (Initial)
- LVC-DE SV-6 (Initial)
- Refined Configuration Mgt Plan
- Refined V&V Plan

<table>
<thead>
<tr>
<th>2.2.2 Develop LVC-DE System Functional Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVC-DE SV-4a (Refined)</td>
</tr>
<tr>
<td>LVC-DE SV-4b (Refined)</td>
</tr>
<tr>
<td>LVC-DE SV-6 (Refined)</td>
</tr>
<tr>
<td>LVC-DE OV-10c (Refined)</td>
</tr>
<tr>
<td>Environmental Specifications</td>
</tr>
<tr>
<td>Refined Configuration Mgt Plan</td>
</tr>
<tr>
<td>Refined V&V Plan</td>
</tr>
</tbody>
</table>
JTEM Capability Test Methodology (CTM) v2.0

6 Steps 14 JTEM Processes

0. Develop T&E Strategy
- T&E Strategy (TES)
- T&E Master Plan (TEMP)
 - Develop Capability/SoS Description
 - Develop Joint Operational Context for Test (JOC-T)
 - Develop Evaluation Strategy
 - Develop/Refine Capability Crosswalk

1. Characterize Test
 - Develop Test Concept
 - Refine Evaluation Strategy
 - Technical Assessment
 - Program Introduction Document (PID)
 - Statement of Capabilities (SOC)

2. Plan Test
 - Develop Test Design
 - Perform LVC Distributed Environment Analysis
 - Develop Test Plan
 - Test Plan

3. Implement LVC-DE
 - Design LVC Distributed Environment Configuration
 - Integrate LVC Distributed Environment
 - System Design Document (SDD)

4. Manage Test Execution
 - Client Systems
 - Event Management Plan

5. Evaluate Capability
 - Analyze Data
 - Evaluate SoS Performance & Joint Mission Effectiveness
 - Joint Capability Evaluation (JCE)

Capability Set Focus

Event Focus

Capability Subset Focus

Joint Operational Context for Test

Test Concept

Integrated Vignettes
LVC Distributed Environment Design
Joint Mission Environment
Test Control & Monitoring

Test Data

LVC – Live, Virtual, Constructive
LVC-DE – Live, Virtual, Constructive Distributed Environment
SoS – System of Systems
jtem@jte.osd.mil
CTM 3.1: Design LVC-DE Configuration

CTM 3
Implement LVC-DE

CTM 3.4 Integrate LVC-DE

CTM 3.1 Design LVC-DE Configuration

CTM.3.1.1 Refine JME LVC Foundation Model

CTM.3.1.2 Perform JME LVC Logical Design

CTM.3.1.3 Characterize Test Infrastructure Performance

CTM.3.1.4 Perform JME LVC Physical Design

CTM.3.2 Build/Configure LVC-DE Components

CTM.3.3 Encode Vignettes

CTM.3.4.1 Integrate Local Systems

CTM.3.4.2 Verify Distributed Systems

CTM.3.4.3 Pilot Check-Out
CTM 3.1: Design LVC-DE Configuration

Recommended Input Info/Sources

- 3.1 Design LVC-DE Configuration
 - LVC-DE Configuration

3.1.1 Refine JME LVC-DE Foundation Model (JFM)
- Enterprise JME Foundation Model with AV-2, TV-1
- LVC-DE OV-1, 2, 4, 5, 6c, 7, SV-4, 6, 10c
 - JME Foundation Model (JFM) Design
 - AV-2 (refined)
 - TV-1 (refined)
 - LVC-DE OV-1 (refined)
 - LVC-DE SV-4a/b (refined)
 - LVC-DE SV-6 (refined)
 - LVC-DE SV-10c (refined)

3.1.2 Perform JME LVC-DE Logical Design
- JME Foundation Model Design
- LVC-DE OV-1, 2, 4, 5, 6c, 7, SV-4a/b, 6, 10c
- Data Analysis Plan
- Vignettes
- LVC-DE Test Approach Description
- Components and Interface V&V
- Initial V&V Plan
- Initial Configuration Management Plan
 - JME LVC-DE Logical Design
 - LVC-DE OV-1 (Logical)
 - LVC-DE OV-2 (Logical)
 - LVC-DE OV-4 (Logical)
 - LVC-DE OV-5 (Logical)
 - LVC-DE OV-6c (Logical)
 - LVC-DE OV-7 (Logical)
 - LVC-DE SV-4a/b (Logical)
 - LVC-DE SV-6 (Logical)
 - LVC-DE SV-10c (Logical)
 - LVC-DE AV-2 (Logical)
 - LVC-DE TV-1 (Logical)
 - V&V Plan
 - LVC-DE Design Gap Analysis
CTM 3.1: Design LVC-DE Configuration

- Recommended Input Info/Sources
 - Product
 - LVC-DE Configuration

- 3.1.3 Characterize Test Infrastructure Performance
 - Product
 - JME Infrastructure Characterization Plan
 - JME Infrastructure Characterization Report

- 3.1.4 Perform JME LVC-DE Physical Design
 - Product
 - JME LVC-DE Physical Design
 - LVC-DE OV-1 (Physical)
 - LVC-DE OV-2 (Physical)
 - LVC-DE OV-4 (Physical)
 - LVC-DE OV-5 (Physical)
 - LVC-DE OV-6 (Physical)
 - LVC-DE OV-7 (Physical)
 - LVC-DE, SV-4a/b (Physical)
 - LVC-DE, SV-6 (Physical)
 - LVC-DE, SV-10c (Physical)
 - LVC-DE AV-2 (Physical)
 - LVC-DE TV-1 (Physical)
 - Configuration Management Plan
Instantiated JME

Physical Design configuration includes systems in Operational, Test, and Data layers

Real Time/Post-Test Processing
Resource Data Loggers
Operational Capability Data Loggers
LVC systems/systems of systems representing warfighting capabilities

jtem@jte.osd.mil
CTM 3.4: Integrate LVC-DE

CTM 3.1 Design LVC-DE Configuration
- Refine JME LVC Foundation Model
- Perform JME LVC Logical Design
- Characterize Test Infrastructure Performance
- Perform JME LVC Physical Design
- Encode Vignettes

CTM 3.2 Build/Configure LVC-DE Components

CTM 3.3

CTM 3.4 Integrate LVC-DE
- Integrate Local Systems
- Verify Distributed Systems
- Pilot Check-Out

CTM 3 Implement LVC-DE
CTM 3.4: Integrate LVC-DE

3.1 Perform LVC-DE Analysis
- LVC-DE Analysis

3.4.1 Integrate Local Systems
- Local Configuration Report

3.4.2 Verify Distributed Systems
- LVC-DE Configuration Report
- LVC-DE Technical Baseline

3.4.3 Pilot Check-Out
- Operational JME Validation Documentation
- Joint Mission Environment
- JME Check-Out Report
Overview

• JTEM Problem Statement
• Capability Test Methodology (CTM)
• CTM Systems Engineering Thread
• Summary
Summary

• JTEM mission is to develop methods and processes (M&P) for realistic testing in a live, virtual, constructive distributed environment (LVC-DE)

• CTM systems engineering process provides an effective building block approach to JME development - “Design Once - Use Many”
 – JFM
 – Logical Design
 – Physical Design
Mr. Max Lorenzo
Joint Test Director
757.638.6079
max.lorenzo@jte.osd.mil

Mr. Tim Beach
Chief, Analysis & Methods & Processes Division
757.638.6088
timothy.beach@jte.osd.mil

Mr. Earl Reyes
Senior Systems Engineer
757.638.6014
earl.reyes@jte.osd.mil

Email: jtem@jte.osd.mil
Website: https://www.jte.osd.mil/jtemctm/

Serving the testing, acquisition, and warfighting communities
The Role of Chaos and Complexity in Systems Development

Robert J. Monson, Ph.D.
Lockheed Martin MS2 Tactical Systems
Eagan, Minnesota
Chaos and Complexity

★ The Bak Sandpile model
★ Defines the behavior of a simple system
★ Representative of many physical and organizational systems
★ Provides insight into an appropriate method to plan and manage systems
Why do we care?
How does the model work?

Complex Systems are frequently governed by simple rules

1. Add 1 item randomly to any pile
2. If any pile \(\geq 4 \) items, distribute 4 items
Typical Results

25X25 Sandpile Model

Number of Avalanches vs. Number of Occurrences

Series 1
The Sandpile Model

- Examples utilizing a 3 X 3 matrix
 - Previous example
- Larger examples do not exhibit such a dramatic edge effect
 - 25 X 25 model used most commonly
 - Use simulation to provide behavior information
- yellow box -- one particle
- green box -- two particles
- blue box -- three particles
- red box -- four particles, critical (unstable) state
3 X 3 matrix 100 points
25 X 25 matrix, 2000 pts
25 X 25, 2M points, 1875 Normalized
25 X 25, 2M points, 1875 Normalized

![Graph showing productivity data with labels: Average, Maximum, and Productivity]
25 X 25, 2M points, 1875 Normalized
25 X 25, 2M points, 1875 Normalized
Some Examples

- Physical Models
- Traffic Patterns
- Complex Interactions in Organizational Systems / Systems Development
Physical Models

- Fish Schooling
- Oslo Experiment
 - Rice grains between sheets of glass
- Avalanches monitored
Traffic Patterns

Microsimulation of road traffic with a time-continuous model

<table>
<thead>
<tr>
<th>Start</th>
<th>1: Ring Road</th>
<th>Stop</th>
<th>2: On-Ramp</th>
<th>3: Lanedosing</th>
<th>4: Uphill Grade</th>
</tr>
</thead>
</table>

Time 0.27

- Average Density: 42 Vehicles/Minute
- Truck Percentage: 20%
- Time Warp Factor: 5.0 times
Traffic Patterns

Microsimulation of road traffic with a time-continuous model

<table>
<thead>
<tr>
<th>Start</th>
<th>1: Ring Road</th>
<th>3: Lane closing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: On-Ramp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4: Uphill Grade</td>
<td></td>
</tr>
</tbody>
</table>

Time 6:36

Average Density: 42 Vehicles/km/lane
Truck Percentage: 20%
Time Warp Factor: 5.0 times
Organizational Systems

- Predictability of complex systems is effective in a generalized sense
 - I cannot know when and where earthquakes will occur, but I can know approximately how many to expect and typical magnitudes
 - Overall I will have a good idea what energy will be imparted by the earthquakes
 - This is good enough to know how to design structures for the region

- Systems Design requires predictability in order to achieve plans and projections
To increase probability of success, we need to dramatically increase operational predictability.

Scheduling work with a consideration for 75% efficiency provides this added predictability.

Since we do not know what specific disturbances will occur.

We do not know when they will occur or what magnitude they will be.

But we know that on average that 25% of our time will be consumed by them.
Conclusions

- A complex system will organize itself into a critical (or unstable) state
- We know that a certain amount of disturbances and resultant avalanches within our Systems Development is unavoidable
- We don’t know specifics, but we know 25% of our time will be consumed by interdependencies in the system
- We can increase our probability of success by planning personnel at 75% capacity, which should be treated as our maximum productivity
- This purposeful detuning of the system results in fewer catastrophes with less catastrophic Systems Development results
References

- www.santafe.edu/~ole/oslo.html
- www.mindware.com
Improving Systems Engineering Execution and Knowledge Management

Steve Head
Objective

- Refocus programs back to basic objectives of Systems Engineering execution including oversight of product developmental life cycle
 - Requirements, design, implementation, test, delivery, product feedback and sustainment
- Identify methods of simplifying and presenting key domain knowledge (need to know) to the engineer
 - Processes, procedures, and technical
- Provide simplified approaches to improve communication and better manage products and teams
 - Use of web, database tools and improvement focals
- Provide ability to better understand and manage products in an age of sometimes overwhelming conditions
 - Reduce the apparent bottleneck caused by engineering teams interpreting the overlapping requirements and mandates
Traditional Systems Engineering

Traditional Systems Engineering Activities

- **Fundamental Systems Engineering Activities**
 - Requirements Analysis
 - Functional Analysis and Allocation
 - Design Synthesis

- **All balanced by techniques and tools called System Analysis and Control**
 - Track Decisions and Requirements
 - Manage Interfaces
 - Manage Risks
 - Track Cost and Schedule
 - Track Technical Performance
 - Verify Requirements
 - Review and audit progress
Can we improve Systems Engineering?

- **Processes, Procedures and Technical Information**
 - Decrease excess of supporting documentation including variations of same?
 - SEI CMM®, SEI CMMI®, corporate, program, team, etc
 - Legacy programs struggle?
 - Baseline to one set, then an “improved” set is flowed down (sometimes before the initial baseline is completed)
 - Identify specific information related to engineering role?
 - Easy to get lost and confused

- **Systems Engineering Oversight**
 - Provide oversight during code/build to decrease chances of major rework down the road?
 - Evaluate metrics at developmental stages and post delivery?
 - Build upon successful program practices and lessons learned
 - Continuous improvement
 - Utilize Improvement Councils with dedicated focals?
Previous Assessment Findings

- **Quick Assessment Guidelines**
 - Begin with quick assessment of group developmental status
 - Identify common and unique enterprise software tools
 - Identify artifacts, processes, procedures and supporting documentation
 - Identify all change boards and other review boards
 - Identify methods for group communication and status

- **Results of Evaluation**
 - Determined that many processes, procedures, and documentation were already in use accessible via program only
 - Programs were collecting some information (give credit where credit is due)
 - Included common and unique tools such as Finance/Budgeting, Earned Value System, Risk Tracking, Quality and Selloff documentation, Requirements tracking, Change Process/CCB, and some levels of metrics
 - Big picture of program not always apparent to team members
Focus on Following Standard Work Flow

- Engineering development should follow a basic work flow
- Problems occur when basic development steps are marginalized, minimized, or omitted
Work Flow Visualization

- Provides the stakeholders with complete color coded work flow of both new products and sustainment of existing products
- Visually enhances ability of the stakeholders to better understand dynamics of how to improve systems engineering execution and business discipline knowledge management
Legend provides color coded element identifiers

Standard tools - lists web-based methods for maintaining same information gathering throughout the organization

Standard Tools
- Web Portal
 - eGuidance
 - Standard Meeting Agenda
 - Status Roll Up
 - Peer Review
 - Support Center
Work Flow Visualization (cont)

- Start for new development Section
 - Entry point for new business
Work Flow Visualization (cont)

- **Sustainment support and capturing product upgrades**
 - Represents methodology for acquiring follow-on business
Section addresses support center, problem disposition and upgrade funding
Section for Change Board activity
Work Flow Visualization (cont)

- Design Synthesis - code/build oversight

Legend

Standard Tools
- Web Portal
- eGuidance
- Standard Meeting Agenda
- Status Roll Up
- Peer Review
- Support Center
Testing, verification and release
Work Flow Visualization (cont)

- Configuration Management, delivery and continuous improvement
- Improvement Council

![Diagram of Work Flow Visualization]
Work Flow Visualization Benefits

- Identifies major steps in development that will remain during organizational process change activity
 - Engineer better informed as to what his or her role is for product development
 - Influence to product delivery
- Associated processes may change, but work flow stays consistent
 - Minor adjustments made for that role for that task
- Communication across specialties improved
 - Work flow task
- Importance of work flow task provides increased importance on work product artifact, at that stage
 - Improve peer review effectiveness
 - Decreases chance of out of phase defects
 - Increases chance of in phase defects found
Knowledge Management

- Linking and sharing of related information between business disciplines
 - Improves systems engineering influence and maturity
 - Improves oversight of quality
 - Increases timeliness of applicable decision making processes
 - Directs engineer to key “need to know” information
 - Protects engineer from overwhelming sensation of “nice to know” information
 - Reduces bottleneck
Knowledge Management (cont)

- Electronic guidance or eGuidance
- Key “need to know” information provided by a web based tool
 - Procedures, Processes, and tools required to do the job
 - E-Guidance is a tool designed to provide an employee relevant reference information regarding his/her role and responsibilities within the organization and current assignment
 - Intent of e-Guidance is for the employee focus learning of necessary tools, procedures, and product documents in an expeditious manner
Standard Tools to Consider

- **Common Web Portal**
 - Meeting Agenda
 - Meeting Minutes
 - Status with applicable roll up to various levels of leadership
 - eGuidance
 - Peer Review
 - Support Center
Summary

- **Challenge**
 - Implement an effective method of improving systems engineering execution and knowledge management across specialties
 - Maintain control of chaotic situations that impact base lined work flow
 - Insure communication of activities are readily available up and down the organizational chain

- **Solution**
 - Build on past studies and lessons learned for continuous improvement
 - Develop visualizations of major business workflow elements
 - Map the employee role to the documentation that is needed
 - Develop standard meeting agendas that represent full process compliance
 - Utilize the latest technology to lessen the bottle neck affect of key domain technical documentation of the team and specific roles

- **Future Benefits**
 - More robust program managers
 - Knowledge builds upon knowledge
Service Oriented Architectures (SOA) and Net-Centric Warfare: Similarities, Differences and Conflicts

NDIA 11th Annual Systems Engineering Conference

22 October 2008

by

James Mazzei, James Ayers and Camille Keely
james.a.mazzei@aero.org
james.l.ayers@aero.org
Outline

• Introduction
• Objectives of SOA
• Advantages & Implementations of SOAs
• Objectives of Net-Centric Warfare
• Implementations of Net-Centric Warfare
• Common Features
• Fundamental Considerations
• Baseline Architecture Questions
• Conclusions
Introduction

SOAs provide agility by giving users:
• Open & interoperable system design
• A structure for problem & requirement resolution
• Common best practices & systems engineering techniques
• Consistency across the industry
• A vehicle for sharing strategies and proven approaches
Objectives of SOA

SOA’s principal objectives are to provide:
• Application reuse
• Fast response to business needs
Advantages & Implementations of SOA

Layer N+2
Interface 1
Layer N+1
Interface 2
Layer N

IDU
ICI₁ SDU

ICI₁ ICI₂ SDU

ICI₂ SDU

SAP

Headers

Interface Data Unit
Interface Control Info
Service Data Unit
Service Access Point
Protocol Data Unit

N-PDU
SDU
Objectives of Net-Centric Warfare

Net-Centric Warfare’s Holy Grails:
• Timeliness
• Availability
• Throughput
Implementations of NCW

<table>
<thead>
<tr>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous Transfer Mode (ATM)</td>
</tr>
<tr>
<td>SONET/SDH</td>
</tr>
<tr>
<td>Interface for OTN, G.709</td>
</tr>
<tr>
<td>Optical Fiber/OTN (WDM)</td>
</tr>
</tbody>
</table>
Common Features

Both SOAs and Net-Centric Warfare require:
• Stable Requirements
• Correlation of Disparate Stakeholders
• Strong Management
Fundamental Considerations

<table>
<thead>
<tr>
<th>IP Layer</th>
<th>OSI Layer</th>
<th>SONET Layer</th>
<th>ATM Layer</th>
<th>ATM Sublyr</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3/4</td>
<td>AAL</td>
<td>CS</td>
<td>SAR</td>
<td>Providing standard interface</td>
</tr>
<tr>
<td></td>
<td>2/3</td>
<td>2</td>
<td>ATM</td>
<td></td>
<td>Segmentation and reassembly</td>
</tr>
<tr>
<td>4</td>
<td>2/3</td>
<td>2</td>
<td>ATM</td>
<td></td>
<td>Flow control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cell header generation & extraction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Virtual circuit path management</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Phys</td>
<td>TC</td>
<td></td>
<td>Cell multiplexing & demultiplexing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cell rate decoupling, Cell generation, header, Checksum, Frame generation, Packing and unpacking cells from enclosing envelope</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>Phys</td>
<td>PMD</td>
<td>Bit timing and physical network access</td>
</tr>
</tbody>
</table>

- **CS**: Cell Size
- **SAR**: Segmentation and Reassembly
Baseline Architecture Questions

• Should Architecture Be Software Based?
• Is an Enterprise Service Bus Appropriate?
• Should the SOA Be Implemented By a Single Vendor/Integrator?
Conclusions

• The SOA can either compliment or impede Net-Centric Principles
• Implementations should be pursued with adequate prototyping and testing
Abbreviations

- AAL – ATM Adaptation Layer
- ATM – Asynchronous Transfer Mode
- CS – Convergence Sublayer
- ICI – Interface Control Info
- IDU – Interface Data Unit
- IP – Internet Protocol
- NCW – Net-Centric Warfare
- OSI – Open System Interconnection
- OTN – Optical Transport Network
- PDU – Protocol Data Unit
- PMD – Physical Medium Dependent
- SAP – Service Access Point
- SAR – Segmentation and Reassembly
- SDH – Synchronous Digital Hierarchy
- SDU – Service Data Unit
- SOA – Service Oriented Architecture
- SONET – Synchronous Optical Network
- TC – Transmission Convergence
- WDM – Wave Division Multiplexing
A System Engineering Approach to Develop a Service-Oriented Perspective

Rob Byrd
robert.byrd@si-intl.com
719-235-4408
http://ea.si-intl.com
Today’s SOA Challenge

Requirements Understanding

Integrated Enterprise

Managed Change
Today’s Stovepipes
Organizing SOA for Success

Applications

Services

Processes

Operational Architecture

Enterprise Data Base

Common Operating Environment

Comm Msg Handling
System Services
Office Automation
User Interface

C2 Applications
Logistic Applications

Others...

Common Svcs

Shared Data

Infrastructure

Ops & Support
Operational Architecture Process to SOA Perspective

- Establish Vision and Mission
- Determine Enterprise Boundaries
- Identify Enterprise Use Cases
- Detail Enterprise Use Case
- Develop Logical Data Model
- Establishes Agreements on Purpose
 - Identifies Important External Interfaces
 - Captures Business Rules
 - Aligns Information and Activities
 - Provides Service-Oriented Operational Perspective
 - Models Data In Context of its Use
 - Defines Information Relationships
Managing Service Frameworks in UML

Operational Capabilities (value [data] driven processes)

Activity Groups (organizational)

Physical Facilities (people, systems, resources)

Function Groups

Role—System Interaction

Enterprise ROV (result of value) Desire Effect

Design to” timeframe

DoD Architecture Framework

Operational View

System View

Technical View

Capabilities

Domain Services

Infrastructure

Commercial and Government
Operational Trace Sequence (OV-6c)

Phase 1
- **Populate Force Structure**
- **Establish Alerts and Notifications**
- **Process Mission Updates**
- **Process Object Type Data**
- **Associate Assigned Unit Personnel and Equipment to Force Structure**

Phase 2
- **Manage Dissemination SOP**
- **Manage Unit Task Organization**
- **Process Mission Updates**
- **Combat Power**

Phase 3
- **Manage Dissemination SOP**
- **Establish Alerts and Notifications**
- **Process Mission Updates**
- **Information Source**
- **Information Recipient**
Populate Force Structure
Use Case Diagram
Revised: 19 Oct 2006
User Review: (Pending)

Business Model – OV-5

UNCLASSIFIED

Current Operations Section

Global Force Management[1]

Information Manager

Force Structure Provider

+subordinate

Object Types:

- Force Structure Search Criteria
- Force Structure Header
- Force Structure

Business Model – OV-5

Important I/O entities for OV-7 development

1: browse force structure header information(: ForceStructureSearchCriteria, out : ForceStructureHeader)
2: browse force structure header information(: ForceStructureSearchCriteria, out : ForceStructureHeader)
3: select unit from header(UnitID : Integer)
4: get force structure(UnitID : Integer, out : ForceStructure)
5: get force structure(UnitID : Integer, out : ForceStructure)
6: forward force structure(UnitID : Integer)
7: acknowledge

Populate Force Structure
Sequence Diagram
Revised: 08 Nov 2006
User Review: (Pending)
Business Model – Part of OV-5

1: browse force structure header information(: ForceStructureSearchCriteria, out : ForceStructureHeader)

2: browse force structure header information(: ForceStructureSearchCriteria, out : ForceStructureHeader)

3: select unit from header(UnitID : Integer)

4: get force structure(UnitID : Integer, out : ForceStructure)

5: get force structure(UnitID : Integer, out : ForceStructure)

6: forward force structure(UnitID : Integer)

7: acknowledge

Populate Force Structure
Sequence Diagram
Revised: 08 Nov 2006
User Review: (Pending)
Personnel authorizations are limited to MilitaryPersonType.
Physical Architecture (SV-2)

<<system>>
Operations Client

<<system>>
BC Server Simulator

<<connection>>
WAN

Information Manager

<<connection>>
WAN

GFM Simulator
Business Model – Part of OV-5

Physical Realization Model – Part of SV-6

1. browse force structure header information(: ForceStructureSearchCriteria, out : ForceStructureHeader)
2. browse force structure header information(: ForceStructureSearchCriteria, out : ForceStructureHeader)
3. select unit from header(UnitID : Integer)
4. get force structure(UnitID : Integer, out : ForceStructure)
5. get force structure(UnitID : Integer, out : ForceStructure)
6. forward force structure(UnitID : Integer)
7. acknowledge

In this instance
ForceStructure is RelevantInformation

In this instance
Non persistent

Multiple instances until the list complete – could include entire content; however, in this instance it’s a Notification

Business Model – Part of OV-5

Physical Realization Diagram (Sequence Diagram)
Revised: 08 Nov 2006
User Review: (Pending)
Physical Realization Model – Part of SV-6

1: browse force structure header information(: ForceStructureSearchCriteria, out : ForceStructureHeader)
2: browse force structure header information(: ForceStructureSearchCriteria, out : ForceStructureHeader)
3: browse force structure header information(: ForceStructureSearchCriteria, out : ForceStructureHeader)
4: select unit from header(UnitID : Integer)
5: get force structure(UnitID : Integer, out : ForceStructure)
6: get force structure(UnitID : Integer, out : ForceStructure)
7: get force structure(UnitID : Integer, out : ForceStructure)
8: forward force structure(UnitID : Integer)
9: forward force structure(UnitID : Integer)
10: publish force structure(: ForceStructure)
11: identify recipients(: Alert, out : DisseminationGroup)
12: generate notification content(: RelevantInformationDefinition, out : RelevantInformation)
13: notify(: InformationRecipient, : RelevantInformation)
14: acknowledge()
15: acknowledge()
16: acknowledge()
17: acknowledge()

In this instance ForceStructure is RelevantInformation
Multiple instances until the list complete – could include entire content; however, in this instance it's a Notification

Populate Force Structure (SV-6)
Physical Realization Diagram (Sequence Diagram)
Revised: 08 Nov 2006
User Review: (Pending)
OV-7

Provides “reusable” data classes used to develop compartmented views – establishes the data requirements

[Diagram content]
OV-7

Compartmented view abstractly describes the i/o entity used on the sequence diagram and activity diagram – defines the interface data requirements

(U) Determine Current Combat Power

UNCLASSIFIED
Binds the OV-5 to the OV-6c – defines "instantiatable" use cases

(U) Determine Status Report Condition and Accuracy

(U) Request Updated Information

(U) Predict Future Combat Power

(U) Determine Current Combat Power

Determine Combat Power - SAUC03
Activity Diagram
Revised: 17 Apr 06
User Review: (Pending)
• One use case may modify (& inherit) behavior of a second
• Use cases capture data interaction among operators, nodes, and systems
• Interaction is allocated to systems, their elements, and their objects
Managing Service Frameworks in UML

Subject: Operational Capabilities (value [data] driven processes)

Activity Groups (organizational)

Physical Facilities (people, systems, resources)

Function Groups

Role—System Interaction

DoD Architecture Framework

Operational View

System View

Technical View

Enterprise

ROV (result of value)

Desire Effect

Design to” timeframe

Capabilities

Domain Services

Infrastructure

Commercial and Government
Verify and Validate Architecture Through Animation
Spirally Evolving Guided by OA

Operational View Evolution

Solutions Roadmap

Technical View Evolution

A Legacy of Stovepipes

Capabilities
CONOPS
ICDs
etc.

Incr
0

Incr
1

Integrated Capabilities

Standards
Joint Technical Arch
Technical Reference Model
etc.

Incr
n

Common Operating Environment

Operational Architecture

Operational Architecture

Common Data

Joint Technical Arch

Technical Reference Model

etc.

Space Lift
Applications

Others...

Sensor
Applications

Space Ops
Applications

Comm Msg
Handling

System
Services

Office
Automation

User Interface

Shared Data

Infrastructure

Ops & Support

A Legacy of Stovepipes
Train Architects
- Train to think object-oriented

Clarify/Link Vision and Mission
- Develop agreed goals and objectives
- Research guidance and direction
- Establish enterprise boundaries
- Establish COI consensus on architecture purpose and uses
- Develop architecture strategy
- Determine strategic effects
- Determine governance approach
- Establish buy-in

Develop Infrastructure
- Assessment and recommendations
- Collaboration laboratories
- Reference materials
- Procedures
- Computers / software / communications
- Configuration management

Identify Knowledge Management Needs
- Architecturally based CONOPS development
- Develop architecture data mining requirements
- Identify portfolio managers

Solution Requires More than Architecture
Approach
- Leverage existing architectures
- Model operational processes
 - Discover cross-mission common activities
 - Provides basis for business process reengineering
- Extend architecture describing mission-specific needs
 - e.g., Intel, Surveillance, Recon, etc.
- Capture critical information exchange needs
- Graphically depict FNA capability gaps
- Data-mine domain architecture supporting CBP products

Value Gained
- Answer operational capability “questions”
- Better deals with complexity
 - Mission and organizational relationships
- Clear understanding of roles and responsibilities among stakeholders
- Rapid identification of gaps/overlaps among capability areas
- Responsive to inevitable changes in threats, organizations, tasks, technology
- Defensible foundation for:
 - JCS CBA products
 - HQ AF CBP products
 - Resource allocation decisions
- Powerful analysis capabilities to support portfolio management using advanced visualization tools
Capabilities-Based Planning

Enterprise Domain

Enterprise

Capabilites-Based Planning

Capability Command Leads

Capabilities

Enterprise

Road Maps

Capability Portfolios

Enabling Concepts

DCRs

POM
Validation and Verification using SI Animator

Architecture Animator

CONOPS Development using Architecture

Effects Oriented...

Operational Activities

Requirements in Operational Context...

Operational Capabilities

Operational Requirements

Allow non Architects to understand the architecture

SOA Key to Portfolio Management

Spirally Evolving to Service-Oriented Perspective

Allows non Architects to understand the architecture

Architecture Animator

CONOPS Development using Architecture

Effects Oriented...

Operational Activities

Requirements in Operational Context...

Operational Capabilities

Operational Requirements

SOA Key to Portfolio Management

SPIES Specialized Tools

Data Mine Architecture

CONOPS
• Operational Tasks
• Conditions
• Standards

FNA
• Shortfalls
• Deficiencies
• Tradespace Studies

FSA
• COAs
• Solution Set Development
• Capabilities-Based Requirements
• Documents
• Roadmap
• Strategic Plan
• Etc...

What is needed

Program Execution

Planning, Programming, Budgeting & Execution (PPBE) Process

Defense Acquisition System

DEPSECDEF Oversight

MD 813 PPBS to PPBE

What can be paid for

What can be done

Joint Capabilities Integration & Development System (JCIDS)

VCJCS/JROC Oversight

C JCS 3170.01 Series

Portfolio Management (PfM) – Knowledge Management
Integration of Software Intensive Systems

Tom Wissink
Lockheed Martin Fellow
IS&GS, Gaithersburg, MD
301-240-6244
tom.wissink@lmco.com

October 2008

Copyright 2008 Lockheed Martin Corporation. All rights reserved.
Agenda

- Introduce the Problem
- Integration Definitions
- Integration throughout a Development Lifecycle
- Integration: Techniques, Methods
- Integration Support Activities
- Wrap-Up
Introduce the Problem

- No consistent definition & process:
 - Results of a Web Search “System Integration is the successful integration of a new technology into the system by analyzing the technology's system effects and resolving any negative impacts that might result from its broader use.”
 - From the International Council on System Engineering (INCOSE) web site – “Integrate: . . . Systems, businesses and people must be integrated so that they interact with one another. Integration means bringing things together so they work as a whole. . .”
Introduce the Problem (cont’d)

- My favorite published definition:
 - Integration is defined as the act of mating hardware and/or software components, subsystems, systems or elements at their respective interfaces and verifying the compatibility and proper operation of the integrated units.

 - From a paper entitled “Integration Challenges of Complex Systems” written by Bill Haskins and Jack Striegel for the 16th Annual INCOSE International Symposium,

- No complete guidance on how to do Integration
Integration throughout the Lifecycle

- SRR:
 - System Requirements
 - Operational Scenarios
 - System Verification Plan
 - Interface Control Doc's
 - Integration Threads
 - System Integration Plan

- SDR:
 - Subsystem Requirements
 - Interface Design Documents
 - Subsystem Verification Plans
 - Subsystem Integration Plans

- PDR/CDR:
 - Product Specifications
 - Product Verification Plans
 - Product Integration Plans

Goal I&V Documents:
- Draft at SRR, SDR & PDR
- Finals at CDR

- System & SoS Validation
 - Procedures/Reports
 - Operational Test & Evaluation

- System Verification Testing
 - Verification Test Procedure/Report
 - System Integration
Integration: Techniques, Methods & Tools

Two Techniques:

- Non-Incremental* (Big Bang) vs Incremental*
 - Incremental is the way to go for most systems and large applications
 - Integrate/Build-Up – starting small and continually increasing capability/complexity

* References for Techniques and Methods

Integration: Techniques, Methods & Tools

Three Methodologies:
- Top-Down*, Bottoms-Up* & Thread-Based

Diagram:
- A
 - B
 - E
 - F
 - C
 - G
 - D
 - H
 - I
 - J
 - K
 - L
Integration: Techniques, Methods & Tools

Three Methodologies:

- Top-Down
Integration: Techniques, Methods & Tools

Three Methodologies:
- Bottom-Up

Driver B
- F
 - J

Driver A
- H
 - K
 - L

Diagram showing relationships between different components labeled from A to I.
Integration: Techniques, Methods & Tools

Three Methodologies:

- Thread-Based
 - Experience indicates this is the preferred method for most large complex applications and or systems
Integration Support Activities

- Interface Matrices (Interface Coverage)
 - Account for all internal & external interfaces
- Hardware/Software/System Build Plan
 - Thread based and negotiated with the developers
- Dedicated Integration Laboratories
 - Separate from Test Laboratories
- Early “ilities” Checkout during integration phases
 - Stability
 - Reliability
 - Performance
 - Capacity
Wrap-Up

- Integration requires a different skill set than Testing.
- Lessons learned have shown that Integration is a key weakness on most medium to large software intensive projects
- Perform the Top Ten Integration steps and you will have a robust Integration process
Top Ten Integration Steps

1. Document the Integration and Test process
2. Hire and train the right staff for the role of Integrator
3. Review and analyze requirements to ensure testability and included requirements to ensure visibility into system data while it is operating
4. Ensure all interfaces at all levels of the architecture have been identified and are implemented, tested, tracked, and statused
5. Identify & plan other testing activities to start during the integration test conduct phase (i.e. stability, performance, reliability, etc)
6. Develop and maintain a Project “Build Plan”
7. Define and ensure sufficient Integration and Test laboratories available
8. Design integration tests and test data for all levels of the architecture
9. Ensure functional testing is also being conducted at each level of the architecture
10. Ensure sufficient simulation/stimulation capabilities are available
Technology Readiness Assessments (TRAs) for Systems of Systems (SoS)

2008 National Defense Industrial Association
11th Annual Systems Engineering Conference
October 21, 2008

Dr. Jay Mandelbaum
Institute for Defense Analyses
4850 Mark Center Drive • Alexandria, Virginia 22311-1882
Outline

• Background
 • Complexity of the problem
 • The TRA process for a SoS
 – Describing the SoS
 – Identifying the SoS environment(s) and interfaces
 – Identifying SoS CTEs and their associated relevant/operational environments
 – Conducting the SoS TRA
 – Documenting and coordinating the SoS TRA
 • SoS TRA updates
What is a TRA?

• Systematic, metrics-based process that assesses the maturity of Critical Technology Elements (CTEs)
 – Uses Technology Readiness Levels (TRLs) as the metric

• Regulatory information requirement for *all* acquisition programs
 – Submitted to DUSD(S&T) for ACAT ID and IAM programs

≠ Not a risk assessment
≠ Not a design review
≠ Does not address system integration
Why is a TRA Important? (1 of 2)

• The Milestone Decision Authority (MDA) uses the information to support a decision to initiate a program
 – Trying to apply immature technologies has led to technical, schedule, and cost problems during systems acquisition
 – TRA established as a control to ensure that critical technologies are mature, based on what has been accomplished

• Congressional interest
 – MDA must certify to Congress that the technology in programs has been demonstrated in a relevant environment at program initiation
 – MDA must justify any waivers for national security to Congress
TRL Overview

- Measures technology maturity
- Indicates what has been accomplished in the development of a technology
 - Theory, laboratory, field
 - Relevant environment, operational environment
 - Subscale, full scale
 - Breadboard, brassboard, prototype
 - Reduced performance, full performance
- Does not indicate that the technology is right for the job or that application of the technology will result in successful development of the system
Critical Technology Element (CTE) Defined

A technology element is “critical” if the system being acquired depends on this technology element to meet operational requirements with acceptable development cost and schedule and with acceptable production and operation costs and if the technology element or its application is either new or novel or in an area that poses major technological risk during detailed design or demonstration or provides unprecedented functionality.

CTEs may be hardware, software, manufacturing, or life cycle related at the subsystem or component level.
Changes Anticipated for New Deskbook

- Reflects new DoDI 5000.02 and other policy changes
- Rigor and robustness added to processes in chapter 3
- Chapter 5 on technology maturity rewritten
 - Early evaluation of technology maturity
 - Reflect 10 USC 2366a
- New appendices
 - Interfaces with S&T community
 - Space, SoS, and ships

The following material is preliminary. Feedback is welcome.
Outline

• Background
 • Complexity of the problem

• The TRA process for a SoS
 – Describing the SoS
 – Identifying the SoS environment(s) and interfaces
 – Identifying SoS CTEs and their associated relevant/operational environments
 – Conducting the SoS TRA
 – Documenting and coordinating the SoS TRA

• SoS TRA updates
Complexity of SoS TRAs

• SoS definition:

a set or arrangement of systems that results when independent and useful systems are integrated into a larger system that delivers unique capabilities

• Why there is a special section in the Deskbook
 – In a SoS, individual systems are integrated with each other to achieve a capability
 – An individual system’s performance is changed by its linkage to other systems
 – This affects both CTE identification and CTE assessment . . .
Complexities with CTE Identification

CTEs must be considered tentative prior to completion of overall SoS engineering and then individual system(s) engineering

- SoS operational/performance requirements for a capability are not easily allocated to individual systems and their subsystems
- Some of the interactions among systems are not predictable in advance and the individual systems may change when they are joined together
- The allocation of SoS operational and performance requirements for a capability may evolve over time
Complexities with CTE Assessment in a Relevant SoS Environment

• There are difficulties in allocating SoS requirements to associated systems or subsystems
• The relevant environment may not be fully understood because other systems are part of it:
 – Modeling and simulation may not be adequate
 – Test and evaluation environments may not be fully understood
 – System performance and the relationships among systems change over time
 – Testing all permutations is not possible
Complexities with SoS Management

DoDI 5000.02 does not prescribe an overarching process for managing SoS acquisition that includes legacy systems, developmental systems, and system modernization

– Each of these systems is often managed independently
– Control of resources may not be collocated with those management responsibilities
– The associated systems’ acquisition activities may not be on the same time line as the SoS development effort
Outline

• Background
• Complexity of the problem
 • The TRA process for a SoS
 – Describing the SoS
 – Identifying the SoS environment(s) and interfaces
 – Identifying SoS CTEs and their associated relevant/operational environments
 – Conducting the SoS TRA
 – Documenting and coordinating the SoS TRA
• SoS TRA updates
Getting Started

• Normal TRA best practices apply
 – A series of meetings between the program office, the Component S&T Executive office, and DUSD(S&T) should be conducted to determine the scope and conduct of the SoS TRA
 – Panel members should be independent of the program and include a wider range of relevant subject matter expertise
Describing the SoS

- Identify the boundaries that encompass the required capability to be delivered
- Identify SoS spirals/blocks or other expected increments and their timeframes including spirals/blocks of specific systems of the SoS
- Identify how component systems must be modified (and new interfaces developed) to be integrated into the SoS
- Identify SoS specific operational and performance requirements, including those for each system comprising the SoS
- Clearly delineate the interface requirements, externally controlled/managed capabilities, and SoS dependencies and interdependencies, within a context of the capabilities provided and operating limits of the SoS under evaluation
Identifying the SoS Environment(s) and Interfaces

• Focus on what makes the SoS environment unique
 – Consider execution time or data throughput and information exchange requirements to/from other systems
 – Include information assurance considerations
 – Identify functional dependencies and the technologies that enable these functions
• If no documentation exists or is still in development, involve the SoS end users or customers for determining SoS behavior(s)
Identify the SoS WBS, … well in advance of the CTE selection and systematically examine all elements of the WBS for determining CTEs

- When conducting a TRA for the SoS
 - Include all CTEs required to meet SoS operational requirements
 - Include SoS unique CTEs and system unique CTEs required for a system to participate in the SoS regardless of who is responsible for funding or development
 - Internal and external dependencies should be treated equally and all associated CTEs should be formally assessed in the SoS TRA against the SoS requirements
When conducting a TRA for a system that is part of the SoS

- Include all system specific technologies that meet the CTE criteria
- Assess SoS CTEs that are in the system undergoing the TRA even if they are not system specific CTEs

In either case, take into account situations where a capability in one system is dependent on a technology in another system for its functionality

Consider any TRA completed or being conducted on a system within the SoS for identification of relevant CTEs
Expand upon CTE identification questions, e.g.,

- Does the technology directly impact an operational requirement?
 - Is the technology contributing to a more effective performance of the SoS in development?
 - Is an increase or change in capability being required from currently fielded systems?
 - Is the technology enabling a new concept of operation?
Identifying SoS CTEs and their Associated Relevant/Operational Environments (4 of 4)

Expand upon CTE identification questions, e.g.,

• Is the technology new or novel (or being used in a new or novel way)?
 – Is this technology creating new relationships between systems?
 – Is this technology dependent upon new relationships between systems?

• Has the technology been modified?
 – Are technologies fielded on the associated systems being modified to meet new requirements of the SoS?
 – Are current technologies dealing with the relationships among systems being modified for the SoS?
Conducting the SoS TRA

- CTEs in a component system whose environments are not dependent on the rest of the SoS should be assessed in the normal way
- The Program Manager and/or Chief Engineer for the SoS should conduct technology demonstrations/validations for the SoS-related CTEs
- The program should provide the necessary documentation to the Independent Panel to enable independent assessment of the CTE performance within the SoS
- The Independent Review Panel should determine the TRLs for each SoS-related CTE
- CTEs for future spirals are not expected to be TRL 6 at Milestone/KDP B
Documenting and Coordinating the SoS TRA

- Reference other pertinent material
- Ensure proper coordination is conducted on the SoS technology maturation plans especially between interdependent acquisition development efforts
- The Component Acquisition Executive should communicate the TRA results with each program management echelon which is part of the SoS
Outline

• Background
• Complexity of the problem
• The TRA process for a SoS
 – Describing the SoS
 – Identifying the SoS environment(s) and interfaces
 – Identifying SoS CTEs and their associated relevant/operational environments
 – Conducting the SoS TRA
 – Documenting and coordinating the SoS TRA

• SoS TRA updates
SoS TRA Updates

- Because of the inherent difficulties associated with SoS TRAs in identifying CTEs and assessing their maturity in the relevant environment, it is possible that even a rigorously done TRA at Milestone B could be found, in hindsight, to be incomplete.
- Update at SoS CDR and initiation of new spiral in any of the systems.

<table>
<thead>
<tr>
<th>Milestone B</th>
<th>Milestone C</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBS Definition</td>
<td>Final CTE Update</td>
</tr>
<tr>
<td>SoS Environ & Architecture</td>
<td>Final TRA</td>
</tr>
<tr>
<td>CT Select.....</td>
<td>Interim CTE Updates</td>
</tr>
<tr>
<td>TRA</td>
<td></td>
</tr>
</tbody>
</table>
References and Resources

• Defense Acquisition Resource Center http://akss.dau.mil/darc/darc.html
 – DoD Instruction 5000.2 (DoDI 5000.2), Operation of the Defense Acquisition System, dated May 12, 2003
 – Defense Acquisition Guidebook

• DAU Continuous Learning Module CLE021
 – https://learn.dau.mil/html/clc/CIC.jsp to browse it

• TRA Deskbook

• DDR&E
 – Mr. Jack Taylor jack.taylor@osd.mil

• Institute for Defense Analyses
 – Dr. Dave Sparrow dsparrow@ida.org
 – Dr. Jay Mandelbaum jmandelb@ida.org
 – Dr. Michael May mmay@ida.org
Modeling & Simulation
in the
Test & Evaluation Master Plan

NDIA Systems Engineering Conference
October 2008

Michael Truelove – SAIC Support
Office of the Deputy Under Secretary of Defense (A&T)
Developmental Test & Evaluation
1550 Crystal Drive, Suite 1004
Arlington, VA 22202
Phone: 703-412-3683
AMSWG is anchored in acquisition community and linked to industry and the DoD M&S community
Content of Acquisition M&S Master Plan

- Foreword
- Introduction
 - Purpose
 - Vision
 - Scope
- Objectives (5)
- Actions (40)
 - Action
 - Rationale (why it’s needed)
 - Discussion (implementation guidance)
 - Lead & supporting organizations
 - Products (what is expected)
 - Completion goal (year)
- Execution Management

http://www.acq.osd.mil/sse/as/guidance.html
A Decade of Studies on M&S Support to Acquisition

 Sponsor: DDR&E (Dr. Anita Jones); Chair: VADM T. Parker, USN (Ret.)

 Sponsor: ASN(RDA); Chair: Dr. Delores Etter

3. Collaborative Virtual Prototyping Assessment for Common Support Aircraft, 1995
 Sponsor: Naval Air Systems Command; conducted by JHU APL and NSMC

 North American Technology & Industrial Base Organization; sponsor: NAVAIR

5. Application of M&S to Acquisition of Major Weapon Systems, 1996

 Sponsor: DTSE&E (Dr. Pat Sanders); conducted by SAIC (A. Patenaude)

 Naval Studies Board, National Research Council; sponsor: CNO

8. A Road Map for Simulation Based Acquisition, 1998
 Joint SBA Task Force (JHU APL lead); sponsor: Acquisition Council of EXCIMS
A Decade of Studies on M&S Support to Acquisition

 Defense Science Board Task Force (Co-chairs: L. Welch, T. Gold)

10. Advanced Engineering Environments, 1999
 National Research Council; sponsor: NASA

 Sponsor: DOT&E/LFT&E; conducted by Hicks & Associates (A. Hillegas)

12. Test and Evaluation, 1999
 Defense Science Board Task Force (Chair: C. Fields)

 Military Operations Research Society (Chair: S. Starr)

 National Research Council; sponsor: DMSO

15. M&S Support to the New DoD Acquisition Process, 2004
 NDIA Systems Engineering Div. M&S Committee; sponsor: PD, USD(AT&L)DS

 Defense Science Board Task Force (Chair: W. Schneider)
Five Objectives, 40 Actions

Objective 1
- **Provide necessary policy and guidance**
 - 1-1 M&S management
 - 1-2 Model-based systems engineering & collaborative environments
 - 1-3 M&S in testing
 - 1-4 M&S planning documentation
 - 1-5 RFP & contract language
 - 1-6 Security certification

Objective 2
- **Enhance the technical framework for M&S**
 - 2-1 Product development metamodel
 - 2-2 Commercial SE standards
 - 2-3 Distributed simulation standards
 - 2-4 DoDAF utility
 - a) DoDAF 2.0 Systems Engineering Overlay
 - b) Standards for depiction & interchange
 - 2-5 Metadata template for reusable resources

Objective 3
- **Improve model and simulation capabilities**
 - 3-1 Acquisition inputs to DoD M&S priorities
 - 3-2 Best practices for model/sim development
 - 3-3 Distributed LVC environments
 - a) Standards
 - b) Sim/lab/range compliance
 - c) Event services
 - 3-4 Central funding of high-priority, broadly-needed models & sims
 - a) Prioritize needs
 - b) Pilot projects
 - c) Expansion as warranted

Objective 4
- **Improve model and simulation use**
 - 4-1 Help defining M&S strategy
 - 4-2 M&S planning & employment best practices
 - 4-3 Foster reuse
 - a) Business model
 - b) Responsibilities
 - c) Resource discovery
 - 4-4 Info availability
 - a) Scenarios
 - b) Systems
 - c) Threats
 - d) Environment
 - 4-5 VV&A
 - a) Documentation
 - b) Risk-based
 - c) Examination
 - 4-6 COTS SE tools
 - 4-7 M&S in acqn metrics

Objective 5
- **Shape the workforce**
 - 5-1 Definition of required M&S competencies
 - 5-2 Harvesting of commercial M&S lessons
 - 5-3 Assemble Body of Knowledge for Acqn M&S
 - 5-4 M&S education & training
 - a) DAU, DAG & on-line CLMs
 - b) Conferences, workshops & assist visits
 - 5-5 MSIAC utility

Key
- Broader than Acquisition
Acquisition M&S Master Plan: Actions 1-3 & 1-4

ACTION 1-3. Establish policy and guidance on appropriate use of M&S to plan tests, complement system live tests, and assess joint capabilities.

ACTION 1-4. Establish policy to require documented M&S planning as part of the Systems Engineering Plan, T&E Strategy, and T&E Master Plan.

PRODUCTS: Revised policy and guidance in DoDI 5000.2, DAG, and TEMP guidance

This is not a recommendation to replace testing with models and simulations
Current Policy Regarding the use of Models & Simulations

DoDI 5000.2; Enclosure 5

E5.1 The PM, in concert with the user and test and evaluation communities, shall coordinate developmental test and evaluation (DT&E), operational test and evaluation (OT&E), LFT&E, family-of-systems interoperability testing, information assurance testing, and modeling and simulation (M&S) activities, into an efficient continuum, closely integrated with requirements definition and systems design and development. The T&E strategy shall provide information about risk and risk mitigation, provide empirical data to validate models and simulations, evaluate technical performance and system maturity, and determine whether systems are operationally effective, suitable, and survivable against the threat detailed in the System Threat Assessment.

Adequate time and resources shall be planned to support pre-test predictions and post-test reconciliation of models and test results, for all major test events.

E5.3.1 Projects that undergo a Milestone A decision shall have a T&E strategy that shall primarily address M&S, including identifying and managing the associated risk, and that shall evaluate system concepts against mission requirements.

E5.4.7 Appropriate use of accredited models and simulation shall support DT&E, IOT&E, and LFT&E.
Recent Test & Evaluation Policy

Reference: December 22, 2007 Memorandum
Signed by:
Dr. Charles McQueary; Director, Operational Test & Evaluation
Mr. John Young, Jr.; Under Secretary of Defense for Acquisition, Technology & Logistics

T&E must be brought to bear at the beginning of the system life cycle.

Developmental and operational test activities shall be integrated and seamless throughout the systems life cycle.

Evaluations shall include a comparison with current mission capabilities using existing data, so that measurable improvements can be determined. If such evaluation is considered cost prohibitive the Service Component shall propose an alternative evaluation strategy.

To realize the benefits of modeling and simulation, T&E will be conducted in a continuum of live, virtual, and constructive system and operational environments.
Examine the formats for the Test and Evaluation Strategy (TES) and the Test & Evaluation Master Plan (TEMP)

Either establish a single format for both documents or make the transition from one to the other seamless with a direct correlation

Revise the format for the TES/TEMP

Provide a recommended TES/TEMP format to adequately consider M&S
Deputy, Director Developmental Test & Evaluation Initiative

A T&E Working Group worked the initiative:

Co-Leads: Darlene Mosser-Kerner, OUSD (AT&L)
Tom Carter, DOT&E

Participating Organizations:
OSD (AT&L) DT&E
OSD DOT&E
JFCOM
DISA
OPNAV 912
HQ Department of the Army (DUSA-TEO)
COMOPTEVFOR
HQ Air Force (AQXA)
How Documentation Can Help:

Help a program manager think about how to plan for and incorporate M&S into the T&E process by identifying:

- how M&S can contribute to the T&E process
- high payoff areas in which to invest testing resources
- the most cost effective way of conducting T&E
- when it is too impractical or too costly to incorporate real world assets into a test and M&S may provide insight
- opportunities for M&S to support the T&E of a system in a SoS environment
Submitted a full page for inclusion in the new TEMP format.

The full page submission was deemed too long and the input was rejected in total.

Convinced the T&E Working Group to include a short paragraph in the TEMP Format with a reference and link to new guidance in the DAG.
2.5 Modeling & Simulation (M&S) –

Describe the key models and simulations and their intended use.

Include the test objectives to be addressed using M&S to include operational test objectives.

Identify data needed and the planned accreditation effort.

(Additional guidance for planning for the use of M&S can be found at the DT&E web page which DAG Sections 4.5.7 and DAG Section 9.3.4 will link to.)

Proposal for DAG Section 9.3.4 of TEMP Recommended Format:

- Document the intended use of models & simulations
- Identify key models & simulations intended to support T&E
- Identify the modeling & simulation data needed to support T&E
- For each model & simulation and its data describe the planned accreditation effort based on the assessment of the risk of using the model & simulation results for decisions being made
- Describe the standards (both government and commercial) with which the models & simulations and associated data must comply
Proposal for DAG Section 9.3.4
T&E Documentation Planning

Document the intended use of models & simulations by documenting:
 • Question(s) to be answered
 • Decisions that will be made based on the results of the models & simulations
 • The test objectives/critical operational issues the models & simulations will address
 • The requirements for the use of the models & simulations
 • Consequences resulting from erroneous outputs from the models & simulations
 • Support resources required
Identify all M&S intended to support T&E (1 of 2):

- Live, virtual, and constructive simulations; distributed simulations and associated architecture; federates and federations; emulators; prototypes; simulators; and stimulators
- Legacy systems, new developments, and modified or enhanced legacy models & simulations
- Models & simulations managed by Federally Funded Research and Development Centers, industry, academia, and other Federal or non-Federal government organizations
- Commercial-off-the-shelf and government-off-the-shelf models & simulations
- Model & simulation test resources including hardware-in-the-loop, human-in-the-loop, and software-in-the-loop simulators; land-based, sea-based, air-and space-based test facilities
Identify all M&S intended to support T&E (2 of 2):

- Threat models, simulations, simulators, stimulators, targets, threat systems, & surrogates
- Synthetic countermeasures, test beds, environments, and battlespaces
- Models & simulations whether embedded in weapon systems, implemented as stand-alone systems, or integrated with other distributed simulations
- Test assets, test planning aids, and post-test analysis tools that address other than real time characteristics
- Infrastructure needed to conduct a (the) test(s) to include networks, integration software, data collection tools, etc.
- Provide descriptive information for each model & simulation resource:
 - Title, acronym, version, date, proponent
 - Assumptions, capabilities, limitations, risks, and impacts of the M&S
 - Availability for use to support T&E
 - Schedule for obtaining
Identify the modeling & simulation data needed to support T&E:

- Describe the input data the models & simulations need to accept
- Describe the output data the models & simulations should generate
- Describe the data needed to verify & validate the models & simulations
- Provide descriptive information for each data resource:
 - Data title, acronym, version, date
 - Data producer (organization responsible for establishing the authority of the data)
 - Identify when, where, and how data was or will be collected
 - Known assumptions, capabilities, limitations, risks, and impacts
 - Availability for use to support T&E
 - Schedule for obtaining
For each model & simulation and its data describe the planned accreditation effort based on the assessment of the risk of using the model & simulation results for decisions being made

- Explain the methodology for establishing confidence in the results of models & simulations
- Document historical source(s) of verification, validation and accreditation (VV&A) in accordance with DoDI 5000.61
- Provide the schedule for accrediting prior to their use to support T&E
Describe the standards (both government and commercial) with which the models & simulations and associated data must comply

- Information technology standards identified in the DoD Information Technology Standards Registry (https://disronline.disa.mil/)
- Standards identified in the DoD Architecture Framework Technical Standards Profile (TV-1) and Technical Standards Forecast (TV-2)
- Modeling & Simulation Standards and Methodologies (http://assist.daps.dla.mil/)
- Data standards
- VV&A standards:
 - IEEE Std 1278. 4TM -1997(R2002), IEEE Recommended Practice for Distributed Interactive Simulation - VV&A
 - MIL-STD-3022 DoD Standard Practice for Model & Simulation VV&A Documentation Templates
Summary

Incorporating the use of modeling & simulation planning into the TEMP:

- Responds to new T&E policy to plan for using models & simulations in support of the testing process.

- Supports the DT&E initiative to incorporate planning for modeling & simulation in the TEMP.

- Addresses recognized needs in the Acquisition M&S Master Plan

- Provides a thought process for a program manager to think about planning for the use of models and simulations to support the testing process

Currently this is still work in progress.
Back Ups
2. PART II-INTEGRATED TEST PROGRAM SUMMARY
 b. Management
 (2) Identify the T&E WIPT structure, to include the sub-T&E WIPTs, such as a M&S or Reliability, with their participating organizations.

3. PART III-DEVELOPMENTAL TEST AND EVALUATION OUTLINE
 b. Future Developmental Test and Evaluation.
 (3) …. List all M&S to be used to help evaluate the system's performance, explain the rationale for their credible use and provide their source of verification, validation and accreditation (VV&A).

4. PART IV-OPERATIONAL TEST AND EVALUATION OUTLINE
 c. Future Operational Test and Evaluation
 (3) …. Whenever M&S are to be used: identify the planned M&S; explain how they are proposed to be used; and provide the source and methodology of the VV&A underlying their credible application for the proposed use.

5. PART V-TEST AND EVALUATION RESOURCE SUMMARY
 a. … Identify the following test resources:
 (4) Threat Representation: Subject each representation of the threat (target, simulator, model, simulation or virtual simulation) to validation procedures to establish and document a baseline comparison with its associated threat and to determine the extent of the operational and technical performance differences between the two throughout the life cycle of the threat representation.
 (7) Simulations, Models and Testbeds: … Identify the M&S to be used, including computer-driven simulation models and hardware/software-in-the-loop test beds. However, provide the discussion of how these M&S will be used in Parts III and IV. Identify the resources required to accredit their usage. Identify the M&S Proponent, the V&V Agent, and the Accreditation Agent for intended user.
9.1 Introduction to Test and Evaluation (T&E): DT&E supports: the systems engineering process to include providing information about risk and risk mitigation; assessing the attainment of technical performance parameters; providing empirical data to validate models and simulations and information to support periodic technical performance and system maturity evaluations.

The program manager, in concert with the user and test communities, without compromising rigor, is required to integrate modeling and simulation (M&S) activities with government and contractor DT&E, OT&E, LFT&E, system-of-systems interoperability and performance testing into an efficient continuum.

9.1.5. Integrated T&E Philosophy: Live testing might be integrated with verified, validated, and accredited simulators or computer driven models and simulations, to optimize the amount of live testing required. Another aspect is integrating developmental test and evaluation with operational test and evaluation into a continuum that reduces testing resource requirements and time, or conducting concurrent DT and OT when objectives and realism are compatible.

9.3.2. T&E Working Integrated Product Team: Program managers should also consider forming lower level functional working groups, who report to the T&E WIPT, whose focus is on specific areas such as reliability scoring, M&S development and VV&A, threat support, etc.

9.3.4. Modeling and Simulation in DT&E
9.3.5. System Readiness for IOT&E
9.4.1. OT&E Guidelines
9.4.2. Validation of Threat Representations (targets, threat simulators, or M&S)
9.5.3. Early LFT&E
9.5.4. Full-Up, System-Level Testing (FUSL) and Waiver Process
9.6.1.1. TES Description
9.6.2.2. Test and Evaluation Master Plan (TEMP) Format
Integration of MBSE and HSI

Abe Meilich, Ph.D.
Lockheed Martin Corporation
abraham.w.meilich@lmco.com
Agenda

- Objective of INCOSE Research activity related to HSI/MBSE Integration
 - What Is The problem?
 - Why Should You Care?
 - What Is Included in HSI
 - Issues in Modeling the Human Influence on System Design
 - What Is Being Done Under the INCOSE MBSE/HSI Activity?

- Summary of selected HSI modeling and System Architecture Frameworks
- Definition of HSI tasks applied to SE process
- Examples of Application of HSI linked to MBSE using SysML
- Discussion plans in 2009 for Industry, Government, and INCOSE collaboration in improving the HSI/MBSE interface
A View Into the Future

Erosion of the people/system boundary:
“People will not just be users of the system of Ultra-Large-Scale (ULS) system; they will be elements of the system, affecting its overall emergent behavior”

Source: Ultra-Large Systems; The Software Challenge of the Future, SEI-CMU, June 2006,
What is the problem?

- Complex, revolutionary socio-technical systems pose a design problem that does not succumb to linear, de-compositional techniques
 - Do we have SE processes to deal with this?
 - Predict one person? Predict group behavior?
 - Two Air Force Science Advisory Board (AF SAB) studies have recognized there is weakness in our ability to better leverage human-to-human interaction in the battlespace.
 - The Potomac Institute also highlighted the lack of HSI tools to tackle the Future of Human in the Loop.
 - Ring (2004) argues that although current Systems Engineering practice can be applied effectively to the design of inanimate systems, it faces significant obstacles in the design of human intensive, socio-technical systems.

What is the problem?

- **Our evolving system of systems environment demand more attention to the human dimension**
 - the elements of such systems can together provide capabilities not achievable in isolation – leveraging the power of networking
 - definitions of the boundaries of these elements create dependencies and interaction activities – emergent behavior (both bad and good)
 - the mission performance of such systems is greatly improved through attention to the resulting human communication and coordination efforts – often overlooked

- **Why are the products of cognitive engineering ignored in the systems development process?**
 - It is not because the challenges of Human-System Integration (HSI) are unrecognized but because the products of cognitive engineering do not resonate with the design community at large\(^1\)

Another recommendation

- Use of scenario based analysis advocated*

 Recommendation: Adapt existing or develop new methods and tools that facilitate capture and traceability of HSI design objectives, design rationale, and constraints across design phases. Specifically:

Adapt existing and develop new methods for generating scenarios that reflect the range of complexities uncovered by context of use analyses. This corpus of scenarios can be used to support development and evaluation of designs, procedures, and training, including human reliability and safety analyses. They could also be used to exercise models and simulations as part of the system development process. The goal would be to ensure that the systems have been explicitly designed and tested to support performance across a comprehensive range of representative situations, as identified by context of use analyses. Context of use scenarios are also essential to the meaningful definition of such key performance parameters as response time, reliability, and accuracy.

Human Systems Integration: Mandate

AFSAB Report, SAB-TR-04-04

Study Overview

Increased demands on human operators
- Volume and complexity of information
- Changing job demands
- Manpower constraints

Impact on system effectiveness
- Accuracy and timeliness of decisions
- Operational safety
- Acquisition cost and schedule
- Total system life cycle cost

Study Assessment:
Shortfalls in HSI Practices
- Lack of organizational focus & advocacy
- No definitive AF policy/program guidance
- Lack of measurable requirements
- Resources below critical mass
- Inconsistent planning and execution

PROPOSED ACTIONS
- Elevate leadership focus
- Fix policy and S&T gaps
- Educate program management
- Strengthen HSI in System Engineering processes
Potential Solution?

- Potential Solution: Leverage and adapt new methods of SE modeling (MBSE) techniques to help the construction of a bridge between cognitive engineers, as well as all HSI domains, and systems engineers.
What is included in HSI?

<table>
<thead>
<tr>
<th>Traditional HSI Domains</th>
<th>Focus of analysis/evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manpower</td>
<td>Staff count and composition; total cost.</td>
</tr>
<tr>
<td>Personnel</td>
<td>Required and available personnel skills and aptitudes; physical abilities; security clearances; retention or attrition rates; total cost.</td>
</tr>
<tr>
<td>Training</td>
<td>Types of training and lengths of training; recurrent training requirements; impact of training on readiness; total cost of training.</td>
</tr>
<tr>
<td>Human Factors Engineering (HFE)</td>
<td>Required human capabilities; usability of proposed system; task performance times; accuracy (error rates) and efficiency (number of tasks performed in a given time period); cognitive and physical workloads; stress; organizational impact; effectiveness of communications.</td>
</tr>
<tr>
<td>Safety</td>
<td>Potential for errors that cause injury; potential for loss of use of system; potential for loss of personnel; cost of implementing reasonable safety precautions.</td>
</tr>
<tr>
<td>Occupational Health</td>
<td>Health hazards; severity and risks associated with hazards; total cost to minimize hazards or their consequences.</td>
</tr>
<tr>
<td>Survivability</td>
<td>Probability of being detected, attacked, or mistaken for enemy; ability to minimize injury; ability to minimize physical or mental fatigue; total cost of reducing risks.</td>
</tr>
<tr>
<td>Verification and Validation</td>
<td>Human system requirements met; functionality exists to accomplish the tasks or functions required; results compared to other sources to confirm accuracy within acceptable tolerances.</td>
</tr>
</tbody>
</table>

Note: most recently more areas have been proposed under the HSI umbrella >>>>>
HSI needs to communicate and inform SE

Differences in terminology¹

<table>
<thead>
<tr>
<th>Term</th>
<th>SE interpretation</th>
<th>HSI interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td>A high level description of what an Enterprise needs to achieve.</td>
<td>A duty that individuals carry out as part of their job.</td>
</tr>
<tr>
<td>Activity</td>
<td>A high-level description of what needs to be achieved, before individual resources are specified.</td>
<td>A low-level description of what individual people may do as part of their tasks.</td>
</tr>
<tr>
<td>Function</td>
<td>A specific description of what individual resources are designed or designated to do (e.g. human, machine, animal).</td>
<td>A generic description of what needs to be done at a high level of task descriptions – often resource-independent.</td>
</tr>
<tr>
<td>Role</td>
<td>Something to be done that is defined independently of whether a human or a machine will carry it out – since these allocations may change.</td>
<td>Something to be done by people (mostly one) who take responsibility for the outcomes. This is closely related to job definitions.</td>
</tr>
</tbody>
</table>

Design Requirements (criteria)*
- Design for:
 - Performance
 - Cost-system effectiveness
 - Reliability
 - Maintainability
 - Political, Social, & Tech Feasibility
 - Human Factors
 - Safety
 - Environment
 - Occupational Health
 - Manpower
 - Personnel
 - Training
 - Survivability
 - Habitability
 - Vulnerability
 - Supportability
 - Producibility
 - Reconfigurability
 - Affordability
 - Disposability
 - Flexibility (growth)
* applicable to all levels in the system structure and tailored to specific program needs

Design Task (tools/methods)
Design accomplished through:
- Requirements analysis
- Quality function deployment
- Feasibility analysis
- Operational requirements & maintenance concept
- Functional analysis
- Design trade-off studies
- Simulation & modeling
- Requirements allocation
- Reliability & maintainability analyses
- Human system integration
- Supportability analysis
- Test and evaluation
- Risk analysis
- Other supporting analyses

Source: Modified graphic from Blanchard & Fabrycky, Systems Engineering and Analysis, 2006, pp. 106
Human-Centered Tasks in System Life Cycle

<table>
<thead>
<tr>
<th>System Requirements</th>
<th>Human Systems Requirements</th>
<th>Human Systems Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Functional Allocation</td>
<td>• Operational Requirements</td>
<td>Lockheed Martin Proprietary Information</td>
</tr>
<tr>
<td>• Operator Task Analysis</td>
<td>• Maintenance Concept</td>
<td>Lockheed Martin Copyright 2008</td>
</tr>
<tr>
<td>• Operational Sequence Diagrams</td>
<td>• Tech Perform Measures</td>
<td>Design Review and Integration</td>
</tr>
<tr>
<td>• Human Error Analysis</td>
<td>• Functional Analysis & Allocation</td>
<td>Human Factors and Safety Analysis</td>
</tr>
<tr>
<td>• Operator Safety/Hazard analysis</td>
<td></td>
<td>Personnel and Training Information</td>
</tr>
</tbody>
</table>

System Life Cycle Phases

- **Conceptual Design**
 - System Requirements
 - Human Systems Requirements
 - Human Systems Plan

- **Preliminary System Design**
 - Operational Requirements
 - Maintenance Concept
 - Tech Perform Measures
 - Functional Analysis & Allocation

- **Detail Design and Development**
 - Design Review and Integration
 - Design Participation
 - Human-System Interface

- **Production and/or Construction**
 - Human Factors and Safety Analysis
 - Personnel and Training Information
 - Personnel Test and Evaluation
 - Data Collection, Analysis, and Corrective Action

- **System Operation and Support**
 - Recommendations for Improvement

[Lockheed Martin Proprietary Information](#)
[Lockheed Martin Copyright 2008](#)
Issues in Modeling the Human Influence on System Design

• HSI modeling has remained in the HSI domains
 – No way of linking HSI models to SE models due to domain languages and lack of relevant taxonomy linkage to SE needs

• It is challenging to link the soft behaviors of the human to the predictable behaviors of machines
 – Human performance modeling issue - cognitive capability and capacity can change with stress, fatigue and experience. Sometimes the direction of change can be unexpected (e.g., team performance under high workload can exhibit emergent behavior)

• There is lack of awareness of what attributes of human behavior can be linked to system effectiveness as it relates to overall mission effectiveness; thus limiting the ability of an SE to perform trade studies

• Note this issue as discussed by the AF SAB *:
 – “Whenever the Air Force generates a system-of-systems, interaction among the systems often includes human-to-human interactions. If the machine-to-machine aspect of SoS is weak, then it falls upon the humans to achieve the interaction. This can, and often does, create a very challenging environment for the human; sometimes leading to missed opportunities or serious mistakes. The lack of sound Human System Interface designs can exacerbate this. Coordinated situation awareness is difficult to manage if the individual systems miss or convey confusing or conflicting information to their operators.”

Lockheed Martin Copyright 2008
What is being Done Under the INCOSE/HSI Tasking?

- Evaluate how present MBSE artifacts can be related to SE artifacts from various HSI modeling approaches (including cognitive model applications) in practice today
 - Leverage HSI WG at INCOSE and other industry forums
 - Link to systems models in SysML
 - Link to dynamic models from system dynamics theory
 - Link to experimentation techniques
 - Link to executable cognitive architecture representations
Initial findings

- Many tools and computational engines used to perform HSI analysis
 - In process of negotiating prototypes of linking (automatically or semi-automatically) HSI data with SE data in a MBSE environment
 - IMPRINT™ to be used in conjunction with SysML for first prototype. Others are being investigated for prototypes
- LMC developing a HSI/SE methodology that can leverage MBSE modeling techniques to perform more “human centric” SE
 - Results to be reported at Winter 2009 INCOSE Workshop
What modeling techniques are out there for integrating HSI with SE

Initial Research:
- IMPRINT (Dynamic modeling of human performance characteristics in a system – US Army tool)
- SysML (common standards based SE language for modeling)
- Architecture Frameworks (Human Views)
- SOA Services and Standards (BPEL4People)
MBSD Encompasses Multiple Modeling Domains

- Ops/Mission Analysis
- Logistics Support
- Manufacturing
- Integration & Test
- Performance Simulation
- Engineering Analysis
- MBSD
- Algorithm Development
- System Design
- Software Design
- Hardware Design
- Human System Integration

MBSE
MBSD Integration

Analysis Models

System Architecture Model

Verification Models

HSI Analysis Models

Hardware Models

Software Models
System Engineering Technical Life Cycle Processes

• ISO/IEC JTC1/SC7 15288, Systems and Software Engineering - System Life Cycle Processes
HSI: A Cornerstone of Human Performance

Human Performance

Human Capabilities/Competencies
Human Workload
Human Fitness For Duty

Human-Machine I/F Design
Knowledge, Skills and Abilities
Crew Work Distribution
Airmen are qualified, rested, motivated & healthy

Human Systems Integration

HF Engineering Personnel Training Manpower Environment Safety & Occ Health Habitability Survivability

Airmen are qualified, rested, motivated & healthy

Hardman, N., Colombi, Jacques, D. and Hill, R., “What System Engineers Need to Know About Human-Computer Interaction”
Inputs and Outputs to SE/HSI Models

SE Process

- Stakeholder Requirements Definition
 - Concept Parameters: (Type of System, Customer Goals, Target Roles, Constraints)
 - HSI Parameters: (Expert Knowledge, Task Steps, Cognitive Processes, Work-arounds)

- Requirements Analysis
 - Requirements Parameters (CONOPS, System Requirements, Operational Requirements)
 - HSI Parameters (Operational CONOPS, Human Performance (HP) Reqs, HP Metrics)

- Architectural Design
 - Design Parameters (Architecture Design, System Design)
 - HSI Functional Parameters (Interaction Paradigm, Function Allocation, Workload)

- Implementation
 - Development Parameters (System Components, Low-fidelity Prototypes)
 - HSI Design Parameters (Changes Based on Usability & User Interface Standards)

- Integration
 - Development Parameters (Higher-fidelity Prototypes)
 - HSI Support Parameters (Training Materials, User Manuals)

- Verification
 - Testing Parameters (Test Plan, System Metrics)
 - HSI Testing Parameters (Changes Based on Usability & User Interface Standards)

- Transition
 - Transition Parameters (System)
 - HSI Transition Parameters (Times & Probabilities of Competing Sequences of Tasks)

- Validation
 - Testing Parameters (System Performance in Intended Environment)
 - Testing Parameters (HSI MOE and MOP)

- Operation
 - Performance Parameters (System Performance)
 - HSI Performance Parameters (Training vs. Performance)

- Maintenance
 - Maintenance Parameters (Personnel & Training Costs)
 - HSI Maintenance Parameters (Personnel, Expertise & Training Modifications)

- Disposal
 - Termination Parameters (Disposal artifacts)
 - HSI Termination Parameters (Lessons Learned, Replacement Guidelines for Users)

HSI Analysis Methods

- Cognitive Task Analysis
- HSI MOP
- Functional Analysis
- Heuristic Evaluation
- Training Composition
- Usability Testing
- Task Network Models
- Human-in-the-Loop Evaluation
- Efficiency Analysis
- Disposal
Ongoing UML – IMPRINT Pilot Study Project

Source: “Human Factors Integration for MODAF: Needs and Solution Approaches”,
A. Bruseberg & G. Lintern, INCOSE Annual Symposium 2007

Lockheed Martin Copyright 2008
Architecture Framework Products Supporting HSI/MBSE
(Another view of MODAF/HV)

Figure 8: An overview of HVs for MODAF in relation to MODAF Views at different levels.

Lockheed Martin Copyright 2008
SOA Services And Human-in-the-Loop

<table>
<thead>
<tr>
<th>Process Improvement</th>
<th>OMG - Business Process Maturity Model (BPMM)</th>
</tr>
</thead>
</table>
| Process Modeling | OMG - Business Process Modeling Notation (BPMN)
OMG - Business Process Definition Meta-Model (BPDM)
WFMC –XML Process Definition Language (XPDL) |
| Task Management | WS-HumanTask |
| Process Execution | OASIS – Business Process Execution Language WS BPEL 2.0
WS-BPEL Extension for People

Orchestrate people, systems, content, and business rules into streamlined, end-to-end processes that are accessible to process participants through engaging user interfaces, online or offline.
BPEL4People features

Features addressed by WSHumanTask

Human Task Behavior

- Normal Processing of a Human Task
- Releasing a Human Task
- Delegating or Forwarding a Human Task
- Suspending and Resuming a Human Task
- Skipping a Human Task
- Termination of a Human Task
- Error Handling for Human Task

Other considerations:

- Scope of users (i.e., operators, management, stakeholders, etc.)
- User Interfaces to Applications
- Portability and Interoperability Considerations
 - The portability and interoperability aspects Features addressed by WSHumanTask:
 - Portability - The ability to take human tasks and notifications created in one vendor's environment and use them in another vendor's environment.
 - Interoperability - The capability for multiple components (task infrastructure, task list clients and applications or processes with human interactions) to interact using well-defined messages and protocols. This enables combining components from different vendors allowing seamless execution.
How can MBSE and SysML help?

- Various efforts are underway to leverage SysML as part of Systems Engineering analyses
 - SysML is a System Engineering Modeling Language – a superset of UML
Example Integration of HSI and MBSE

- Activity Diagram
- Sequence Diagram
- State Machine Diagram
- Use Case Diagram
- Block Definition Diagram
- Internal Block Diagram
- Package Diagram

SysML Diagram

Behavior Diagram

Requirement Diagram

Structure Diagram

- Activity Diagram
- Sequence Diagram
- State Machine Diagram
- Use Case Diagram
- Block Definition Diagram
- Internal Block Diagram
- Package Diagram

- Same as UML 2
- Modified from UML 2
- New diagram type

= Primary use and reuse for HSI
IMPRINT™ Example - OV-6b Operational State Transition Diagram

Data objects:
- Operational states
- Events
- Operational state transitions

Usage:
- Operational analysis

Description:
Graphical method of describing how an operational node or activity responds to various events by changing its state.

Source: IMPRINT/Artisan Software Charts - 2008
User Characteristics

```
«User»
{Age = 13-100}
{Computer Experience = Minimal}
{Disability = Upper body movement}
Minimal Sight required
May need large buttons
Hearing for alarms - Alternative
Flashing Lights?
{Frequency = Undefined}
{Language = English/May need internationalisation}
{Motivation = Keep House and belongings safe}
Save time, save money
{Sex = M/F}
{Task Consistency}
Occasional
User

«User»
{Age = 18-65}
{Computer Experience = Advanced, Detailed H/W Knowledge}
{Disability = Normal Sight, Hearing and Mobility}
{Frequency = Regular}
{Language = English}
{Motivation = Maintain System in Good Working Order}
Minimise False Alarms
Minimise System Faults
Maintain Professional Company Image
{Sex = M/F}
System Maintainer

«User»
{Age = 13-100}
{Computer Experience = Minimal}
{Disability = Upper body movement}
Minimal Sight required
May need large buttons
Hearing for alarms - Alternative
Flashing Lights?
{Frequency = Occasional}
{Language = English/May Need internationalisation}
{Motivation = Keep House and belongings safe}
Save time, save money
{Sex = M/F}
{Task Consistency}
Occasional
User

«User»
{Age = 18-70}
{Computer Experience = Understanding of Menu Driven Systems}
{Disability = Upper Body Movement}
Normal Sight Required
Hearing For Alarms
{Frequency = Regular}
{Language = Native English}
{Motivation = Keep House and belongings safe}
Save Time, Save Money
Ensure System Works Correctly
{Sex = M/F}
Regular User

«User»
{Age = 18-70}
{Computer Experience = Advanced}
{Disability = Upper Body Movement}
Very Good Sight for Small Components
Hearing For Alarms
Mobility through house to check components
May need to reach high places
{Frequency = Regular}
{Language = English}
{Motivation = Keep House And belongings Safe}
Save Time, Save Money
Ensure System is in Good Working Order
Prevent Future Faults
{Sex = M/F}
Advanced
User

Source: IMPRINT/Artisan Software Charts - 2008
```
Task Characteristics

Task "stereotyping"; Metaphor for “use case”

Source: IMPRINT/Artisan Software Charts - 2008
Parametrics

• Used to express constraints (equations) between value properties
 – Provides support for engineering analysis (e.g., performance, reliability)
 – Facilitates identification of critical performance properties
• Constraint block captures equations
 – Expression language can be formal (e.g., MathML, OCL) or informal
 – Computational engine is defined by applicable analysis tool and not by SysML
• Parametric diagram represents the usage of the constraints in an analysis context
 – Binding of constraint usage to value properties of blocks (e.g., vehicle mass bound to $F = m \times a$)

Parametrics Enable Integration of Engineering Analysis with Design Models
Using the Equations in a Parametric Diagram to Constrain Value Properties
Future Plans for INCOSE HSI/MBSE Collaboration in 2009

• Develop an initial mapping between the artifacts produced in SE Process to HSI Process/analysis

• Map HSI artifacts into static structural modeling framework including interdependency across systems.

• Comprehensive Example Architecture: Using MBSE approach with an exemplar architecture using the outcomes of 2008 effort
• Develop example integration of HSI tool to MBSE environment (e.g., using SysML)

• Work with HSI/SE community to help peer review approaches developed under our INCOSE activity
Systems Engineering Re-Vitalization at the Defense Contract Management Agency

Presented By:

Mr. Lawrence Cianciolo

October 20-23, 2008
AGENDA

Charter
Feedback
DCMA Systems Engineering Value to the DoD Acquisition Enterprise
DCMA Systems Engineering Functions and Influence Areas
DCMA Systems Engineering Core Processes
Recommended Path Forward
 • Baseline Skills Assessment
 • Competency Training
 • Develop Policy/Tools/Guidance
 • Recommended Training Track/Curriculum
 • SE Standard Surveillance Operating Guide (SSOG) Outline
Charter

Intent is to define expectations and prioritize processes, functions, and efforts of DCMA engineers in providing the best guidance, support, and life-cycle balanced system solutions that satisfy customer needs, goals, objectives, requirements, and specific outcomes in DoD weapon systems acquisition management.

Defining the Future of DCMA Systems Engineering!
Feedback on our recommendations - provided by OSD (AT&L), PEO, DCMA Division Director, CMO Commander, and CMO Engineers:

“…a sound approach with a great explanation…” - Dr. Don Gelosh, Senior Systems Engineer, OSD (AT&L) SSE / ED

“…you have a good handle on this…” - Col Rich Hoeferkamp, Acting Deputy Director, OSD (AT&L) SSE / ED

“…you are on the right track…” - Alex Levi, PEO Staff Engineer, Space and Missile Systems Center, Los Angeles AFB

“…this initiative is much needed…” - Col Warren Anderson, DCMA Dayton Commander - OSD (AT&L) SE Instructor

“I like the Engineering Core Processes listed…” - Gregory Lehn, P.E., DCMA NASA Product Operations
DCMA Systems Engineering Value to the DoD Acquisition Enterprise

• Primary Result of OSD (AT&L) Study
 • A lack of Systems Engineering process capability and process compliance were primary contributors to poor program performance

• Revitalizing DCMA Systems Engineering efforts would help to improve program performance

• Aligns with OSD (AT&L) Mission to Revitalize Systems Engineering Throughout the DoD
DCMA Systems Engineers

- Ensure that the contractor has effective processes
- Ensure that the contractor delivers products that meet requirements and are delivered on schedule and within cost
- Track cost, schedule and technical performance, perform risk analysis, perform predictive analysis of program impacts, and recommend improvements to contractor performance
- Influence the contractor to improve performance
- Provide needed recommendations to the PMO
DCMA SYSTEMS ENGINEERING FUNCTIONS AND INFLUENCE AREAS

• Ensure Products Meeting Customer Requirements in a Timely Manner (Satisfied Customer)

• Support Major Program Performance Commitments (PCs)

• Perform Mandated DCMA Systems Engineering Activities in Support of Certain MOAs

These Functions are Implemented via the DCMA Systems Engineering Core Processes
Engineering Core Processes
Establish DCMA HQ Sys Eng Competency Team

• Baseline Skills Assessment
 • Assess Core Processes, roles and responsibilities - continuously review for modifications
 • Baseline core competency skills needed by commodity
 • Identify skills needed to implement new technology in future programs
 • Identify skills needed to sustain legacy systems
 • Align with AT&L Competency Assessment Efforts

Engineering Disciplines are Unique
Recommended Path Forward

Establish DCMA HQ Sys Eng Competency Team

• Develop Competency Training Program
 • Consolidate and prioritize Division training inputs
 • Secure Systems Engineering training funding
 • Execute Systems Engineering training
 • Define training standards and timelines
 • Measure Agency training success (Metrics)
• Develop measures of success to achieve core competencies
• Integrate results with the following recommended training path/curriculum:
Recommended Training Path/Curriculum

<table>
<thead>
<tr>
<th>Training Type</th>
<th>Course(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>Appropriate ABET Accredited Degree</td>
</tr>
<tr>
<td>DAWIA</td>
<td>Level II in appropriate field</td>
</tr>
<tr>
<td></td>
<td>Level III in appropriate field for CMO Engineer Lead</td>
</tr>
<tr>
<td>Core</td>
<td>DCMA New/Advanced Engineering Courses</td>
</tr>
<tr>
<td>Commodity</td>
<td>Appropriate Licenses or Certifications for Commodity (e.g. Airframe Powerplant (A&P) License for Aero Work)</td>
</tr>
<tr>
<td>Specialty</td>
<td>As needed (e.g. EMI)</td>
</tr>
</tbody>
</table>
Recommended Training Path/Curriculum

<table>
<thead>
<tr>
<th>Training Type</th>
<th>Course(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developmental</td>
<td>Leadership, PBM, Six Sigma, Predictive Analysis</td>
</tr>
<tr>
<td>Professional Certification</td>
<td>Certified by Professional Society Aligned with the Individual’s Career Field (as desired)</td>
</tr>
<tr>
<td>Additional Recommended Training</td>
<td>Acquisition:</td>
</tr>
<tr>
<td></td>
<td>DCMA Integrated Master Schedule Class</td>
</tr>
<tr>
<td></td>
<td>DCMA Systems Engineering Course</td>
</tr>
<tr>
<td></td>
<td>BCF 102,203 (Earned Value)</td>
</tr>
<tr>
<td></td>
<td>LOG 101, 204</td>
</tr>
<tr>
<td></td>
<td>PQM 101, 201</td>
</tr>
<tr>
<td></td>
<td>TST 102</td>
</tr>
<tr>
<td>Engineering:</td>
<td>e.g., TSNs, NDT, ANSI Y-14.5M</td>
</tr>
<tr>
<td></td>
<td>Geometric Dimensioning & Tolerancing (all as needed)</td>
</tr>
<tr>
<td>Product Specific:</td>
<td>Determined by DCMA</td>
</tr>
<tr>
<td></td>
<td>Divisions Based on Knowledge Gap Analysis</td>
</tr>
</tbody>
</table>
Establish DCMA HQ Sys Eng Competency Team

• Develop Policy/Tools/Guidance
 • Perform/Evaluate Enterprise Planning to include:
 • Staffing/Organization
 • Succession Planning
 • Appropriate Skills Matching
 • Policy and Tools
 • Training
 • System Engineering Guide Development
 • Develop Standard Surveillance Operating Guide (SSOG)
 • Develop Systems Engineering Influence Guide
 • Develop Systems Engineering Evaluation Guide and associated metrics
Chapter 1: Concept Development Phase
- Perform Program Management Oversight
- Perform Engineering Process Reviews
- Evaluate Engineering/Resource Schedule Estimates
- Evaluate Program Performance
- Perform Engineering Product Examinations

Chapter 2: Technology Development Phase
- Perform Program Management Oversight
- Perform Engineering Process Reviews
- Evaluate Engineering/Resource Schedule Estimates
- Evaluate Program Performance
- Perform Engineering Product Examinations
Chapter 3: System Development and Demonstration Phase
- Perform Program Management Oversight
- Perform Engineering Process Reviews
- Evaluate Engineering/Resource Schedule Estimates
- Evaluate Program Performance
- Perform Engineering Product Examinations

Chapter 4: Production and Deployment Phase
- Perform Program Management Oversight
- Perform Engineering Process Reviews
- Evaluate Engineering/Resource Schedule Estimates
- Evaluate Program Performance
- Perform Engineering Product Examinations
Chapter 5: Operations and Support Phase

Perform Program Management Oversight
Perform Engineering Process Reviews
Evaluate Engineering/Resource Schedule Estimates
Evaluate Program Performance
Perform Engineering Product Examinations

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaun Lanham</td>
<td>DCMAG-OCT</td>
</tr>
<tr>
<td>Larry Cianciolo</td>
<td>DCMAM-OCT</td>
</tr>
<tr>
<td>Thuyhong Tran</td>
<td>DCMAS-OCT</td>
</tr>
<tr>
<td>David Kiewit, P.E., JD</td>
<td>DCMAM-OCT</td>
</tr>
<tr>
<td>Mike Sheridan, P.E.</td>
<td>DCMAM-OCT</td>
</tr>
<tr>
<td>Bruce Heim</td>
<td>DCMA Boeing LB</td>
</tr>
<tr>
<td>Terry Taylor</td>
<td>DCMA AIMO</td>
</tr>
<tr>
<td>Capt Mark Fienhold</td>
<td>DCMA SSO Sunnyvale</td>
</tr>
<tr>
<td>Dr. Ram Sinha</td>
<td>DCMA-HQ</td>
</tr>
</tbody>
</table>
How to Specify Applicable Documents

11th Annual Systems Engineering Conference
National Defense Industrial Association
San Diego, California
22 October, 2008

James R van Gaasbeek
Associate Technical Fellow, Systems Engineering
Northrop Grumman Corporation

Cleared for Public Release, Control No. 08-103, dtd. 9/30/08
Agenda

- Abstract
- Context and Definitions
- Disclaimer
- Citation in Sections 3, 4 or 5
- Citation in Section 2
- Precedence
- Tiering
- Flowdown to Subcontractors
- References
- Biography
Abstract
Abstract

It is a common practice to refer to applicable documents in both programmatic and product-specification documents in contracted development. The practice permits inclusion of a vast amount of lessons-learned and best practices can be referenced without the need to include the information directly in the document, nor to maintain the referenced information. Product requirements documents often specify interfaces and interoperability characteristics by reference to interface control documents included in the list of applicable documents. Benefits accruing to the product from the use of applicable documents are reduced overall cost, better products and better interoperability. Costs accruing to the product development effort are the cost of maintaining visibility on changes to applicable documents outside the control of the Program and the cost of verification of all included requirements.

Experience on many Programs and with several customers has shown that there is a wide variation in the manner in which applicable documents are incorporated in product specifications. The observed differences fall into several broad categories, such as: the method of citation of applicable documents; the difference between compliance and reference documents; the methods of referencing the documents in the requirements statements; and the approach to sub-tiering of the applicable documents.

This paper will discuss the different approaches to utilizing applicable documents within product documents and the issues and risks that arise, illustrated with examples. Using lessons learned across the program and customer experience, a robust, standardized approach is recommended that should increase the benefit of using applicable documents while reducing the cost.
Context and Definitions
Typical specification formats utilized in US Department of Defense contracting provide for the citation of applicable documents.

“Judicious referencing of other documents in specifications is a valuable tool that eliminates the repetition of requirements and tests adequately set forth elsewhere. However, unnecessary or untailored referencing of other documents can lead to increased costs, excessive tiering, ambiguities, and compliance with unneeded requirements.” (MIL-STD-961E, 4.19)

Method for incorporating lessons learned in the field

Method for including commercial standards and practices
• The applicable documents are of two types:
 – **Compliance** – the cited document contains requirements included in the citing document by reference
 – **Reference** – the cited document provides data or information useful in enhancing the understanding of the citing document

• Documents can be referenced in product specifications and in programmatic documents (e.g., Statement of Work). This presentation will address citation in product specifications only.

• Compliance documents can be found in functional, performance, interface, environmental and design and construction requirements. Reference documents can be found throughout Sections 3, 4 and 5 and Appendices.
Applicable Document Utilization

- Various standard specification formats exist (MIL-STD-490A, MIL-STD-961E, JSSG-2000A, various DIDs). A typical format is:

 1.0 Scope
 2.0 Applicable Documents
 3.0 Requirements
 4.0 Verification
 5.0 Packaging
 6.0 Notes
 10.0 Appendix

 Citations of all documents cited in sections 3, 4 and 5, and Appendices, with full attribution, by type and source. Document citations within specific requirements.
Areas of Confusion

• Citation of a reference document as a compliance document
• Citation of a compliance document as a reference document
• Unnecessary citation of a complete document
• Incomplete citations in Section 2
• Failure to state precedence
• Failure to address tiering
• Failure to flowdown applicable documents to subcontractors
Disclaimer
Disclaimer

- The author has found no discussions of the use of applicable documents in the literature.
- Some examples of requirements that can be improved are given in this presentation. There is no intent to criticize the original author, as there is no standard way to handle applicable documents.
Citation in Sections 3, 4 or 5
Citation of Incorrect Document in a Requirement

• NSS1740.14 defines parameters for assessing a design to determine the minimization of orbital debris generation.
• This could be a programmatic requirement inadvertently included in a product specification.
• Alternatively, one can derive several product requirements from the Guidelines, in which case the requirement should be stated as:

• NSS1740.14 should then be listed in the “Reference Documents” section.
Citation of an Entire Document in Requirements

The <System> shall meet MIL-STD-1472 for all 1-g human-machine interfaces.

The <System> shall meet NASA-STD-3000 for all micro-g and 0-g human-machine interfaces.

- Both requirements are valid product requirements.
- Both MIL-STD-1472 and NASA-STD-3000 contain some explicit requirements ("shall") and numerous implicit requirements in the form of design guidance.
- It has been estimated that each of the documents may contain approximately 3000 requirements. By inclusion of the entire document, all the cited requirements will have to be verified.
- Should only cite a complete document if the intent is to include all of its requirements. Otherwise, cite specific sections.
Citation of an Incorrect Document in an Incorrect Location

The <System> shall operate after temperature and humidity diurnal cycling During transportation and storage as defined in MIL-STD-810F, Method 507.

- MIL-STD-810F is not a product requirements document – it addresses methods for environmental testing.
- The requirement should be rewritten as a product requirement for Section 3 and a verification requirement Section 4:

 The <System> shall operate after temperature and humidity diurnal cycling During transportation and storage in the natural environment defined in MIL-HDBK-310.

 Verification of the <System’s> operation after temperature and humidity diurnal cycling during transportation and storage using Method 507 in MIL-STD-810F.

- Both MIL-STD-810F and MIL-HDBK-310 should then be referenced in the “Reference Documents” section.
The <System> shall operate during and after exposure to rain at a rate of 100 millimeters (mm) per hour for a 1 hour duration at +24 degrees Celsius (C) and with a 64-knot wind as defined in MIL-HDBK-310.

The <System> shall be sealed to prevent water incursion as defined in MIL-STD-810F, Method 506, Section 2.2.2b (Water Tightness).

- The first requirement is a good example.
- The second requirement should be rewritten as a product and a verification requirement:

The <System> shall be sealed to prevent water incursion (Water Tightness).

Verification that the <System> is sealed to prevent water incursion shall be conducted using Method 506, Section 2.2.2b of MIL-STD-810F.
The first problem is the use of the same title for sections 2.0 and 2.1. Section 2.1 should be called “COMPLIANCE DOCUMENTS”.

The introductory text in Section 2.1 places no restrictions on the cited documents – if a document is updated at some point during the product life cycle, then the product must be updated to agree with the compliance documents.
2.0 APPLICABLE DOCUMENTS
The documents listed in this section are specified in sections 3, 4, or 5 of this document. This section does not include documents cited in other sections of this document or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, Document users are cautioned that they must meet all specified requirements of Documents cited in sections 3, 4, or 5 of this document, whether or not they are listed here. Failure to include a cited document in this section does not mean that it is not included in this Document. Inclusion of a document in this section without a citation in the text does not include that document in this Document.

2.1 APPLICABLE DOCUMENTS
The following documents of the exact revision and date listed below form a part of this specification to the extent specified herein.

2.2 REFERENCE DOCUMENTS
The following documents of the exact revision and date listed below are referenced herein.

• The statements force exact attribution of the applicable documents and ensure that any update to an applicable document will force a formal explicit review and possible change to the specification.

Cleared for Public Release, Control No. 08-103, dtd. 9/30/08
Citation in Section 2 (Concluded)

• The format for Sections 2.0, 2.1 and 2.2 shown on the previous chart are the “short” form.
• MIL-STD-490 and MIL-STD-961 recommend listing the documents within Sections 2.1 and 2.2 by source.
• See Section 5.7.2 – 5.7.3 of MIL-STD-961E for an example of the “long” form. Note that it makes no distinction between compliance and reference documents.
Sample Section 2 Citations

• A standard format is to reference the documents (compliance and reference) in a tabular format, as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6 November 1996</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Notice 1</td>
<td></td>
</tr>
<tr>
<td>11 March 1992</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MIL-STD-1472F</th>
<th>Department of Defense Design Criteria Standard, Human Engineering, Department of Defense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notice 1</td>
<td></td>
</tr>
<tr>
<td>5 December, 2003</td>
<td></td>
</tr>
</tbody>
</table>

• Decide if the citation in the requirement statement should have the full attribution, or just the base number (i.e., MIL-STD-130M or MIL-STD-130). The full attribution must be provided in Section 2.
Precedence

- There can be conflicts between the cited documents and requirements in the citing specification.
- Add a subsection to Section 2 with the following text:

2.X Order of precedence
In the event of a conflict between the text of this specification and the references cited herein, the text of this specification takes precedence. Nothing in this specification, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

Quoted from JSSG-2000A, paragraph 2.5.
Document Tiering

- Control of document tiering has become a primary way of controlling contractual applicability of cited documents. Care must be taken to ensure that each cited document is appropriate to the first-tier references or compliance documents (including those references or compliance documents cited in the contract, which themselves would become first-tier references or compliance documents and, thus, their second tier would become contractually applicable as well).

- Exceptions to tiering applicability are generally defined by DoD policy. For example, in the Perry memo previously cited, the direction on tiering of specifications and standards includes, “Approval of exceptions may only be made by the Head of the Departmental or Agency Standards Improvement Office and the Director, Naval Nuclear Propulsion for specifications and drawings used in nuclear propulsion plants in accordance with Pub. L. 98-525 (42 U.S.C. §7158 Note).”

 Based on JSSG-2000A, paragraph 2.4.
• Cited applicable documents can, themselves, cite additional applicable documents which can, also, cite applicable documents:

Will it ever end?

Cleared for Public Release, Control No. 08-103, dtd. 9/30/08
• Need to include a tiering statement such as:

When the <item> specification is directly referenced in the contract, it is a first-tier specification and is applicable. Documents referenced in the first-tier specification are applicable as follows:

a. Second Tier - All documents directly referenced in the first-tier specification are only applicable to the extent specified.

b. Lower Tier - All documents directly referenced in second- or lower-tier documents are for guidance only unless otherwise directed by the contract.

Based on JSSG-2000A, paragraph 2.4.
Flowdown to Subcontractors
Flowdown to Subcontractors

- The specifications provided to the subcontractors for the items that they are to provide should also contain a Section 2, and the flowed-down requirements should cite the portion of the applicable document in the parent document that corresponds to the flowed-down requirement.
References
• MIL-STD-961E, Department of Defense Standard Practice Defense and Program-Unique Specifications Format and Content, 1 August 2003
Author’s Biography

• Jim van Gaasbeek has 35 years experience analyzing and developing rotary-wing and fixed-wing aircraft, launch vehicles and spacecraft, both in the United States and European defense environments. Beginning as a rotor aeroservoelastician, his career has progressed with experience in constructive and virtual simulation, accident investigation, vehicle-management system design and systems engineering, concentrating in risk management and requirements development, management and verification.
Operational Concepts

11th Annual Systems Engineering Conference
National Defense Industrial Association
San Diego, California
23 October, 2008

James R van Gaasbeek
Associate Technical Fellow, Systems Engineering
Northrop Grumman Corporation

Cleared for Public Release, Control No. 08-104, dtd. 9/30/08
Abstract

A recognized systems engineering best practice is early development of operational concepts during system development and documentation of those operational concepts in one or more Operational Concept Documents. Recognizing this best practice, United States Department of Defense and NASA standard procedures require that information relating to system operational concepts be prepared in support of the specification and development of systems. In the past, the DoD has published Data Item Descriptions (DIDs), and NASA has published Data Requirements Documents (DRDs), which describe the format and content of the information to be provided.

The abstract model of the concept of operations is focused on operations, with reference to specific systems only as needed. A definition of “operational concept” has not been found. For the purposes of this presentation, it will be taken to mean an abstract model of the operations of a specific system or group of systems, usually developed as part of the acquisition process and used throughout the design, development, test and evaluation (DDT&E) phases of the system life cycle.

While various Government standards require the generation of operations concept information and Data Item Descriptions (DIDs) are available, little information is typically provided which clearly describes the manner in which an OCD should be used in support of a system development. Few guidelines exist regarding which information is most useful, how to develop that information, which developer and customer personnel should participate, or how to document it have been provided.

This presentation will address the nature of the operations concept, how it is developed and by whom, and how it is used in the development, deployment, operations and support of a new or upgraded system.

Cleared for Public Release, Control No. 08-104, dtd. 9/30/08
Agenda

- What is an OpsCon
- Relationships with Use Cases and DoDAF
- OpsCon Preparation
- Scenarios
- Requirements Definition from the Operational Concept
- Use of the Operational Concept for Validation
- References
- Author Biography
ConOps or OpsCon?

- **Concept of Operations**: A verbal and graphic statement, in broad outline, of an enterprise’s assumptions or intent in regard to an operation or series of operations. The concept of operations frequently is embodied in long-range strategic plans and annual operational plans. In the latter case, the concept of operations in the plan covers a series of connected operations to be carried out simultaneously or in succession. The concept is designed to give an overall picture of the enterprise operations. It is also called the CONOPS.
 - (Based on Department of Defense Dictionary of Military and Associated Terms, JP 1-02, 12 April 2001 (as amended through 23 March 2004)

- **Operational Concept**: A verbal and graphic statement of an enterprise’s assumptions or intent in regard to an operation or series of operations of a system or a related set of systems. The operational concept is frequently developed as part of a system development or acquisition program. The operational concept is designed to give an overall picture of the operations using one or more specific systems, or set of related systems, in the enterprise’s operational environment from the users’ and operators’ perspective. It is also called the OpsCon. It is defined in an Operational Concept Document.

- These definitions will be used in this presentation. They are arbitrary - define the terms for your Program at the beginning of the Program and use them consistently.
ConOps and OpsCon Relationship

Concept of Operations

Enterprise Level

System Level

New System #1 Acquisition
Operational Concept

New System #2 Acquisition
Operational Concept

System Modification Or Upgrade
Operational Concept

Cleared for Public Release, Control No. 08-104, dtd. 9/30/08
OpsCon Life Cycle

Problem description

- Pre-Proposal Operational Concept
 - Prepared by customer / users / operators
 - User’s / Operator’s viewpoint
 - Basis for the selection of MoEs
 - Basis for selection of standards of acceptance

Problem description

- Development Operational Concept
 - Prepared by customer / users / operators and developer
 - User’s / Operator’s viewpoint
 - Describes intended behaviors

Solution description

- Production Concept
 - Basis for verification and validation planning
 - Basis for design of End Products and Enabling Products

- Deployment Concept
 - Basis for number of units, availability, deployment location decisions

- Support Concept
 - Basis for evaluation for future change requests

- Disposal Concept

Increasing detail

Cleared for Public Release, Control No. 08-104, dtd. 9/30/08
OpsCon in the DoD Acquisition Life Cycle

DoDI 5000.2 (May 2003)
ConOps and OpsCon in Development

Enterprise Policies → Enterprise Goals and Objectives → Enterprise Strategies → Concept of Operations → Gap Analysis → Mission Needs

- New System → Operational Concept
- Modified or Upgraded System → Operational Concept
- DOTLPF Changes → Operational Concept
- No Changes → Operational Concept

Cleared for Public Release, Control No. 08-104, dtd. 9/30/08
OpsCon Purposes

• The Operational Concept provides contextual information for the development of the requirements and the system - details of the intended use and benefits of the system.
• The Operational Concept provides the basis for the system validation.
OpsCon and Use Cases

The Use Case, part of the Unified Modeling Language (UML), and now part of the System Modeling Language (SysML) as well, is limited in scope relative to an Operational Concept Document (OCD).

Use Case analysis is extremely useful in elicitation of operator, maintainer and user requirements.

The Use Case does not discuss the operational context or environment, for example.

Another valuable feature of Use Cases, which can be included in the OCD, is the Use Case scenario pre- and post-conditions.

The set of Use Case descriptions and the scenarios can be included in the OCD, but they do not form a complete OpsCon.

The use of Use Cases in the OpsCon should be carefully considered and balanced with the use of narrative and graphics for the remainder of the OCD. A collection of Use Cases and Scenarios can not, in itself, constitute an OCD.
OpsCon and DoDAF OV-1

• OV-1, High-Level Operational Concept Graphic
• The High-Level Operational Concept Graphic describes a mission and highlights main operational nodes (see OV-2 definition) and interesting or unique aspects of operations. It provides a description of the interactions between the subject architecture and its environment, and between the architecture and external systems. **A textual description accompanying the graphic is crucial. Graphics alone are not sufficient for capturing the necessary architecture data.**
• The Operational Concept Document, which documents the Operational Concept, is ideal to provide the textual description for the OV-1 Graphic.
There are two documents that provide guidance in the development of Operational Concepts and their documentation:
- FHWA-HOP-07-001, Developing and Using a Concept of Operations in Transportation Management Systems, Federal Highway Administration, August 2005
 - Note that the report is actually addressing the Operational Concept as defined on Chart 4

There are two additional documents that provide outlines and a discussion of the contents of an OpsCon

US Government guidance documents are listed in the References.
Stakeholders

Operators, Maintainers and Users should be the authors of the OpsCon. In the event that they have not developed an OpsCon, then the developer community should develop it in cooperation with the operators, maintainers and users. It is possible that some stakeholders are not available (e.g., regulators), in which case the authors must work with stakeholder surrogates.
When to Write the OpsCon

- The OpsCon should be written before or during the concept development phase.
- The OpsCon should be updated throughout the product lifecycle, at major milestones, to support the Program phase:
 - System Development
 - Production
 - Deployment
 - Operations and Support
 - Disposal

Cleared for Public Release, Control No. 08-104, dtd. 9/30/08
Users of the OpsCon

- Operators / Maintainers / Users
- Systems Engineers and Architects
- System Implementers
- Acquirers
- Testers
- Regulators
- In short, the stakeholders
Types of OpsCon

• Operations Concept - describes the way the system works from the operator’s perspective.
• Production Concept - describes the way the system will be manufactured.
• Deployment Concept - describes the way the system will be delivered and installed.
• Support Concept - describes the desired support infrastructure and manpower considerations for maintaining the system after it is deployed. This includes specifying equipment, procedures, facilities and operator training requirements.
• Disposal Concept - describes the way the system will be removed from operation and retired.
 - Based on the INCOSE Systems Engineering Handbook
Environments

- The OpsCon describes the various environments in which the system will be deployed, operate and be maintained:
 - Physical
 - Natural
 - Induced
 - Self-induced
 - Threat
 - Cooperative
 - Political
 - Social
 - Economic
 - etc
Contents

• 1. Scope
• 2. Referenced Documents
• 3. Background Information
• 4. Existing Systems and Operations
• 5. Operational Overview
• 6. System Overview
• 7. Operational Processes
• 8. Other Operational Needs
• 9. Analysis of the Proposed System
• Appendix A: Acronyms, Abbreviations and Glossary
• Appendix B: System Operational Scenarios
Scenarios

- Scenarios consist of both a textual and graphical description of a single end-to-end thread of operation of the system
- Need to have the major, critical, normal operational scenarios (“happy day”) described
- Need to have the important off-design or degraded-mode operational scenarios described as well (“rainy day”)
- Some examples of the graphical representation follow
 - **Typically, would use Functional Flow Block Diagrams, Enhanced Functional Flow Block Diagrams, Activity Diagrams or Sequence Diagrams**
 - **Have used a non-standard notation for simplicity**
Example Scenario – “Happy Day”

Service Aircraft

- Embark Passengers
- Load Cargo And Baggage
- Pre-flight Aircraft

Pushback → Taxi → Takeoff

Climb → Cruise → Descend

Approach → Land → Taxi → Park at Gate

Disembark Passengers → Unload Cargo And Baggage → Post-flight Aircraft

Service Aircraft

Cleared for Public Release, Control No. 08-104, dtd. 9/30/08
Example Scenario – “Rainy Day 1”

Service Aircraft

Embark Passengers

Load Cargo And Baggage

Pre-flight Aircraft

Pushback

Taxi

Takeoff

Rejected Takeoff

Taxi

Park at Gate

Disembark Passengers

Unload Cargo And Baggage

Post-flight Aircraft

Service Aircraft
Example Scenario – “Rainy Day 2”

Service Aircraft
- Embark Passengers
- Load Cargo And Baggage
- Pre-flight Aircraft

Pushback
- Taxi
- Takeoff

Climb
- Cruise
- Descend

Approach
- Land
- Taxi
- Park at Gate

Disembark Passengers
- Unload Cargo And Baggage
- Post-flight Aircraft

Service Aircraft

Go-Around

Cleared for Public Release, Control No. 08-104, dtd. 9/30/08
The Operational Concept defines:

- the context of the product, leading to a definition of its boundaries and the external interfacing and inter-operating systems, leading to identification of interface requirements;
- the normal and other operational environments, leading to definition of the environmental requirements;
- scenarios of normal and degraded operations, from which Product functionality can be derived;
- and scenarios showing a “day in the life” of the product which help to develop the logistics, maintenance and support requirements, and identify the personnel requirements for the product operator.
Use of the Operational Concept for Validation

- Requirements Validation is the task of showing that the Product as developed satisfies the customer needs in its intended operational environment.
 - The Operational Concept provides:
 - A summary of the customer needs
 - A description of the normal and other operational environments
 - Various operational scenarios that can be used to define validation test procedures
 - Scenarios of degraded operations
References

• JP 1-02, Department of Defense Dictionary of Military and Associated Terms, 12 April 2001 (as amended through 23 March 2004)
• FHWA-HOP-07-001, Developing and Using a Concept of Operations in Transportation Management Systems, Federal Highway Administration, August 2005
• ISO 14711:2002(E), Space systems - Unmanned mission operations concepts - Guidelines, 2002
References (Continued)

- DID DI-IPSC-81430, Operational Concept Description (OCD)

Cleared for Public Release, Control No. 08-104, dtd. 9/30/08
References (Concluded)

- CJ CSM 3170.01C Joint Capabilities & Integration Develop Sys (JCIDS), 01 May 07
- CJ CSI 3010.02B, Joint Operations Concepts Development Process, 27 Jan 06
- COMUSFLTFORCOM Instruction 5401.1, Fleet CONOPS Development, Sep 07
- AF Instruction 10-2801, AF Concept of Operations Development, 24 Oct 05
- Army Strategic Planning Guidance 2005: Annex B Concept Development & Experimentation Guidance, 15 Jan 05
- Air Force Policy Directive 10-28, AF Concept Development, 15 Sep 03
- AF Space Command Instruction 10-102, Concept Development, 15 Nov 07

Cleared for Public Release, Control No. 08-104, dtd. 9/30/08
Author Biography

- Jim van Gaasbeek has 35 years experience analyzing and developing rotary-wing and fixed-wing aircraft, launch vehicles and spacecraft, both in the United States and European defense environments. Beginning as a rotor aeroservoelastician, his career has progressed with experience in constructive and virtual simulation, accident investigation, vehicle-management system design and systems engineering, concentrating in risk management and requirements development, management and verification.
Using Performance-Based Earned Value® for Measuring Systems Engineering Effectiveness

Dr. Ron Carson
Bojan Zlicaric
The Boeing Company

NDIA SE Conference – 20 October 2008
Outline

- Performance-Based Earned Value®
- SE Effectiveness
- SE Metrics Architecture
- Example Metrics for Requirements
The Scope of **Earned Value** is Limited

- *ANSI/EIA-748B, 3.8
 - “Earned value is a direct measurement of the quantity of work accomplished. The *quality* and *technical content* of work performed is controlled by other processes.” [emphasis added]

- Need another method to assess *quality* of work accomplished

* “Standard for Earned Value Management Systems”
Easy PBEVSM Example

- Task: wash windows
- Desired outcome: clean windows
- Quality measure: cannot see anything on window surface (no distortion or obscuration of reflections)
- Earned Value: Window was washed
 - “I washed the window”
- PBEVSM: Window is clean
 - “But it’s not clean” – PBEVSM less than EV
- Difference (PBEVSM – EV) = “Unearned value” = Quality criteria for the product delivered by the activity, or the cost of rework
What is Quality?

- “Quality is conformance to requirements” (Crosby, “Quality is Free”, 1979)

- Therefore, “quality” of work accomplished is composed of
 - Inherent quality of work product (conformance to work product standards, e.g., specs, drawings, plans, reports)
 - Conformance of work product to technical requirements associated with the system (e.g., design satisfies requirements)
A major SE work product is a specification containing all requirements for a system.

Requirements Specification Quality – 2 parts
- Specification structure and syntax
 - Conforms to template standards (quality of specification)
 - Completeness, outline, format
 - Requirements are well-stated (quality of requirements)
 - Clarity, verifiability, etc.
- Specification content
 - System described satisfies user needs and/or contract requirements, e.g., weight, speed, availability, etc.
SE Effectiveness

- "Effectiveness" is an ability to produce the needed result using the committed resources
 - Resource commitments based on planning
 - EV measures execution vs. plan
 - Resource utilization: money, people, facilities, time

- What are the “needed results” or products of SE?
 - Specific SE work products
 - Program outcomes
 - Cost – Budgeted cost
 - Schedule – Committed schedule
 - Technical Performance – Systems satisfying requirements and needs

 - Leads to PBEVSM*

*PBEV and Performance-Base Earned Value are registered trademarks of Paul Solomon
SE Effectiveness Decomposition

- Define contributors to SE Effectiveness
 - Leads to SE Metrics Architecture

- Three contributing streams
 - Product Quality – Satisfying needs and requirements
 - Cost and Schedule

- Essential elements
 - Work product quality and completeness – fitness for use by downstream “customer”
 - Timeliness – available when needed
 - Defined by coordinated schedule; measured by EV

Collectively measured by Earned Value
- Planning (basis for product definition and EV)
SE Measures Architecture

- Top level of measures architecture shows decomposition of SE Effectiveness and PBEV℠
Using PBEV℠ for SE Effectiveness

- **Work definition – IMP/IMS**
 - Define work products for every scheduled activity (evidence of completion)
 - Plans, requirements, design, interfaces, verification
 - Define objective quality standards for work products
 - Define technical content requirements for work products

- **Progress assessment**
 - Value is earned (EV) based on
 - Satisfying work product quality standard
 - Satisfying technical requirements associated with work product
 - Technical maturity per plan – % of planned TPM achieved (Solomon)

- “Unearned value” is cost of rework: the work not-yet-accomplished
Decomposition of Compliance of Design with Requirements

- Measure Quality and Completeness of
 - Design Analysis and Verification (Compliance)
 - Design and Implementation
 - Requirements

1.1 Complies with Requirements

1.1.1 Requirements

1.1.2 Design Analysis & Verification

1.1.3 Design & Implementation
Technical Compliance Metric

- At each major review, assess % requirements for which design is compliant, with associated risk level of non-compliance.

*Notional data
Requirements Quality Assessments (RQA)

Assess quality of requirements vs. objective quality standard

One Program RQA
All Programs Average RQA

< 2.0
2.0 - 3.0
3.0 - 3.5
> 3.5
Summary

- EV alone is inadequate to assess technical progress
- Program goals include satisfying cost, schedule, technical requirements
- PBEVSM offers a method to integrate these
- Architecture of SE measures enables decomposition and allocation of PBEVSM contributors to measurements of common SE work products
Implementing a Methodology to Incorporate Operational Realism in CONOPS & Testing

National Defense Industrial Association (NDIA)
11th Annual Systems Engineering Conference
October 20-23, 2008

Test & Evaluation in Systems Engineering Track,
Wednesday October 22, 2007

William Lyders, ASSETT Inc.
Agenda

- **Challenge: Incorporate Operational Realism Early in Life Cycle – Today!**
 - What products & when in life cycle
 - Two current projects that address challenge

- **Double Helix Methodology involving CONOPS/Technology Trade-offs**

- **The Methodology Captures Key Acquisition Information**
 - Inputs for TES, TDS, and TDS
 - Use Case involvement
 - Incorporating operations in Test Architecture

- **Lessons Learned at ASSETT**

- **Summary and Conclusions**

- **Q&A**
Challenge – NDIA SE Division DT&E Report [April 2008]:

- **Finding:** Operational realism is often not included or detailed in the earliest phases of acquisition, such as during generation of the CONOPS, ICD, TDS, and TES.

- **Recommendations:**
 - Operational realism must be given due diligence during the generation of the CONOPS, then flowed into the ICD, TDS, and TES.
 - CONOPS should have iterative updates beginning when technology constraints are identified...
 - These updates need to flow into the ICD, TDS, and TES or their respective follow-on documentation.

- In the following charts, the approach being done by a small business, ASSETT, is shown to be accomplishing the recommendations.
Operational Realism and CONOPS

- Operational Realism – The tasks and activities, operational elements, and information exchanges required to conduct operations
 - DODAF Operational View in a System Architecture
 - Includes high level operational concepts [e.g. CONOPS],
 - Operational activities sequence and timing descriptions
 - Activity and Logical data models
 - Trade-offs between operations and technologies

- CONOPS – A Concept of Operations is defined as a description of how a set of capabilities may be employed to achieve mission objectives or a particular end state for a specific scenario
 - A CONOPS for critical mission segments should be in place for all mission scenarios
 - Currently, a CONOPS is not updated for a platform even though a technology improvement is installed or a new capability made available...CONOPS should change
Operational Realism Products Evolve Early in Acquisition and SE Process

Advanced Systems & Supportability Engineering Technology and Tools

22 October 2008
Two Current ASSETT Projects Address Operational Realism

- **SBIR N05-149 Combat System of the Future**
 - Non-Traditional View of the Submarine
 - Provide the Basis for Ship Design
 - HSI Impacts Manning Reduction that Drives Stores, Accommodations, and Supplies
 - Maximum Use of Technology that Drives Power, Cooling, Volume, and Footprint Requirements
 - Identify Changes in CONOPS and Training
 - Allow CONOPS to Change as a Function of Technology
 - Develop Confidence in New Analysis Tools and Automation

- **ONR Capable Manpower Initiative**
 - BAA 007-013 – Improved Manning and Optimized Personnel (IMOP)
 - Top-Down Approach to Estimating the Manning Requirements for a Platform
 - Searches for an Optimum Manning Solution Among Number of Operators, System Resource Requirements and Mission Tasking
Our CSO:F Methodology Incorporates Operational Concepts and Technology

Double Helix Approach Leveraged from the DARPA Command Post of the Future [CPoF]

- Technology (Helix 1) and CONOPS (Helix 2 - Operator’s View) Evolve and Over the Life Cycle of the System (Concept Through Disposal)
 - Understanding the Operator’s View and What Is Needed for Effective Decision Making Is Necessary In Order to Apply New Technologies Effectively
 - Conversely, the Operator Needs to Be Made Aware of New Technologies and How They May Impact His Decision Making
 - The Blue Vertical Bars Represent Points in Time When an Exercise Is Run to Determine if Changes in Technology or CONOPS Would Enhance the Operator’s Ability to Make Accurate Decisions. Typically this Exercise Is Via the Web or Video Conferencing
 - The Orange Vertical Bars Represent Point in Time When Actual Experiments Are Run to Analyze the Benefits of New Technology or Changes in CONOPS.
Mission Driven Design

☐ Top Down Approach that Focuses On Ensuring Mission Success

- Develop Mission Scenarios
- Determine Alternatives for Presenting Information to Operator (s)
- The ASSETT Team Executes Web Exercises, Interviews, & Team Experiments
 - SMEs Identify the Decision Points and the Information Required
- System Engineers Determine Technologies and Capabilities Necessary to Provide the Required Information
Operations & Technology Analyses Driven by Missions to Optimize Manning – Data Gathering

- Personnel/ Roles of Current Submarines (CSoF)
- An initial CONOPS identifying Candidate Operators to Eliminate or Redefine
- Manning Goal of current crew size
- Zero-based double helix Manning analysis (CSoF)

Tasks are defined in the IMOP Manning Model with Trade-offs between Operators & Resources

An Initial Basis for a Resource Hierarchy
Building with the Combat System of the Future (CSoF) Process

Missions: (Representative mission phases from the CSoF Operational Scenarios: Port Egress, Submerged Transit, and Intelligence Surveillance and Reconnaissance (ISR))

Decisions:
To support Missions

Objective: Formulate data to define operational decisions & capture technology for TDS & ICD inputs

Step 1
Decision Information Required/Task Timeline
CONOPS (Re-thought NWP for every activity for each mission)
Decision Hierarchies, Timelines

Step 2
Technology
Technology Advancement

Step 3
Systems
(Data, Technology)

Person
(User Role)

Multiple Iterations
Double Helix process

Proceeding Ahead:
Refocus Data Gathering to narrow search and expand data attributes for modeling
Our Process Would Drive Operational Needs Into the TES, ICD, and TDS

Technology Development Strategy (TDS) Objectives
(Defense Acquisition Guidebook – Section 2.2.1)

- Focus is on the Technology Development Phase activities (TDP)
- Strategy to manage R&D
- Description of 1st technology demonstration
- Test Plan:
 - How 1st technology spiral demo will be evaluated
 - Focus on evaluation of technologies being matured during TDP and signals end of Milestone A

Test and Evaluation Strategy (TES) Objectives
(Defense Acquisition Guidebook – Section 9.3.1)

- Verify SE Process
- Event driven T&E Strategy
 - Assess technical progress against critical technical parameters (CTP)
 - Determine readiness of operational testing – an OT&E entrance criteria
 - Assess command, control, communications, and ISR to ensure interoperability will represent stressed OT&E scenarios
- How stress system to at least the limits of the Operational Mode Summary/Mission Profile
Our Process Would Drive Operational Needs Into the TES, ICD, and TDS

Initial Capabilities Document (ICD) Objectives
(Defense Acquisition Guidebook – Section 9.1.3.1 + Other Sources)

- Broad Operational Goals and Requisite Mission Capabilities that drive the TES
- Addresses specific capability gaps in terms of:
 - Functional areas
 - Range of Military Operations
 - Desired Effects and Time
- Description of 1st technology demonstration
- Describes materiel and non-material approach to satisfy capability gap
- Used for Milestone A decisions

An important effort to define Initial Capabilities is to perform a demonstration of conceptual designs including Command & Control Display Concepts for operational scenarios – such as those done by the CPoF and CSoF projects.
Use Cases provide a good Link to Operational Test Validations

Use Case (UC) Definition: A use case is a single [operational] task, performed by the end user of a system, that has some useful outcome.

- **Use cases (UC) are a popular way to express operational & system requirements**
- **A UC spans between the user needs and system functionality**
- **The UC directly states the user intention and system response of each step in a particular interaction.**

Mission Analyses result in defining tasks in an operational scenario that needs to be completed.
- **These tasks become the basis for defining use cases**
- **A system design that satisfies a UC meets an operational need.**

Example UC

UC24 Generate an Alternate Navigation Path Plan

Purpose – To generate an alternative by identifying certain attributes of the baseline plan in accordance with the defined set of navigation path rules

Main Flow
1. System displays list of available path options
2. User chooses path options to review
3. System displays path plan option details
4. User identifies & changes path option attributes
5. System displays impact assessment of change adjustment
6. User chooses to save alternate navigation path plan
7. System saves alternate navigation path plan

A good Test Strategy includes a Test Plan that performs Test Cases involving Uses Cases for both DT&E and OT&E.
Test Architecture incorporates Methodology Outputs

Operational Realism in Test Architecture Components

Test Strategy

- Operational Realism in Test Architecture Components

Test Scope
- SOW emphasis on specific efforts to verify operational requirements

Test Objectives
- Clearly define overall project operational test objectives
- Define multiple levels of testing: Laboratory, Field, and Operational

Test Environments
- DT&E and OT&E environment HW/SW

Test Operations
- Planning and conducting DT&E (T&I) and OT&E
- Plans for incorporation of OT&E early in cycle
- Field testing and Customer site acceptance tests

Test Documentation
- Test Strategy, Plans, Procedures, & Reports for each level

Test Equipment
- Technology in test environments
- Transportability for operational field tests

Test Metrics
- Operational metrics
- Laboratory vs. Field metrics

Test Management
- Test Manager & Test Director
- Customer Management for Field Testing

TES, ICD, and TDS, etc.
Plan Strategies for each Level of Testing

The System Integration Planning Must Address All Levels of Test – Operational testing done at each level
- Results in Multiple Test Plans
- Minimize risks of meeting Operational requirements

- Integrating DT&E Events with early OT&E Events
 - DT&E is Laboratory level testing – little or no human environment
 - DT&E uses simulators for operating environment conditions
 - OT&E includes the human element in testing
 - OT&E has the real platforms and real operating environments
 - Early OT&E Alignment in DT&E environment can be done
 - Plan long duration operability demonstration tests with real system operators
 - Schedule regular test shifts for 3-6 months for real system operators
Some Operational Realism Lessons Learned at ASSETT

- Get testable operational requirements [e.g. use cases] defined early and agreed upon with the Customer

- Getting the users involved early and often results in you building what the operational users want, not what they asked for
 - Often when asked to clarify a requirements, the real need is uncovered...not the “design” they “required”
 - Results in fleet buy-in and more likely for operational acceptance

- The Navy ARCI project has CONOPS groups to address capabilities gaps currently not being supported now.
 - After group meets, then they meet with contractors
 - Initially a new capability could be requested and implemented without broad need. The group solves that.

- Often involving an operational crew in laboratory testing will identify design improvements and improve acceptance later
Summary & Conclusions

1. Incorporating operational realism early will result in building something that be used and verified in DT&E and OT&E

2. A methodology exists and is being performed by contractors that addresses operational realism early in the design process

3. Conducting the operational modeling, designs, and technology trade-offs will result in requirements, strategies, and technology candidates for including in the TES, TDS, and ICD.

Systems Engineering provides a structured approach to managing the technical solution over the full life cycle from concept to deployment to retirement...

...Test and Evaluation complements this approach with support for defining requirements and integration planning...and conducting many levels of integration tests with systems engineering support to achieve customer acceptance of a system...
Abstract

Implementing a Methodology to Incorporate Operational Realism in CONOPS & Testing

Session: Test and Evaluation in Systems Engineering

Operational realism, a key piece of an Operational View in a System Architecture, is today being implemented as part of a Double Helix Methodology. The methodology, developed, tested, and validated by the DARPA Army Command Post of the Future is being used by ASSETT for a future Navy Combat System of the Future. The methodology incorporates iterations of CONOPS and Technology trade-offs using Subject Matter Experts (SME), web exercises, interviews, team experiments, and display simulations in developing and testing evolving conceptual system designs prior to a system acquisition. This presentation will identify how ASSETT Inc. has successfully implemented this approach within its system engineering process and how it will eventually lead to better acquisition development and test strategies.

The Double Helix Methodology and the CONOPS/Technology Trade-offs: In the 2008 NDIA DTE Committee Study Task Report, one of the key findings/recommendation was “to include operational realism in early phases of acquisition of a new system during generation of the CONOPS, ICD, TDS, and TES”. Our Mission Driven Design process uses the Double Helix Methodology, beginning with a conceptual CONOPS and an eye for the future. New automated capabilities are envisioned based on a decision centered design approach to defining tasks, their sequence, and any associated time constraints. The CONOPS is synchronized iteratively with the technology team to address the CONOPS expectations for the future technologies & promising capabilities. From mission phases in operational scenarios, many different uses cases can be defined to test this new operational realism in DT&E and OT&E.

Outputs of the Approach Feed System Capabilities and Strategy Documents: The new capabilities, technologies, and mission driven conceptual designs will derive requirements to be captured in the acquisition development and testing documentation. This presentation will provide an insight into the methodology, the Decision Centered Design process that drives the operational and system architecture views, how the decisions are used in defining the tasks and events in each evolving CONOPS/Technical iteration, and how the Testing & Simulations of the HSI displays using operational personnel will focus the designs for a system to be acquired.
Author Biography – Mr. Lyders is currently a Systems Engineering Manager and Lead Systems Engineer/Test Director for multiple projects at ASSETT, Inc. He has over 39 years of both systems engineering & project management experience in both federal software and commercial Information Technology (IT) development projects. He has significant complex system test and integration expertise, dockside, and at-sea testing experience developed through his federal work with multiple Sonar, Combat Control, and Submarine Combat Systems and multiple SBIR projects for the Navy. He was a Test Team Lead on large commercial projects for both domestic/international companies.
Systems Engineering in the S&T Environment

Best Practices and Other Lessons Learned from the Air Force Research Laboratory

October 2008
Overview

• AFRL’s SE Problem
• The TASE Study
• TASE Assessment Results – Best Practices
• TASE Recommendations
• Conclusions
AFRL’s SE Problem

• Technology development and maturation are a contributing element to the acquisition process
• Recent acquisition “failures” have resulted in an increased DoD focus on systems engineering
• AFRL is also being asked to do more with fewer resources

So – why shouldn’t AFRL apply systems engineering in its activities?
AFRL’s SE Problem - Continued

• Because…
 – “SE is acquisition oriented, and we do research”
 – “AFRL programs are small with limited budgets, and SE adds a resource burden”
 – “SE focuses on customers and requirements satisfaction, and research programs don’t have either”
 – “Structured approaches like systems engineering will stifle creativity in research”

“We don’t need no stinking SE!”
The TASE Study

- AFRL commissioned the Transformational Activities in Systems Engineering (TASE) study in 2006

- 3 Phases
 - Assess AFRL’s current SE state of practice: determine DoD/AF requirements; assess current SE policy, practices, and tools (2006)
 - Recommend improvements to AFRL’s SE policy and practices (2007)
 - Implement and sustain an approved AFRL SE process (2008+)
TASE Assessment Process

• Assessment based on:
 ─ Review of DoD and AF SE guidance
 ─ Interviews with AFRL Advanced Technology Demonstration (ATD) and other high-priority program personnel (52 programs assessed)

• Facilitated by GD-AIS contractor team
 ─ 5 senior systems engineers
 ─ Former Director of the AF Center for Systems Engineering
TASE Assessment Results

- **Intent** of DoD guidance encourages use of SE in research activities
- SE was not foreign to AFRL personnel, but few programs used a full set of SE processes
- The S&T environment is “different”
 - Variable program size
 - “Soft” requirements (aka “desirements”)
 - Collegial (vs hierarchical) relationships
 - Instability in customer base
AFRL S&T Systems Engineering Example: Requirements Development and Roadmapping

• AFRL use of the Integrated Product and Process Development (IPPD) process
 – High Energy Laser on a Large Tactical Platform (HELLTP)
 – Next Generation Unmanned Aerial System
 – Multiple small programs

• SE Successes
 – Increased understanding of “customer” needs
 – Better focus on which technology areas to pursue
 – Increased potential for successful transition
The Advanced Tactical Directed Energy System (ATADS) ATD used SE processes to successfully meet its program objectives

- Result was up to an order of magnitude reduction in weight and cost from the existing airborne infrared countermeasures system with increased performance

SE Successes:

- Lab-led requirements development and management including IPT with user, PO, and contractor resulted in responsive but controlled requirements that balanced user needs with technical realities
- Continuous risk management successfully responded to technology and program issues
- Model-based decision analysis improved both requirements and design choices
- Strong contractor SE processes, monitored by Lab managers, ensured matured technologies and integration met Lab needs
• Requirements Development and Decision Analysis
 – Formal IPPD process tailored to AFRL’s environment and “Standardized” between Directorates
 – Strong Integrated Product Teams (IPTs)

• Risk Management
 – Continuous process involving AFRL and contractor

• AFRL/Contractor Relationship
 – Strong contractor SE with AFRL understanding and oversight

• Senior Leadership Support
 – Designated Chief Engineers and SE Branches
AFRL S&T SE Best Practice: IPPD Process

Customer Requirements
- Form IPT and Document Customer Requirements
- Establish Quantified S&T Exit/Transition Criteria
- Assess Technology Alternatives
- Perform Transition Value Analysis

Technology Alternatives
- Develop & Demonstrate Technology
- Deliver Technology

Value Analysis
- Technology Demonstration

Transition Focused:
- Measurement-based methods
- Balanced tech trades/options
- Quantify desirability & risk
IPPD Revisited

Phase 1: Expand the problem space

Phase 2: Expand the solution space
TASE Recommendation: Attack the Problem on 2 Fronts

• Cultural Change:
 – Build upon current SE Best Practices in AFRL
 – Implement a tailored, consistent, and complete SE framework that is a part of everyday operations (not a “burden”)
 – Provide training on fundamental SE practices tailored to the research environment
 – Champion the S&T SE framework and supporting organization at the highest level of leadership
TASE Recommendation: Attack the Problem on 2 Fronts

- **Cultural Change and**
- **Process Improvement:**
 - Institute strong requirements development and decision analysis processes
 - Employ continuous technical management processes
 - Ensure AFRL technology program managers understand and have visibility into contract SE
 - Reduce program risk:
 - Foster customer intimacy, recognizing customer changes as a key factor in transition risk
 - Investigate technology alternatives early in the program
Conclusions

• AFRL has discovered that Systems Engineering is a good idea for S&T work

• AFRL has learned that implementing SE processes must be attacked on 2 fronts: cultural change and process improvement

• AFRL is implementing process and culture improvement efforts base on Best Practices
Questions?

• **AFRL POCs:**

 – Dr. Ken Barker (Deputy Director for Program Management and Systems Engineering)
 kenneth.barker@wpafb.af.mil

 – Mr. Bill Nolte (Assistant to Dr. Barker for SE)
 william.nolte@wpafb.af.mil

• **General Dynamics POC:**

 – Mr. Bill Doyle, PMP (TASE Project Lead)
 william.doyle@gd-ais.com
 (719-641-3758)
A Service-Oriented Architecture (SOA) Business Model for the US Department of Defense (DoD)
Overview of presentation

• How is DoD viewed today?
• How is SOA related to net-centricity?
• What would be a more SOA-like approach look like?
• Conclusions
How Is DoD Viewed Today?

- This “systems view” divides activities into various “mission areas”
 - Warfighting
 - Intelligence
 - Business
 - Infrastructure
- In doing so, this complicates the interfaces between areas
- Also, “business” occurs in all these areas

See Global Information Grid Architectural Vision, June 2007
How Is SOA Related to Net-Centricity?

• DoD defines net-centricity as “the realization of a networked environment, including infrastructure, systems, processes, and people, that enables a completely different approach to warfighting and business operations.”*
 • The idea is to use the global network to provide warfighters and decision makers with the information they need, when they need it, in a secure environment

• Service-Oriented Architectures provides a means to package business processes as interoperable services
 • Hence, it is seen as a means to implement net-centricity

See DoD Net-Centric Data Strategy, May 9, 2003

So does the current model lend itself easily to SOA?
Simple Example: A Basic SOA

So how can we apply this to DoD’s needs?
Proposed SOA Business Model for DoD

Product and Service Providers

- Information/ Data
- Content
- Services
e.g.:

Information & Service Consumers

Needs, Knowledge & Feedback, $ (Task)

Value-Added “Resellers” (Process)
e.g.:
- Intelligence Analysts
- Algorithm Developers

TPPU + G

Market Status, $

Transaction Support; Decisions

Information & Service Brokers (Process)
e.g.:
- Decision Makers
- Chain of Command
- Expediters

Exchange Regulators (Guidance)
- Domain & COI Establishment, Monitoring and Control
- Business Rules
- Regulations
- Policies

DoD Enterprise Services (e.g., CES)

- Information & Services (Post)
- Needs & Plans, $

Needs Knowledge & Feedback $ (Task)

Information, Services, Plans & Status (Use)

Read Data & Information, $

Intelligence (Post)

Information & Service Brokers

Transaction Support; Decisions

Market Status, $

Transaction Support; Decisions

Transaction Support; Decisions

Transaction Support; Decisions
Conclusions

• Net-centricity can provide significant benefits to warfighters and decision makers
• SOA can provide an effective means for implementing net-centric principles
• By adopting a business model that cuts across the organizational boundaries, we can reap the benefits of DoD’s vision for net-centricity
Knowledge-Based Analysis and Design (KBAD)

A methodology for rapid, cost-effective system engineering and architecture development

Presented October 22, 2008
Overview of presentation

• Why yet another “methodology?”
• What is KBAD?
• What theory underlies KBAD?
• What kind of tools work with KBAD?
• What process does KBAD implement?
• What kind of people do we need to execute KBAD?
• How do we move from drawing pictures to building a knowledgebase?
Why Yet Another Methodology?

• We have the DoD Architecture Framework …
 • But DoDAF isn’t a methodology, its just a description of necessary products

• We have UML …
 • But UML is only a software engineering technique. You have to come up with the process and tools for implementing it

• We now have SysML …
 • But SySML is just another technique and still needs more definition to create complete, executable designs

• What’s missing?
 • A complete, coherent technique, process, and tool set that results in a knowledge base that can be used for full lifecycle decision making
Knowledge-Based Analysis and Design

• KBAD combines system engineering and program management disciplines to enable the development of a knowledgebase that can enable cost-effective decision making
• KBAD spans the acquisition lifecycle enabling support for design, development, integration, test, operations and sustainment
• KBAD focuses on using a variety of techniques and tools, brought together in a common database using special software to migrate data between tools
• The KBAD process links the technique and tools together in an executable, cost-effective way to support decision making at all levels

KBAD reduces costs and increases speed of delivery by simplifying the data captured and focusing on the analyses needed for design. The result: a knowledge-base for decision making.
What makes up KBAD?

• **Technique**
 - Modified Model-Based System Engineering (MBSE)

• **Process**
 - SPEC’s Middle-Out Process for Architecture Development and System Engineering

• **Tools**
 - A variety of COTS tools tailored to the MBSE modifications and special needs of DoDAF

• **People**
 - Trained, experienced professionals who bring a wealth of different backgrounds and knowledge in architecture, system engineering, modeling & simulation, physics, computer science, test & evaluation, operations & support

KBAD was developed over the past 15 years and brings lessons learned from those years of experience.
The technique: refined MBSE

• Various forms of model-based system engineering have been developed

• SPEC uses the one developed by TRW in the late 1960s, which has been successfully used since then

• SPEC has refined this technique by simplifying the information collected (entities, relationships and attributes) and adding a number of key elements missing from the original development
1. Logical architecture (behavior) model
 - Functional sequencing
 - Data flow and size
 - Resource model
 - Evolution in time

2. Physical architecture (asset) model
 - Interface definition (bandwidth and latency)
 - Actions allocated to Assets
 - Data allocated to interfaces
Models are based on language

<table>
<thead>
<tr>
<th>Language Elements</th>
<th>English Equivalent</th>
<th>KBAD Schema Example</th>
</tr>
</thead>
</table>
| **Element** | Noun | • Statement
• Action
• Asset
... |
| **Relationship** | Verb | • Statement is the basis of an Action
• An Action is performed by an Asset
... |
| **Attribute** | Adjective | • Description
• Type (e.g., Operational Activity is a type of Action
... |
| **Attribute of Relationship** | Adverb | • amount of Resource consumed by an Action
• acquire available (hold partial) Resource for Action
... |
| **Structure Enables Executability** | Graphics/Drawings | • Graphic Views: Behavior, Hierarchies, Physical Block |
We modified Vitech’s schema

<table>
<thead>
<tr>
<th>KBAD Element</th>
<th>CORE Elements</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>Function/Operational Activity</td>
<td>Provide overall class for actions</td>
</tr>
<tr>
<td>Artifact</td>
<td>Document</td>
<td>Recognized not just documents</td>
</tr>
<tr>
<td>Asset</td>
<td>Component/Operational Element</td>
<td>Provide overall class for assets</td>
</tr>
<tr>
<td>Characteristic</td>
<td>type of Requirement</td>
<td>Way to capture metrics and other characteristics of an element</td>
</tr>
<tr>
<td>Cost</td>
<td>attribute of Component</td>
<td>Broadens capture of costs</td>
</tr>
<tr>
<td>Input/Output</td>
<td>Item/Operational Information</td>
<td>Clearer name</td>
</tr>
<tr>
<td>Issue</td>
<td>Issue</td>
<td>Same</td>
</tr>
<tr>
<td>Link</td>
<td>Link/Needline</td>
<td>Provide overall class for transmission</td>
</tr>
<tr>
<td>Location</td>
<td>none</td>
<td>Captures geolocation information</td>
</tr>
<tr>
<td>Risk</td>
<td>Risk</td>
<td>Same</td>
</tr>
<tr>
<td>Statement</td>
<td>type of Requirement</td>
<td>Clearer name</td>
</tr>
<tr>
<td>Time</td>
<td>attribute of Function</td>
<td>Broadens capture of times</td>
</tr>
</tbody>
</table>

The goal was to simplify and clarify the language.
We related all the KBAD schema elements

<table>
<thead>
<tr>
<th>Action</th>
<th>Cost</th>
<th>Characteristic</th>
<th>Artifact</th>
<th>Asset</th>
<th>Input/Output</th>
<th>Link</th>
<th>Statement</th>
<th>Issue</th>
<th>Risk</th>
<th>Time</th>
<th>Location</th>
<th>CORE Equivalent</th>
<th>DoDAF Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>decomposed by</td>
<td>incurs</td>
<td>specified by</td>
<td>documented by</td>
<td>performed by</td>
<td>utilizes</td>
<td>inputs outputs triggered by</td>
<td>-</td>
<td>based on</td>
<td>generates</td>
<td>resolves</td>
<td>occurs located at</td>
<td>Function</td>
<td>Operational Activity/ System Function</td>
</tr>
<tr>
<td>Cost</td>
<td>incurred by</td>
<td>decomposed by</td>
<td>specified by</td>
<td>documented by</td>
<td>incurred by</td>
<td>- based on</td>
<td>based on</td>
<td>generates</td>
<td>incurred by</td>
<td>occurred</td>
<td>located at</td>
<td>New</td>
<td>N/A</td>
</tr>
<tr>
<td>Characteristic</td>
<td>specifies</td>
<td>specifies</td>
<td>decomposed by</td>
<td>documented by</td>
<td>specifies</td>
<td>based on</td>
<td>generates</td>
<td>causes</td>
<td>occurs located at</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artifact</td>
<td>documents</td>
<td>documents</td>
<td>documents</td>
<td>decomposed by</td>
<td>documents</td>
<td>documents</td>
<td>source of</td>
<td>generates</td>
<td>causes</td>
<td>occurs located at</td>
<td>Document</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Asset</td>
<td>performs</td>
<td>utilized by</td>
<td>incurred by</td>
<td>documented by</td>
<td>decomposed by</td>
<td>- connected by</td>
<td>based on</td>
<td>generates</td>
<td>causes</td>
<td>occurs located at</td>
<td>Component</td>
<td>Operational Node/ System Node</td>
<td></td>
</tr>
<tr>
<td>Input/Output</td>
<td>input to output from triggers</td>
<td>incurs</td>
<td>specified by</td>
<td>documented by</td>
<td>decomposed by</td>
<td>transferred by</td>
<td>based on</td>
<td>generates</td>
<td>causes</td>
<td>occurs located at</td>
<td>Item</td>
<td>Operational Information/Data</td>
<td></td>
</tr>
<tr>
<td>Link</td>
<td>-</td>
<td>incurs</td>
<td>specified by</td>
<td>documented by</td>
<td>decomposed by</td>
<td>transferred by</td>
<td>based on</td>
<td>generates</td>
<td>causes</td>
<td>occurs located at</td>
<td>Link</td>
<td>Needline/Interface</td>
<td></td>
</tr>
<tr>
<td>Statement</td>
<td>basis of</td>
<td>basis of</td>
<td>basis of</td>
<td>stated in</td>
<td>basis of</td>
<td>basis of</td>
<td>decomposed by</td>
<td>generates</td>
<td>causes</td>
<td>occurs located at</td>
<td>Requirement</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Issue</td>
<td>generated by</td>
<td>generated by</td>
<td>generated by</td>
<td>documented by</td>
<td>generated by</td>
<td>generated by</td>
<td>generated by</td>
<td>causes</td>
<td>occurs located at</td>
<td>Issue</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk</td>
<td>caused by</td>
<td>resolved by</td>
<td>incurred by</td>
<td>documented by</td>
<td>caused by</td>
<td>caused by</td>
<td>caused by</td>
<td>decomposed by</td>
<td>occurs located at</td>
<td>Risk</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>occurred by</td>
<td>decomposed by</td>
<td>located at</td>
<td>New</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>locates</td>
<td>locates</td>
<td>locates</td>
<td>locates</td>
<td>locates</td>
<td>locates</td>
<td>locates</td>
<td>occurs</td>
<td>decomposed by</td>
<td>New</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reduced number of elements from 21* to 12, while adding time, location and cost

*CORE's DoDAF schema
A key attribute – type

• We added a “type” attribute to all classes
• Each “type” attribute contains different designators for the parent class
• Examples:
 • Assets can have types that include:
 • Operational Node, System, Component, Resource, Subsystem, System of Systems, Component, …
 • Actions can have types that include:
 • Operational Activity, System Function, Task, Mission, …
• You can expand these lists to characterize anything in that class
• When we display the element, we use the type
Benefits of the KBAD Schema

• Reducing the number of primary data elements means less complexity for analysts to deal with
 • Less complexity enables quicker capture and presentation of the information for analysis and decision making

• Covers programmatic, as well as technical, elements of information
 • Enables the trade off between cost, schedule and performance necessary for good design and decision making

• Eliminates overlap between similar data elements
 • Reduces potential for duplication of information which cuts the time and cost of data gathering

The result is a more cost-effective means for describing an architecture or system design.
MBSE Describes Behavior

• Typical data/activity modeling only works in the data dimension (e.g. IDEF0 or Data Flow Diagrams)
• For simple systems with sequential flow, this is sufficient
• However, for more complex systems, which all architecture are, it can be very misleading
• We need to be able to predict how system will behave

The missing dimensions: resources, physical sizes of data and interfaces

“3”-Dimensions of Behavior Analysis

OV-5
SV-4

OV-6
SV-10
Why is sequencing important?

- In software the mantra is: data, data, data
 - Why? Because a tremendous amount of software programming has to do with input/output, hence the need to understand the data very well
 - The functional sequencing for individual software modules is relatively simple and many algorithms exist for complex methods (e.g., sorting algorithms)
- In architecture development (or system engineering or business process modeling ...) sequencing is actually more important than the data
 - We want to know how the data affects the functional sequencing – we call these triggers
 - We want to control the behavior to avoid having significant failures
 - We also need sequencing for the human side
MBSE provide a robust set of constructs

- **Serial**
 - Action A
 - Action B

- **Iterative**
 - Iteration Set
 - Action A

- **Multiple-Exit**
 - Exit 1
 - Action B
 - Exit 2
 - Action C

- **Parallel**
 - Action A
 - Action B

- **Selective**
 - Action A
 - Action B

- **Loop**
 - Action A
 - Exit 1
 - Exit 2
One diagram gives many products

EFFBD: complete and executable

IDEF0: lacks constructs

N2 Chart: lacks constructs

FFBD: lacks data

Hierarchy: only parent to child

OV-5; SV-4

OV-6c; SV-10c
MBSE also diagrams the physical elements

Physical Hierarchy

Physical Block Diagram

13
Roadway Subsystem

13
Subsystem

20
Vehicle

20
System

83
Maintenance and Construction Vehicle

83
System

OV-2; SV-1; SV-2

Date:
Friday, February 08, 2008

Author:
Administrator

Number: Name:
MCVS Subsystem
Traceability is a key to success

Automated ITS Project
Program

Documents

PR.1 Need for protected, dedicated lanes?
S.1 Single car enters roadway
Operational Activity

PR.2 Driver acceptance?
S.6 Single car traveling sudden obstacle
Operational Activity

PR.3 Vehicle and highway systems that operate at a higher level of reliability and performance?
S.14 Worst case scenario
Operational Activity

PR.4 Increased liability for manufacturers and owner/operators of automated systems?
Proposed Liability Legislation
Policy

Public Roads July/August 2007
White Paper
Tools support the technique and process

Most Programs Require Tools in All These Domains, but …

- Requirements Analysis Tools (e.g. DOORS)
- Operations & Support Tools (e.g. BPEL)
- Program Management Tools (e.g. MS Project)
- Test & Evaluation Tools (e.g. M&S)
- Software Design Tools (e.g. Rational Suite)
- Hardware Design Tools (e.g. CAD)
- Functional Analysis Tools (e.g. System Architect)

… they do not interoperate well together.

SPEC’s KBAD methodology uses CORE and MD Workbench to provide the underlying tool interoperability.
Tools used: CORE

- CORE's system engineering tools maintain an integrated design repository that provides traceability between requirements, functional models and system design elements.
- CORE's database schema may be modified to customize the tool to support customer needs and facilitate tool integration.
- Executable diagrams
- Special schemas and reports
- Powerful scripting language for your own report generation

Version 5.1 released with updated schema and reports

www.vitechcorp.com
Tools used: MD Workbench

Eclipse-based IDE for code generation and model transformation, devoted to implementing MDA/MDE strategies. It provides:

- code generation (via text template engine and optionally Java)
- model manipulation through dedicated languages
- (imperative rules, declarative ATL modules to support QVT transformations, Java)
- model and metamodel management, including UML support
- customizable model connectors (XMI 1.0 to 2.1, XML, Hibernate, COM, etc.)

http://www.mdworkbench.com

2.1 is a major release! New features of MDWorkbench 2.1 includes:

- Document generation
- SCP/Command line
- Navigation history
- On-demand release
- Multiline text editing
- UML 2.1 upgrade
- Improved reader
- Type model reader

A great way to move data between different tools.
Tools used: NetViz

• Personnel all over the world use netViz to graphically depict operational architectures and logistical scenarios

• With NetViz you can create the SV-1 and SV-2 diagrams, with its intuitive graphical workspace, drill down capability, and connectivity views

• You can use the data embedded in your netViz projects to create other critical elements of a comprehensive C4I documentation project, like OV-1s (Operational Concept Diagrams) and OV-3s (Information Exchange Matrices)

Version 7.1 released; Available in Client Server or Enterprise Web editions as well

www.netviz.com
SPEC processes – full lifecycle

Current Operations and Maintenance

Future Operations and Maintenance

Demolition and Disposal

Architecture Development

Operational T&E and Transition

System Design

Integration and Test

Hardware/Software Acquisition

Program Management

Design & Analysis

Integration & Verification

Integration & Verification

Current Operations

Future Operations

Demolition

Design and analysis phase

Current Operations and Support

Future Operations and Support

Demolition and Disposal

Design & Analysis

Program Management

Architecture Development

System Design

Operational T&E and Transition

Integration and Test

Hardware/Software Acquisition

Requirements Analysis

Functional Analysis and Allocation

Synthesis

System Analysis and Control

Future Operations

Current Operations

Requirements Analysis

Program Management

Future Operations

Current Operations

Requirements Analysis

Program Management
SPEC’s middle-out process

Requirements Analysis

Top Down

Best Use: “Classical SE”

Middle Out

Best Use: Architecture Development (To-Be)

Functional Analysis and Allocation

Best Use: Reverse Engineering (As-Is)

Synthesis

Bottom Up

System Analysis and Control

Adapted from EIA-632
Middle-out timeline with products

1. Capture and Analyze Related Documents
2. Identify Assumptions
3. Identify Existing/Planned Systems
4. Capture Constraints
5. Develop the Operational Context Diagram
6. Develop Operational Scenarios
7. Derive Functional Behavior
8. Derive System Elements
9. Allocate Functions to System Elements
10. Prepare Interface Diagrams
11. Define Resources, Error Detection & Recovery
12. Perform Dynamic Analysis
13. Develop Operational Demonstration Master Plan
14. Provide Options
15. Conduct Trade-off Analyses
16. Generate Operational and System Architecture Graphics, Briefings and Reports

The middle-out approach has been proven on a variety of projects.
People Considerations

• Large teams make organization and focus on a vision very difficult

• You need people with a wide variety of skills and personalities
 • Someone with vision
 • Someone who can perform the detailed system engineering
 • Someone who understands the domain
 • Someone familiar with the technique and tools
 • Someone who understands the process

• They need to be trained as a team – including the government personnel
How Do We Move from Drawing Pictures to Building a Knowledgebase?

• Apply a proven, model-based technique that results in executable diagrams
• Use a process that implements the technique
• Use industrial-strength system engineering tools
• Make sure the personnel who use the methodology have the proper knowledge, skills and abilities to implement the approach
Before We Begin…

There were many contributors to this effort. Thank you everyone who helped!
Advanced Extremely High Frequency (AEHF) System

- **Mission** – Provide protected satellite communications for strategic and tactical defense missions
- **Designed to augment and eventually replace the Milstar system**
- **AEHF Program Office is located at the Space Missile Center (SMC), Los Angeles Air Force Base**
AEHF Program Challenges

• Concurrent development and acquisition of major AEHF system elements
• Concurrent development of interfaces
• Most elements have different
 – Contracts
 – Contracting agencies
 – Contract schedules
 – Development teams

• Backward compatibility requirements with existing operational systems
• Operational systems are in the process of changing while in sustainment mode
• New, post contract award requirements
• International Partners
• Budgetary and regulatory requirements and constraints
Change Dilemma…

• Change is inevitable on a large, multi-year, concurrent development program
• Change is disruptive by its nature
• Managing change is not easy
• Having a well defined and understood process for managing change is imperative
• Processes need to be constantly adjusted to reflect the needs at hand
In the Beginning…

- AEHF Program Office Change Process existed since the beginning of the program
- December 2003 – SMC/CMMI Program Office Assessment recommends review of the existing change process
- September 2004 – Comprehensive review of the AEHF Change Process is initiated
- July 2005 – “New and Improved” AEHF Change Process makes its debut
What We’ve Learned About the AEHF Change Process Since…

• Define, document, and implement the process
 – *Identify what needs to be accomplished, e.g., Engr. Change vs. Contr. Change*
 – *Know your stakeholders*
 – *Provide enough detail to map it into the process above (e.g. Group to Wing)*
 – *Define Entry and Exit criteria for each step*
 – *Identify Artifacts created and modified*
 – *Define realistic, nominal timelines*
 – *Apply a “KISS” principle at every opportunity*

• Train, train, and train again

• Execute and measure process performance

• Implement Process Volume controls
 – *Addresses multiple, simultaneous changes and resource contention*

• Adjust the process as needed
 – *Conduct process improvement activity (e.g., VSM)*
 – *Implement changes as needed and as possible*
 – *Avoid “Big Bang” approach to changes, “evolutionary” vs. “revolutionary”*

• Be vigilant about your process
AFSO21 VSM

1 – Pre-RFP
2 – Proposal
3 – Post Proposal
4 – Contract Mod
AFSO21 VSM Process Activity Value Definitions

Pure Value Activities
- Activities that change the form, fit or function of the product/service and
- Activities that, when asked, the customer is willing to pay for and
- Activities done right the first time.

Business Value Activities
- Activities causing no value to be created but that cannot be eliminated based on current state of technology or thinking
- Required (regulatory, customer mandate, legal)
- Necessary (due to non-robustness of process, currently required)

Non Value Activities
- Activities that consume resources but create no value in the eyes of the customer
- Pure waste
- If you can’t get rid of the activity, it turns to yellow.
AFSO21 AEHF CP Initial State VSM Analysis

<table>
<thead>
<tr>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
</tr>
<tr>
<td>Trigger</td>
</tr>
<tr>
<td>Done</td>
</tr>
<tr>
<td>Cycle Time (days)</td>
</tr>
<tr>
<td>Touch Time (days)</td>
</tr>
<tr>
<td>TAKT Time</td>
</tr>
<tr>
<td>No. of People</td>
</tr>
<tr>
<td>Items in In-Box</td>
</tr>
<tr>
<td>No. of Approvals</td>
</tr>
<tr>
<td>Distance Item Travels</td>
</tr>
<tr>
<td>ESH Issue</td>
</tr>
<tr>
<td>% Rework</td>
</tr>
<tr>
<td>Top 3 Rework Issues</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25 STEPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 GREENS</td>
</tr>
<tr>
<td>8 YELLOWS</td>
</tr>
<tr>
<td>7 REDS</td>
</tr>
</tbody>
</table>

Wait Time (%) | 87%

1. IPT Identified Change
 - Pre-RFP

2. BCB 1 - Confirm Need
 - Pre-RFP

3. ICWG 1-14
 - Pre-RFP

4. ICWG 15
 - Pre-RFP

5. MCB-0
 - Pre-RFP

6. PERB 1 - Approve Technical Approach
 - Pre-RFP

7. MCB-1a
 - Pre-RFP

8. Issue RFP
 - Pre-RFP

9. Conduct Shoulder to Shoulder
 - Proposal

10. PERB 2 - Review Proposal
 - Proposal

11. Submit Proposal
 - Proposal

12. Perform Tech Eval
 - Proposal

13. Coordinate with AEHF Externals 2
 - Proposal

14. Submit PCCB Package
 - Proposal

15. PCCB Review and Approve Change
 - Proposal

16. MCB-1b
 - Proposal

17. ATP
 - Pre-RFP

18. Conduct Clearance
 - Pre-RFP

19. Conduct Negotiations
 - Pre-RFP

20. Modify Contract
 - Pre-RFP

21. BCB 2 - Approval to Proceed to MCB-1a
 - Pre-RFP

22. MCB-1a
 - Pre-RFP

23. Approve RFP
 - Pre-RFP

24. Conduct Clearance
 - Pre-RFP

25. Conduct Negotiations
 - Pre-RFP

26. Modify Contract
 - Pre-RFP

27. PCCB
 - Pre-RFP
AFSO21 Value Stream Mapping Event – July 2006
AEHF Change Process

- What Existed
 - 25 Steps, 321 Days of cycle time (Excluding Mod Phase)

- What We Did
 - Eliminated steps – Consolidated board meetings
 - Optimized Process Flow
 - Performing technical and programmatic coordination in parallel
 - Improved Organizational Impact Analysis
 - Started Activities Earlier – Improved Shoulder-to-Shoulder (StS) process to allow the Tech Evaluation to begin during the Proposal preparation phase

- Results
 - Excluding Mod Phase
 - 19 steps – 24% Improvement
 - Cycle time 196 days – 39% Improvement
Metrics – How Are We Doing?
Start through Contract Modification

- 17 ECPs/CCPs put on contract (05/05 – 10/05)
- 23 ECPs/CCPs put on contract (05/05 – 03/06)
- 44 ECPs/CCPs put on contract (05/05 – 10/06)
- 58 ECPs/CCPs put on contract (05/05 – 05/07)

- Median
 - 11/05 – 303 days ~ 43 weeks
 - 03/06 – 252 days ~ 36 weeks
 - 10/06 – 243 days ~ 35 weeks
 - 05/07 – 233 days ~ 33 weeks

- 30% Improvement including Mod Phase
VSM Lessons Learned

• VSM technique is a valuable tool in identifying “waste” in a process
• Keep the team lean and effective – 10-15 people
• Must have representation from all stakeholders
• Participants need to know the current process
• Participants need to have basic training in process improvement techniques
• Need experienced event facilitators
• Do not allow changes in team membership once the event starts
• Team leaders need to stay engaged throughout the event, especially during the “heavy lifting” activities
• Team leaders must be careful not to dominate the discussion
• Team leaders must make sure the discussion does not deviate to far from the plans
• Be vigilant to keep the “out-of-bounds” items out of discussions
• Have fun!
CMMI AEHF Program Office Assessment 2007 – Excerpts

• SMC Tailored CMMI® / Acquisition models, no numerical rating or process quality

• AEHF Best Practices – Within the Model
 – A rigorous Change Management process is used to baseline and maintain requirements
 – All types of program changes are analyzed via the Change Management process
 – A rigorous Change Management System of boards and reviews includes the relevant stakeholders

• Strengths Above the Model
 – Baseline ECO Board (BEB) Master Matrix and waterfall chart are used to regulate change management process flow
Summary

• A comprehensive Change Process has successfully supported the AEHF program for the past 3 years

• Further improvements are possible, necessary, and are being implemented

Any Questions?

All trademarks, service marks, and trade names are the property of their respective owners
Rapid Force Structure Analysis

Capability Effectiveness Tool
October 22, 2008

David Blancett
Mgr, Systems Analysis & Simulation

Kurt Dittmer
Dir, Advanced CONOPS
Northrop Grumman Corporation
Overview

• Large trade spaces limit M&S effectiveness for force structure architecture studies
 - Problem of interest was Layered Intelligence, Surveillance and Reconnaissance (LISR) with Integrated Air and Space
 - Solution spaces ranged from 10,000 to 450,000+ possible architectures
• Historically, addressed with a combination of common sense and expert opinion
 - This in no way guaranteed most cost effective solution was truly identified
• Three-part structured, traceable process was developed to address this limitation
 - Capture commander’s intent for a given operation and translate into collection requirements
 - Assess force structure effectiveness as the percentage of collection requirements met and calculate wartime and life-cycle costs
 - Identify highest potential architectures and key elements
• Three tools used to support the upfront process:
 - Collaborative Reasoning Tool (CRT)
 - Capability Effectiveness Tool (CET)
 - Analyst’s Workbench

Process Goal: Identify Limited Set of Architectures with the Highest Cost Effectiveness Potential As Starting Point for Detailed Studies
Layered ISR Problem Definition

Collection capabilities change with each scenario and phase of war

Joint air, space, maritime and ground ISR assets have varied and overlapping capabilities

National leadership must integrate Irregular, Catastrophic and National Collection capabilities to make informed deployment decisions
Where We Started

- Investigate Surveillance Capabilities Within 10 Year Horizon That Could Provide Ubiquitous, Near Real Time, Theater-Wide Coverage
 - Consider Manned, Unmanned, Satellites, Ships, Ground Based Systems
 - Multi-Spectral
- What Force Mix Provides Most Cost Effective Means of Accomplishing Goals?

Emphasis on Space-Based Assets

Emphasis on Manned Air Assets

Emphasis on Unmanned Air Assets

Assessed 57 Cases Out of ~450,000 Possibilities
Developed Toolset to Address Solution Space Size

- **Collaborative Reasoning Tool**
 - Means to easily capture commander’s intent for each phase of an operation
 - Single Joint Forces Commander (JFC), or consensus of a group
 - Distributed Capability

- **Capability Effectiveness Tool**
 - Assess alternative force structure options in terms of potential effectiveness and cost
 - Graphical User Interface (GUI)

- **Analyst Workbench**
 - Means to quickly review and understand a large database
 - Filters, tagging and other tools to support data analysis
Capability Effectiveness Tool

Commander’s Intent

Joint Target Prioritization by Phase

Determine JFC Intent by Target

JFC Intent determines type and quality of required sensor information by target.
Collaborative Reasoning Tool
CET Model

- Assesses the ability of alternate force structures to achieve the commander’s intent
- Static assessment of potential capability over 12 hr or 24 hr period
- ISR force mix effectiveness defined as percent of commander’s collection priorities achieved
- Exhaustive assessment, or greedy algorithm
- Also provides
 - Relative contribution of each potential element
 - Collection gaps by sensor and by target
 - Comms throughput and reach-back
 - Wartime operating costs
 - Peacetime life cycle costs
GUI Interface: Platforms
LiSR CET Typical Products

Multi-Domain Force Mix Gap Analysis

NOTIONAL RESULTS

<table>
<thead>
<tr>
<th>Label</th>
<th>Spectrum</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>GMTI</td>
<td>GMTI_DETECTIONS</td>
</tr>
<tr>
<td>G2</td>
<td>GMTI</td>
<td>GMTI_ELECTRONICALLY_SCANNED_ARRAY</td>
</tr>
<tr>
<td>G3</td>
<td>GMTI</td>
<td>GMTI_LONG_TERM_TRACKS</td>
</tr>
<tr>
<td>G4</td>
<td>GMTI</td>
<td>GMTI_MIN_DETECTABLE_VELOCITY</td>
</tr>
<tr>
<td>G5</td>
<td>GMTI</td>
<td>GMTI_MT_HRR</td>
</tr>
<tr>
<td>G6</td>
<td>GMTI</td>
<td>GMTI_NEAR_SIMO_MT_HRR</td>
</tr>
<tr>
<td>G7</td>
<td>GMTI</td>
<td>GMTI_NEAR_SIMO_SAR_GMTI</td>
</tr>
<tr>
<td>G8</td>
<td>GMTI</td>
<td>GMTI_RESOLUTION</td>
</tr>
<tr>
<td>G9</td>
<td>GMTI</td>
<td>GMTI_SENSOR_ONLY_REVISIT_RATE</td>
</tr>
<tr>
<td>G10</td>
<td>GMTI</td>
<td>HAS_GMTI</td>
</tr>
<tr>
<td>G11</td>
<td>GMTI</td>
<td>PLATFORM_REVISIT</td>
</tr>
<tr>
<td>G12</td>
<td>GMTI</td>
<td>PLATFORM_REVISIT</td>
</tr>
<tr>
<td>G13</td>
<td>GMTI</td>
<td>PLATFORM_REVISIT</td>
</tr>
<tr>
<td>N1</td>
<td>IR</td>
<td>HAS_IR</td>
</tr>
<tr>
<td>N2</td>
<td>IR</td>
<td>IR_GEO_LOC_ACCURACY</td>
</tr>
<tr>
<td>N3</td>
<td>IR</td>
<td>IR_NHRS</td>
</tr>
<tr>
<td>N4</td>
<td>IR</td>
<td>PLATFORM_REVISIT</td>
</tr>
<tr>
<td>R1</td>
<td>SAR</td>
<td>HAS_SAR</td>
</tr>
<tr>
<td>R2</td>
<td>SAR</td>
<td>PLATFORM_REVISIT</td>
</tr>
<tr>
<td>R3</td>
<td>SAR</td>
<td>SAR_ELECTRONICALLY_SCANNED_ARRAY</td>
</tr>
<tr>
<td>R4</td>
<td>SAR</td>
<td>SAR_GEO_LOC_ACCURACY</td>
</tr>
<tr>
<td>R5</td>
<td>SAR</td>
<td>SAR_RESOLUTION</td>
</tr>
<tr>
<td>R6</td>
<td>SAT</td>
<td>SAR_SIMO_SAR_GMTI</td>
</tr>
<tr>
<td>S1</td>
<td>SIGINT</td>
<td>HAS_SIGINT</td>
</tr>
<tr>
<td>S2</td>
<td>SIGINT</td>
<td>PLATFORM_REVISIT</td>
</tr>
<tr>
<td>S3</td>
<td>SIGINT</td>
<td>SIGINT_COMMINT_GEO_LOC_ACCURACY</td>
</tr>
<tr>
<td>S4</td>
<td>SIGINT</td>
<td>SIGINT_COMMERCIAL_COMMINT</td>
</tr>
<tr>
<td>S5</td>
<td>SIGINT</td>
<td>SIGINT_CONVENTIONAL_COMMINT</td>
</tr>
<tr>
<td>S6</td>
<td>SIGINT</td>
<td>SIGINT_DETECTIONS</td>
</tr>
<tr>
<td>S7</td>
<td>SIGINT</td>
<td>SIGINT_ELLINT_GEO_LOC_ACCURACY</td>
</tr>
<tr>
<td>S8</td>
<td>SIGINT</td>
<td>SIGINT_ELLINT_MULTIPLE</td>
</tr>
<tr>
<td>S9</td>
<td>SIGINT</td>
<td>SIGINT_ELLINT_SIMPLE</td>
</tr>
<tr>
<td>S10</td>
<td>SIGINT</td>
<td>SIGINT_FREQ_RANGE</td>
</tr>
<tr>
<td>S11</td>
<td>SIGINT</td>
<td>SIGINT_LPI</td>
</tr>
<tr>
<td>S12</td>
<td>SIGINT</td>
<td>SIGINT_MILITARY_COMMINT</td>
</tr>
<tr>
<td>S13</td>
<td>SIGINT</td>
<td>SIGINT_RUE</td>
</tr>
<tr>
<td>S14</td>
<td>SIGINT</td>
<td>SIGINT_WUE</td>
</tr>
</tbody>
</table>

Multi-Domain Force Mix Cost Effectiveness

1 Satellite_A; 1 Satellite_B; 3 VehA; 1 VehB

1 Satellite_A; 1 Satellite_B; 3 VehA; 1 VehB (50%)

1 Satellite_A; 1 Satellite_B; 3 VehA; 1 VehB (45%)

1 Satellite_A; 1 Satellite_B; 1 Satellite_C; 2 VehA (48%)

1 Satellite_A; 1 Satellite_B; 1 Satellite_C; 2 VehA (50%)
Analyst Workbench
CET Results Feed Into Detailed Analysis

CET Does Not Optimize – It Assesses All Force Mixes to Feed Physics Based Analysis…
Force Structure Validation: CWIN, A Distributed/Collaborative Virtual M&S Enterprise

CWIN Western Region
El Segundo, CA

CWIN Washington Node
Rosslyn, VA

CWIN Eastern Region
Bethpage, NY

CWIN Eastern Region
Melbourne, FL

CWIN Western Region
Rancho Bernardo, CA

Deployable Mobile CWIN Services & Systems
Expanded CET Applications

• CET has been adopted by USSTRATCOM

• Other CET applications under consideration:

 DIA/ STRATCOM Joint Functional Component Command ISR - Assessment Tool for Theater Apportionment

 NRO: Integrating CET with Northrop Grumman Corporation ISR Test Bed Incorporate National Intel Priority Framework

 J -2 and OSD: Capabilities Assessment Tool for Battlespace Awareness Functional Capabilities Board Program Objective Memorandum Decisions

 USSTRATCOM: ISR Global Force Management/ Global Force Posture
Summary

- Means to rapidly identify high potential solutions within a large problem set
- Provides understanding of the contribution of each potential element
- Provides understanding of the capability gaps
- Effective use of analyst time and simulation resources

Structured, traceable process providing the means to support LISR force structure architecture studies:

Stand-alone and as a lead-in to detailed work
Concurrent Increment Sequencing and Synchronization with Design Structure Matrices in Software-Intensive System Development

Dr. Peter Hantos
The Aerospace Corporation

NDIA Systems Engineering Conference
October 23, 2008
Acknowledgements

• This work would not have been possible without the following:
 – Feedback:
 • Suellen Eslinger, Software Engineering Subdivision
 • Dr. Leslie J. Holloway, Software Acquisition and Process Department
 • Mary A. Rich, Software Engineering Subdivision
 – Sponsor
 • Michael Zambrana, USAF Space and Missile Systems Center, Directorate of Systems Engineering
 – Funding sources
 • Mission-Oriented Investigation and Experimentation (MOIE) Research Program (Software Acquisition Task)
 – Inspiration
 • Dr. Barry W. Boehm, University of Southern California
Presentation Objectives

- Introduce a research platform to address concurrent engineering concerns of software-intensive system development
- Propose new metrics to characterize increment coupling and cohesion in complex, aggregate life cycle models
Agenda

- Wisdom
- Introduction
- ULCM® (Unified Life Cycle ModelingSM)
- Challenges of Concurrent Engineering
- DSM (Design Structure Matrix)
- Mapping Anchor Points to DSM
- CICM (Concurrent Increment Coupling Metric)
- Relationship Between CICM and Schedule/Cost Risk
- Next Steps – Direction of Future Research
- Summary
- Acronyms
- References

® ULCM is registered in the U.S. Patent and Trademark Office by The Aerospace Corporation
SM Unified Life Cycle Modeling is a Service Mark of The Aerospace Corporation
“To understand a subject, one must tear it apart and reconstruct it in a form intellectually satisfying to oneself, and that (in the view of the differences between individual minds) is likely to be different from the original form. This new synthesis is of course not an individual effort; it is the result of much reading and of countless informal discussions, but for it one must in the end take individual responsibility. “

Quote from J.L. Synge, “Relativity: The Special Theory” (1956), p. vii
Introduction

• The National Security Space Defense Acquisition Challenge
 – Chronic cost/schedule overruns in space acquisitions
 – Difficulty with validating the contractors’ plans
 – Difficulty with implementing proper controls
 – Difficulty with successfully executing Evolutionary Acquisition and Spiral Development-related policies

• One of the Most Significant Root-Causes Identified
 – Concurrent Engineering is pursued without proper models and tools to manage concurrent process streams

• Proposed solutions involve the use of ULCM® (Unified Life Cycle ModelingSM) and DSM (Design Structure Matrix)
 – ULCM® is an Aerospace-developed research framework and methodology
 – DSM is a widely used, visual system representation tool
ULCM® – The 64 Thousand Mile View

• ULCM® is an intuitive, pattern-based approach for specifying, constructing, visualizing and documenting the life cycle processes of software-intensive system development

• ULCM® is aspiring to become the “Occam’s Razor” of Life Cycle Modeling
 – The medieval rule of parsimony: “Plurality shouldn’t be assumed without necessity”
 • William of Ockham, 14th century philosopher
 – The Life Cycle Modeling (LCM) rule of parsimony: All life cycle models are constructs or derivatives of a small number of basic life cycle modeling patterns

• ULCM® is also a research platform
 – It provides a foundation for a consistent and universal system development methodology
The First Principles of Unified Life Cycle Modeling*

1. Covered process domains are acquisition and development of software-intensive systems
2. The fundamental building block of life cycle models is an increment
3. All life cycle models are constructs or derivatives of a small number of basic LCM patterns
4. LCM is synergistic with architecture, architectural concepts and architecture modeling
5. Proper representation of life cycle models requires multiple views
6. Concurrent processes are synchronized via anchor points

* Source: [Hantos 2007]
Principles #1, #2, and #3

- Principle #1: Covered process domains are acquisition and development of software-intensive systems
 - *ULCM® might be applicable in other domains as well, but such use was neither pursued nor verified*

- Principle #2: The fundamental building block of life cycle models is an increment
 - *Increment is a conceptual term, refers to the difference between two subsequent releases of the product*
 - Delivering any useful functionality requires the creation of at least one increment of a system

- Principle #3: All Life Cycle Models are constructs or derivatives of a small number of basic LCM patterns
 - *Since the fundamental building block is an increment, the ULCM® definition of all LCM patterns must address their relationship to the creation and sequencing of increments*
Principles #4 and #5

- Principle #4: Life cycle modeling is synergistic with architecture, architectural concepts, and architecture modeling
 - *Product Architects* answer the “What” question
 - *Process Architects/Project Managers* answer the “How” question
 - However, both activities are concurrently iterated during the life cycle

- Principle #5: Proper representation of life cycle models requires multiple views
 - Based on related experience with architecture modeling, it is clear that having multiple views is always necessary when modeling complex entities
 - *The question is how many is necessary and sufficient?*
 - Currently ULCM® assumes two views of any life cycle model
 - However, only one of them, the *Enactment View*, will suffice to demonstrate concerns related to increment coupling and cohesion
Principle #6

- Principle #6: Concurrent processes are synchronized via Anchor Points
 - *What are Anchor Points (APs)?*
 - Intermediate milestones with specific, focused objectives

- *The idea behind Anchor Points*
 - “Extreme” Planning and Monitoring & Control Approaches
 - *Ad-hoc, “code-and-fix”: Planning horizon is the next iteration*
 - *Waterfall: Planning horizon is the end of the Increment*
 - “Stop, Stabilize, and Regroup” Approach
 - *Iterative with APs: Planning horizon is the next Anchor Point*
In ULCM®, life cycle phases of an increment are intentionally not named

- **Specifying both phase content and anchor points is redundant**
- **Phase content stays flexible; phase activities are not pre-determined**
- **Focus is on achieving anchor point objectives**
Product-related AP Objectives During Development

- **IIR** – Increment Inception Readiness
 - *Its sole purpose is to mark the beginning of an increment*

- **ILO** – Increment Life Cycle Objectives
 - *Definition of operational concept, scope, and top-level requirements*
 - *Architectural and design options*

- **ILA** – Increment Life Cycle Architecture
 - *Refinement of operational concept, scope, and top-level requirements*
 - *Resolution of ILO option-explorations, commitment to a feasible architecture and technology solutions*

- **IOR** – Increment Operational Readiness
 - *Operation and quality is demonstrated in development environment*

- **IDR** – Increment Delivery Readiness
 - *The work product created in this phase is ready for*
 - Delivery to the end-user/customer, or
 - Higher-level integration and test
Challenges of Concurrent Engineering

• The usual HW/SW dialog
 – *Traditional SW Position*: Give me the working hardware, and leave me alone!
 – *Traditional HW Position*: Here are the specs, see you at final integration. Now leave me alone!
 – *What Really Takes Place*: HW is frequently changing during design. SW people are frustrated and inefficient. SW always ends up being the bottleneck

• Similar situation in case of concurrently developed software components

• Challenges, challenges …
 – *The Project Manager’s Challenge*:
 • Managing (estimating, planning, monitoring, and controlling) concurrent engineering processes
 – *The Process Architect’s Challenge*:
 • Dealing with life cycle modeling complexity
 – Concurrent engineering of hardware and software
 – Iterative/incremental processes
• Specific Challenges Addressed
 – Design of interfaces and the tuning of Technical Performance Measures (TPMs) related to dependent, concurrently developed components
 – For concurrent engineering process streams, the determination of
 • Optimal number of interactions between concurrent streams, and
 • The optimal place of interactions in the life cycle (solved by using APs)
Synchronization Via Anchor Points

- How Anchor Points are used
 - Concurrent process streams should not be arbitrarily shifted or overlapped
 - Connection is only planned at Anchor Points
- Stakeholders of the process streams collaborate at Anchor Points
 - P_{n-1} stakeholders rely on P_n stakeholder deliveries at AP_x to satisfy AP_y objectives
What is a product line?
- A product line represents a product family, a set of related systems that are built from and leveraging off a common set of core assets*

Product line challenges
- Technical considerations – selecting/distributing product features
- Business constraints – balancing cost and Time-to-Market
- Development strategy challenges – determination of architectural structuring, development and production order

LCM Challenge: Manipulating a complex, aggregate life cycle model

* These core assets are also called the elements of the Product Line Platform
DSM (Design Structure Matrix)

- The DSM method is widely used to design and optimize complex systems in various domains
 - DSM describes the relationships between architectural elements of a system in a concise format
 - In each cell we might have simply a marker (like a circle) or, in more complex cases some kind of indicator characterizing the relationship between system design elements
 - A wide range of tools are available to manipulate DSM [Browning 2001]

- Basic DSM Examples:

 ![DSM Diagram](image)

Legend:
D1 … D4 – System Design Elements;
m_{ij} – Relationship between D_i and D_j Elements
Mapping Anchor Points to DSM
Concurrent Increment Coupling Metric (CICM)

• Coupling is a measure of strength of interconnection
 – *Uncoupled modules are independent*
• High or Low coupling is not “good” or “bad”
 – *Various pro’s and con’s are associated with different coupling levels*
 – *Author’s hypothesis is that for any concurrent engineering situation an optimal coupling exists*
• DSM-based CICM definition

\[
\text{CICM} = f(m_{11}, m_{12}, \ldots, m_{ij}, \ldots, m_{nn})
\]

• For the shown DSM matrices a simple CICM definition

\[
\text{CICM} = 4 - m_{nn}
\]

where \(m_{nn} \) is the value from the diagonal of the matrix
CICM Values for the DSM Examples

<table>
<thead>
<tr>
<th>m_{nn}</th>
<th>Numeric Value</th>
<th>CICM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>Very High</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Medium</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>No coupling (Independent)</td>
</tr>
</tbody>
</table>
The Relationship Between CICM and Schedule/Cost Risk

• Definitions
 – Schedule risk in this context is risk to complete the project in the estimated timeframe due to unexpected rework
 – Cost risk in this context is risk to complete the project within estimated cost due to unexpected rework

• A main source of these risks is architecture volatility stemming from concurrent engineering
 – However, the relationship between concurrent increment process stream coupling and architecture volatility is not straightforward
 – For example, the classic “Iron Triangle” of Cost-Schedule-Performance does not apply anymore
 • Depending on the chosen concurrency configuration of the increments, drastically different schedules are expected even though performance and cost are supposed to stay the same
• Very High Coupling (CICM=4)
 – *Positive:*
 • Increment phases overlap, all APs are aligned
 • The architecture of both increments is basically planned together, at the same time
 – *Being able to change both architectures provides flexibility that is considered positive*
 • This configuration promises the shortest schedule
 – *Caveats:*
 • Both architectures are volatile
 • No “hardening” provided for the leading increment
 • No learning from the development of the leading increment
 • There will not be any opportunity for early detection of defects in the leading increment
 – *This configuration results in the most costly rework*
Discussion Based on the Examples (Cont.)

• High Coupling (CICM=3)
 – *Positive*:
 • Architectural options for the leading increment are known when the design of the trailing increment starts
 • Actual architecture of the leading increment is known when the determination of the trailing increment architecture starts
 • The actual code of the leading increment is available when the implementation of the trailing increment starts
 – *Caveat*:
 • Increased cost of rework when correcting any problems with the leading increment that are discovered during the design of the trailing increment
Discussion Based on the Examples (Cont.)

• Medium Coupling (CICM=2)
 – *Positive:*
 • Actual architecture of the leading increment is known when the work on the trailing increment starts
 • The actual code of the leading increment is available when the architectural design of the trailing increment starts
 – *Caveats:*
 • Increased difficulty in correcting any problems with the leading increment that are discovered during the design of the trailing increment due to the fact that the leading increment’s architecture has been determined
 • Final integration is further removed; correcting any problems with the leading increment that are discovered during final integration is becoming increasingly more expensive
Discussion Based on the Examples (Cont.)

• Low Coupling (CICM=1)
 – Positive:
 • The actual code of the leading increment is available when the planning of the trailing increment starts
 • Leading increment’s code is considered sufficiently tested
 – Caveats:
 • High level of difficulty in correcting any problems with the leading increment that are discovered during the development of the trailing increment due to the fact that the leading increment has already been coded and tested
 • Final integration is further removed; Correcting any problems with the leading increment that are discovered during final integration is becoming very expensive
Next Steps – Direction of Future Research

• Extend CICM to cover more realistic increment positioning situations
 – *The shift involves more than one phase*
 – *Phase-lengths are not equivalent*

• Define LCPC (Life Cycle Plan Cohesion) Metric
 – *Cohesion is a measure of how tightly bound or related the concurrent increments are to one another*
 – *Coupling is one key factor, but not the only factor*
 • It seems to be plausible that tightly coupled increments create a life cycle plan with high cohesion
 – *However, the relationship needs to be researched and quantified.*

\[
\text{LCPC} = f(\text{CICM})
\]

• Develop quantitative evaluation guidance for LCPC
 – *Quantify metrics*
 – *Develop a methodology that allows the comprehensive evaluation of schedule, rework, and quality dimensions of different life cycle plans*
Summary

• A promising Aerospace research platform, ULCM® has been used to model concurrent engineering process streams of software-intensive system development

• DSM has been introduced to facilitate the easy manipulation of ULCM® models of concurrently engineered complex systems

• Two new metrics, CICM and LCPC has been proposed to characterize increment coupling and cohesion in complex life cycle models
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Anchor Point</td>
</tr>
<tr>
<td>CICM</td>
<td>Concurrent Increment Coupling Metric</td>
</tr>
<tr>
<td>DSM</td>
<td>Design Structure Matrix</td>
</tr>
<tr>
<td>IDR</td>
<td>Increment Delivery Readiness</td>
</tr>
<tr>
<td>IED</td>
<td>Increment End-of-Life Decision</td>
</tr>
<tr>
<td>IEL</td>
<td>Increment End-of-Life</td>
</tr>
<tr>
<td>IIR</td>
<td>Increment Inception Readiness</td>
</tr>
<tr>
<td>ILA</td>
<td>Increment Life Cycle Architecture</td>
</tr>
<tr>
<td>ILO</td>
<td>Increment Life Cycle Objectives</td>
</tr>
<tr>
<td>IOR</td>
<td>Increment Operational Readiness</td>
</tr>
<tr>
<td>IR&D</td>
<td>Independent Research & Development</td>
</tr>
<tr>
<td>LCM</td>
<td>Life Cycle Modeling</td>
</tr>
<tr>
<td>LCPC</td>
<td>Life Cycle Plan Cohesion</td>
</tr>
<tr>
<td>MOIE</td>
<td>Mission-Oriented Investigation and Experimentation</td>
</tr>
<tr>
<td>TPM</td>
<td>Technical Performance Measure</td>
</tr>
<tr>
<td>ULCM</td>
<td>Unified Life Cycle Modeling</td>
</tr>
</tbody>
</table>
References

Contact Information

Peter Hantos
The Aerospace Corporation
P.O. Box 92957-M1/112
Los Angeles, CA 90009-2957
Phone: (310) 336-1802
Email: peter.hantos@aero.org
All trademarks, service marks, and trade names are the property of their respective owners
Air Armament Center

War-Winning Capabilities...On Time, On Cost

Defining 100 Best Practices for SE

Ian Talbot
AAC/EN
ian.talbot@eglin.af.mil

https://afkm.wpafb.af.mil/EglinSE
Product Portfolio

- AMRAAM
- JASSM
- HTS
- MALD
- SFW
- BQM-167A
- UMT
- ARTS
- B-2 Shelter
Outline

- Air Armament Center Systems Engineering Assessment Model
 - Why
 - How
 - What
 - Excerpts

Today is a Discussion not a Lecture – Please Stop me Anytime!
Direction & Goals

• In 2006, Tasked to:
 – Perform a Center-wide SE Assessment
 – Found Out Where We Are?
 – Baseline Enterprise Process Improvement

• Goals
 – Improve Program Performance & Reduce Technical Risk
 – Ensure a Consistent Understanding of SE
 – Ensure Core SE Processes are in Place and Being Practiced
 • Identify Opportunities for Continuous Improvement
 • Clarify Roles and Responsibilities
 – Institutionalize “Best Practices”

Must Have a Champion!
Why We Need Change?

• Too Many Problems Have Surfaced
 – Missed or Poorly Validated Requirements
 – Poor Planning Fundamentals
 – Lack of Integrated Risk Management
 – Lack of Rigorous Process
 – Lack of Process Flow Down

• We Must Regain Our Credibility

• Restoring SE Discipline in AAC Projects Is a Key Initiative

Lack of Disciplined Systems Engineering has been a Major Contributor to Poor Program Performance
Our Approach

• Define Systems Engineering Best Practices

• Benchmark Systems Engineering Implementation

• Establish a Baseline for Continuous Improvement
 – Begin Changing the Culture to Kaizen

• Phased Approach – 3 Phases

1. What to do?
 2006

2. How to do it?
 2007-2008

3. How to Sustain it?
 2008-2009
Defining SE

- **Center Engineering Steering Council**
 - Defined Criteria
 - Approved Module & Approach

Best Practices
- CMMI® Acquisition Module (CMMI-AM), Version 1.0
- Defined Criteria
- Approved Module & Approach
- MIL-STD-499B
- EIA 632
- AAC
- INCOSE
- ISO 15288

OSD Guidance
- DAG
- SEP Guidance

AF Guidance
- AFI 63-1201
- AFPD OSS&E

AFMC Guidance
- AFMCI 63-1201
- OSS&E

Other Centers
- ESC
- SMC

AAC Assessment Module Based on International, Industry and DoD Best Practices

- 9 Key Process Areas
- 29 Goals
- 117 Practices
- Qualifying Questions
- 43 Pages

Streamlined CMMI
Benchmarking the Enterprise

Process Area Criteria*
- >90% of Practices
- 65-89% of Practices
- <65% of Practices

Program Criteria
- >90% of Practices, No Red
- 65-89% of Practices, NTE 1 Red
- <65% of Practices, 2 or More Red

* Weighting
SPs 75%
GPs 25%

Portfolio Criteria
- 95% Programs Green
- 75%-95% Programs Green, <10% Programs Red
- <75% Programs Green or >10% Programs Red

PEO Set
High Bar!
AAC SE Assessment Model

- Engineering Council Provided Steering
- Working Level Team Did Heavy Lifting
 - Defined SE
 - Established Expectations
 - Facilitated Assessments
 - Training Benefits

AAC-SEAM v2.09

- 10 Process Areas
- 34 Specific Goals
- 120 Practices
- 6 Generic Practices
- Qualifying Questions
- 50 Pages

Streamlined CMMI

AAC Assessment Model Based on International, Industry and DoD Best Practices
Process Area Evolution

- **Technical Processes**
 - Requirements
 - Design
 - Verification/Validation
 - Transition

- **Technical Management Processes**
 - Planning
 - Risk Management
 - Configuration Management
 - Decision Analysis
 - Technical Assessment

- **Technical Processes**
 - Requirements
 - Design
 - Manufacturing
 - Verification/Validation
 - Sustainment

- **Technical Management Processes**
 - Planning
 - Risk Management
 - Configuration Management
 - Decision Analysis
 - Technical Assessment

Consistent with OSD Policy, Defense Acquisition Guidebook, Draft AFI on Systems Engineering & AFMCI 63-1201
Collaboration & Refinement

- 2007-2008 Goals
 - Reduce Burden on Execution
 - Refine Alignment Between Module and DoD, AF, AFMC Guidance

AAC-SEAM v2.4
- 10 Process Areas
- 33 Specific Goals
- 115 Practices
- 7 Generic Practices
- 67 Qualifying Questions
- 47 Pages

- Formed AAC Tiger Team to Work on:
 - Streamlining
 - Expanded Coverage

- Collaboration with OSD and Software Engineering Institute on Future of CMMI

- AF Wide Collaboration to Develop Common SEA Model

- Industry Collaboration

Compliant with AF-SEAM v1.0
Current Process Areas

- Technical Process Areas
 - Requirements
 - Design
 - Manufacturing
 - Verification & Validation
 - Fielding & Sustainment

- Project Process Areas
 - Project Planning
 - Risk Management
 - Configuration Management
 - Decision Analysis
 - Technical Assessment

- Introduction
- Goal
 - Practices
 - Grey Matter
 - Question(s)
- Goal...
 - Generic Practices
- Question(s)

AAC-SEAM v2.4
Requirements Process Area

• Purpose: Develop and analyze operational user, product, and product-component requirements

• Goals:
 – RG1: Stakeholder needs, expectations, constraints, and interface requirements are collected and translated into a definition of needed product capabilities/characteristics
 – RG2: Requirements are refined, elaborated and allocated to support product design
 – RG3: Iteratively analyze and validate operational and derived requirements throughout the product life cycle
 – RG4: Requirements are managed and controlled, and inconsistencies with technical plans and work products are identified
 – RG5: Generic practices are applied to the requirements process area

• 13 specific & 7 generic practices to be assessed
Example Practice

Key Process Area: Requirements

Goal: RG4 - Requirements are managed and controlled, and inconsistencies with technical plans and work products are identified.

Practice:

P1 Use a disciplined process for accepting, vetting, approving and providing requirements and changes to the developer through a single focal point.

This process should prevent developers from receiving requirements changes from unauthorized sources that are outside the flow of the acquirer’s established configuration management process. Each change to a controlled requirement should be assessed for impact to the program’s performance, cost, and schedule baselines and to program risk. The existing cost, schedule, and performance baselines should be changed, as required, to accommodate the requirements change. “Requirements creep” must be avoided. A new requirement must be backed with money and vetted through a control process.

Self Assessment Consists of Answering Yes, No or Not Applicable with Supporting Rationale to each Practice – No Partial Credit
Requirements

• Design Mission Reference Profiles (RG1P2)
 – Comprehensive Definition of Product Characteristics in Engineering Terms and Documentation of the Interaction of the Product with the Environment, Other Systems, and Operational Users [Willoughby].

 Do we understand the edges of the technical performance envelope?

• Validate Requirements (RG2P3)
 – Ensure the Evolving Product will Perform as Intended in the Operational Environment [CMMI].

 Do the derived requirements accurately and completely represent what is needed? and no more… How were they validated?

Reference: AAC SEAM v2.4
Planning

• Integrated Plans for Managing (PPG2)

 Are all technical plans integrated and consistent? How do you know?

• At the fundamental level, planning includes understanding what must be done (scope of effort), who needs to do it (staffing and skills), when it needs to be done (life cycle and schedule), how it is to be done (reviews, methodology, tools, meetings etc…) and how much it will cost.

Reference: AAC SEAM v2.4
Manufacturing

• Plan for Transition to Production (RG1P2)
 – Establish Comprehensive Management Plans that Describe All Production Related Activities that Must Be Accomplished During Design, Test and Low-rate Initial Production [Willoughby].

 Are all tiers of suppliers are involved in production planning?

• Implement Quality Management (MG4P1)
 – Monitor and Control Manufacturing Processes and Product Variation in all Tiers of Manufacturing [Willoughby].

 How are process changes considered, authorized and implemented?

Reference: AAC SEAM v2.4
Testing and Sustainment

• Verification and Validation (VG3 & VG5)
 – Analyze and document the results of the verification & validation activities, identify issues, initiate and document corrective actions [CMMI].

 Is information on issues and corrective actions widely known?

• Plan for Logistic Support (SG1P1)
 – Comprehensive Life Cycle Plan for Ensuring a Safe, Suitable and Effective Product [AFMC].

 Are the critical failure modes addressed in maintenance activities?

Reference: AAC SEAM v2.4
Decision Analysis

• Guidelines For Decision Making (DAG1P1)
 – Determine Which Issues Are Subject To Formal Evaluation [CMMI].

 Do we understand when a formal analysis of alternative courses is indicated? Do we have the discipline to comply? …

• Document Decision Rationale (DAG1P6)
 – Including Dissenting Opinions [NASA]
 – Support Future Analysis [CMMI]

 Have we documented the decision including any concerns/issues? … Sufficiently to support a re-examination in the next phase?

Reference: AAC SEAM v2.4
Final Thoughts

“The Air Force is not funded to do everything that everybody wants us to do.”

-- Hon Michael Wynne, SECAF

So let's agree in AFMC we are done with the phrase "more with less."

Instead, I'd like us each to focus on doing the right things with the available resources. I want you to ask yourself the question, "with the resources I have at my disposal (time, funding, people, equipment, etc.) what are the most important things I have to do? " The corollary question then becomes, "what must I stop doing so I can do those things?" I recognize there are valuable things you might have to stop doing. I need each of you to take a hard look at your organization and determine what those things are."

-- Gen Bruce Carlson, Commander AFMC

This is Great News for Systems Engineering Because we are All About Optimizing Systems! but We Must Have the Discipline and the Integrity to Make the Trades...
Kai-zen

The Art of Continuous Improvement

Kai-zen must operate with three principles in place: process and results, systemic thinking, and non-blaming (because blaming is wasteful).
Lessons Learned Doing Systems Engineering Assessments on the Government

Ian Talbot
AAC/EN
ian.talbot@eglin.af.mil

https://afkm.wpafb.af.mil/EglinSE
Product Portfolio

AMRAAM

HTS

MALD

BQM-167A

JASSM

SDB

SFW

FUZE

JDAM

UMT

ARTS

B-2 Shelter
Air Armament Center
Systems Engineering Assessments
– Why
– How
– What we Learned
– Futures

Today is a Discussion not a Lecture – Please Stop me Anytime!
Direction & Goals

- In 2006, EN Tasked to:
 - Perform a Center-wide SE Assessment
 - Found Out Where We Are?
 - Baseline Enterprise Process Improvement

- Goals
 - Improve Program Performance & Reduce Technical Risk
 - Ensure a Consistent Understanding of SE
 - Ensure Core SE Processes are in Place and Being Practiced
 - Identify Opportunities for Continuous Improvement
 - Clarify Roles and Responsibilities
 - Institutionalize “Best Practices”

Must Have a Champion!
Our Approach

• Define Systems Engineering Best Practices

• Benchmark Systems Engineering Implementation

• Establish a Baseline for Continuous Improvement
 – Begin Changing the Culture to Kaizen

• Phased Approach – 3 Phases

1. What to do?
2. How to do it?
3. How to Sustain it?

2006
2007-2008
2008-2009
Focus on Process

• The Quality of a System or Product is Highly Influenced by the Quality of the Process Used to Develop and Maintain It

<table>
<thead>
<tr>
<th>CMMI Performance Results Summary</th>
<th>Median Improvement</th>
<th>Number of Data Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>34%</td>
<td>29</td>
</tr>
<tr>
<td>Schedule</td>
<td>50%</td>
<td>22</td>
</tr>
<tr>
<td>Productivity</td>
<td>61%</td>
<td>20</td>
</tr>
<tr>
<td>Quality</td>
<td>48%</td>
<td>34</td>
</tr>
<tr>
<td>Customer Satisfaction</td>
<td>14%</td>
<td>7</td>
</tr>
<tr>
<td>ROI</td>
<td>4.0 : 1</td>
<td>22</td>
</tr>
</tbody>
</table>

• Process Discipline Leads to:
 – Predictable Program Performance
 – Ability to Deliver on our Commitments

Institutionalized Process Driven SE » Lower Risk Technical Programs
AAC SEA Model Development

Systems Engineering Assessment Model v2.4

- 10 Process Areas
- 33 Specific Goals
- 115 Practices
- 7 Generic Practices
- 67 Qualifying Questions
- 47 Pages

30 + Assessments

AAC Practices

MIL-STD-499B
EIA 632
CMMI
INCOSE
ISO 15288

Streamlined CMMI

Compliant with AF-SEAM v1.0

Industry/Academia
- SEI, NDIA, Boeing, Raytheon, etc.
- USC, AFIT, etc.

OSD Guidance
- DAG
- SEP Guidance

AF Guidance
- AFI 63-1201
- AFPD OSS&E

AFMC Guidance
- AFMCI 63-1201
- OSS&E

Other Centers
- ESC
- SMC

AAC Assessment Model Based on International, Industry and DoD Best Practices

CMMI® Acquisition Module (CMMI-AM), Version 1.0

May 2006

Aug 2008

Oct 2007

080806 SEA Lessons Learned; Talbot
Current Process Areas

• Technical Process Areas
 – Requirements
 – Design
 – Manufacturing
 – Verification & Validation
 – Fielding & Sustainment

• Project Process Areas
 – Project Planning
 – Risk Management
 – Configuration Management
 – Decision Analysis
 – Technical Assessment

– Introduction
– Goal
 • Practices
 • Grey Matter
 • Question(s)
– Goal…
 • Generic Practices
– Question(s)

AAC-SEAM v2.4
Criteria for Methodology

- Objective Assessment
- Provide insight into Government, Prime Contractors and Subs Process & Capability
- Facilitate Self Assessment & Continuous Improvement
 - Lean & Six Sigma
- Consistent Near and Far Term Approach
- Provide Results that are meaningful for leadership
 - Relevant to PM/PEO
 - Simple
 - Understandable
 - Graphical
- Support Multi-level Measurement & Reporting
 - Program, Group, Wing, Enterprise
SEA Methodology

Training & Preparation...

Acquirer & Supplier

Project Team
Self-Assessment

SEA Team
Peer Review

High Value

Leadership Review Board

Co-chaired by Chief of Systems Engineering and Line Engineering Functional

Assessment Process Time Required
Leadership – 8 person hrs
Project Team – 60-100 person hrs
SEA Team – <50 person hrs

Team Chaired by Senior Systems Engineer
Members from Across Multiple Programs

*SEA Assess What Practices are Implemented NOT How Well Executed
Future: Begin to Shift Focus to “How To” and Quality of SE Implementation*
Products Provided to Program

- Training & Self Assessment
- Peer Review Collaboration & Feedback
- Validated Assessment
- Summary Memorandum
 - Findings & SE Improvement Recommendations
Benchmarks the Enterprise

Process Area Criteria
- >90% of Practices
- 65-89% of Practices
- <65% of Practices

Program Criteria
- >90% of Practices, No Red
- 65-89% of Practices, NTE 1 Red
- <65% of Practices, 2 or More Red

<table>
<thead>
<tr>
<th>Program</th>
<th>R</th>
<th>D</th>
<th>V</th>
<th>T</th>
<th>P</th>
<th>TA</th>
<th>RM</th>
<th>CM</th>
<th>DA</th>
<th>Pgm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program #1</td>
<td></td>
</tr>
<tr>
<td>Program #2</td>
<td></td>
</tr>
<tr>
<td>Program #3</td>
<td></td>
</tr>
<tr>
<td>Program #4</td>
<td></td>
</tr>
<tr>
<td>Program #5</td>
<td></td>
</tr>
<tr>
<td>Program #6</td>
<td></td>
</tr>
<tr>
<td>Program #7</td>
<td></td>
</tr>
<tr>
<td>Program #8</td>
<td></td>
</tr>
<tr>
<td>Program #9</td>
<td></td>
</tr>
<tr>
<td>Program #10</td>
<td></td>
</tr>
<tr>
<td>Program #11</td>
<td></td>
</tr>
<tr>
<td>Program #12</td>
<td></td>
</tr>
<tr>
<td>Program #13</td>
<td></td>
</tr>
<tr>
<td>Program #14</td>
<td></td>
</tr>
<tr>
<td>Program #15</td>
<td></td>
</tr>
<tr>
<td>Program #16</td>
<td></td>
</tr>
<tr>
<td>Program #17</td>
<td></td>
</tr>
<tr>
<td>Program #18</td>
<td></td>
</tr>
<tr>
<td>Center Average</td>
<td></td>
</tr>
</tbody>
</table>

Portfolio Criteria
- 95% Programs Green
- 75%-95% Programs Green, <10% Programs Red
- <75% Programs Green or >10% Programs Red

*Weighting SPs 75%, GPs 25%

PEO Set High Bar!
Lessons Learned

- Personnel Resources are Stretched and Need SE Training & Experience

- Process and Procedures are Needed to Ensure More Repeatable/Consistent Application of SE

- Product Line Specific Guidebook Capturing Eglin Experience in Weapons Desired
The Good

• Requirements Control & Verification Working Group

• Iterative Requirements & Design Trade-off Working Group

• Concurrent Engineering to Ensure Successful Transition to Production

• Contract Incentives for Reducing Cost and Increasing Reliability

• Full Trust Integrated Teaming

• Integrated & Overarching Risk Management Strategy

“Following MIL-STDs was Better than Having No Process at All”
The Bad

- **Areas that Need Work**
 - Requirements
 - Decision Analysis
 - Planning
 - Process Integration Particularly Risk Management
- **Model Expansion Needed**
 - Manufacturing (Transition to Production)
 - Sustainment

Added in Version 2.0
Requirements Weaknesses

• Design Mission Reference Profiles (RG1P2)
 – Comprehensive Definition of Product Characteristics in Engineering Terms and Documentation of the Interaction of the Product with the Environment, Other Systems, and Operational Users [Willoughby].

 \[\text{Do we understand the edges of the technical performance envelope?} \]

• Validate Requirements (RG2P3)
 – Ensure the Evolving Product will Perform as Intended in the Operational Environment [CMMI].

 \[\text{Do the derived requirements accurately and completely represent what is needed? and no more… How were they validated?} \]

Reference: AAC SEAM v2.4
Some Solutions

- Develop Valid Mission Reference Profiles to Support Design
 - Validate Concepts of Employment

- Obtain Accredited Simulation Capability Including Carriage, Separation, Fly-out
 - Engage Independent Subject Matter Experts
 - Discover & Examine Stressing Conditions

- Anchor the Models with Data
 - Test Prototypes in Wind Tunnel
 - Test Instrumented Flight Vehicles in Carriage, Separation and Fly-out Modes

- Test Sample Conditions of All Configurations With Representative Hardware Early and Allow Schedule for Issue Resolution

Vibration
Acoustics
Temperature
Electromagnetic
Aerodynamic

Evaluate All Load-Out Conditions
Sustainment Weaknesses

• Establish Operational, Suitability and Effectiveness Baselines (SG4P1)
 – Conduct Health Monitoring and Verification to Ensure Fielded Product Matches Baseline Performance [AFMCI]

 How do we assure the products continued safety & performance?

• Perform Audits to Maintain Integrity (CMG3P2)
 – Ensure Processes for Maintaining the Integrity of the Fielded Configuration are Effective [CMMI].

 How do you know if Time Critical Technical Orders are compete?

Reference: AAC SEAM v2.4
In 2006, USAF Material Command Engineering Council Action Item to:

- Provide an USAF-wide SE Assessment Model
- Involve USAF Centers (product and logistics)
- Leverage current CMMI®-based models in use at AF Centers
- Baseline Process Capability & Usage

AF Systems Engineering Assessment Model:

- A single AF-wide tool which can be used for the assessment and improvement of systems engineering processes in a program/project.

Version 1.0 Completed August 2008
AF-SEAM SP Roll-Up

Specific Practice Assessment Results
XXX Center

Number of Programs

Process Area

CM DA D M PP R RM S TMC V

080806 SEA Lessons Learned; Talbot
Future Concept

Key Process Area: Manufacturing or TMC

Goal: – Product and process quality is assessed and improved.

Practice:

P1 Establish and maintain a quality management system.

- 5: The developer and major suppliers have an ISO 9000/AS9100 certified operation with recent AS9101 audit at relevant locations.
- 4: The developer has an ISO 9000/AS9100 certified operation with recent AS9101 audit at relevant locations.
- 3: The developer is meeting the intent of ISO 9000/AS9100 with a recent independent quality audit at relevant locations.
- 2: The developer has an effective quality management system that includes suppliers with no recent independent audit.
- 1: The developer has not demonstrated an effective quality management system.

Rungs Facilitate 1) Self Assessment, 2) Training and 3) Steps for Improvement
Summary

• **Goal is to Continue to Improve Program Performance**
 – Too Many Examples of Program Performance/Issues Being Tracked Back to Lack of Systems Engineering Discipline

• **Long Term Goal** – Revitalizing Systems Engineering
 – Need to Follow “Best Practices”
 – Need to Do them “Well”
 – Need to Ensure that Our Program Teams Have What they Need
 • Qualified People, Process Discipline, Tools/Technology

Where there is no standard there can be no Kaizen
 – Taiichi Ohno
Kai-zen

The Art of Continuous Improvement

Kai-zen must operate with three principles in place: process and results, systemic thinking, and non-blaming (because blaming is wasteful).
Software Process Improvement Initiative
Navy Software Process Improvement Initiative (SPII)

ENVIRONMENT
(Jan 2006 Offsite)

OBJECTIVES

- Increase leadership awareness and accountability
- Better align Naval acquisition with our industry partners
- Develop a skilled acquisition force
- Holistic Systems Engineering Approach focused on key functional areas:
 - Software Acquisition Management
 - Software Engineering Practices
 - Business Implications
 - Software Development Techniques
 - Human Resources

SPII Charter: 15 May 2006 ASN RDA Memo

SSG: Senior Steering Group
HIT: Horizontal Integration Team
SAM: Software Acquisition Management
SSE: Software Systems Engineering
SWDT: Software Development Techniques
BI: Business Implications
HR: Human Resources
The Plan

I. As Is:
Understand current situation and review existing policies and reports

II. To Be:
Envision things to come & document changes

III. Institutionalize:
Leverage existing Mechanisms; PEO and SYSCOM responsibilities

5 Focus Areas

- SW Development Techniques (PEO C4I Lead)
- SW Acquisition Management (NAVAIR lead)
- SW Systems Engineering (NAVAIR Lead)
- Business Implications (PEO IWS Lead)
- Human Resources (NAVSEA Lead)

Institutionalize
Overarching Policy and Guidebook for Acquisition of SW Intensive Systems
Step-wise Accomplishments

- As Is” Report signed 17 May 2007
 - Uncovers the current environment for the acquisition of software intensive systems across the Naval Enterprise
 - Findings are consistent with past DSB and NRAC findings

- “Software Development Techniques Phase 1 Report” signed 10 Jul 2007
 - Provides an overview of existing software development techniques and suggestions for evaluating emerging software development techniques

- Program Office Survey Findings Report promulgated July 2007
 - Report verifies the findings of previous studies (e.g., Defense Science Board (DSB)-2000 and Naval Research Advisory Committee (NRAC)-2006) by tracking them directly to current programs of record

- Contract Language Guidance policy memo signed 13 Jul 2007
 - Provides amplifying guidance information on the 17 Nov 2006 Contract Language policy memo
Accomplishments (cont.)

- Software Metrics White Paper – identified 4 core metrics
- “To Be” Report signed 6 Nov 2007
 - Assists acquisition professionals with a preview of key considerations for major problems having been found to be most troublesome and most commonly documented
- “Role Base Right Fit Training” Report signed 6 Nov 2007
 - Addresses the training issues highlighted by the SAM focus team “As Is” state report, SSE focus team “Program Management Office Survey Findings,” DSB, and NRAC findings
- Contract Language policy memo signed 17 Nov 2006
 - Directs standardized contract language for all contracts containing software development, acquisition and life cycle support beginning with RFPs issued after 1 Jan 2007
 - Requires developers to submit Software Development Plan (SDP)
Core Software Metrics

◆ The four required core metrics
 – Software Size/Stability
 – Software Cost/Schedule
 – Software Quality
 – Software Organization

◆ All metrics to be provided during key phases of the system acquisition lifecycle and DoN 2Passes/6Gates

<table>
<thead>
<tr>
<th>ID</th>
<th>Phase</th>
<th>Milestone-Related Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Concept Development</td>
<td>Pre-Concept Decision (CD)</td>
</tr>
<tr>
<td>II</td>
<td>Concept Refinement</td>
<td>Post-CD, Leading to Milestone (MS)-A</td>
</tr>
<tr>
<td>III</td>
<td>Technology Development</td>
<td>Post MS-A, Leading to MS-B</td>
</tr>
<tr>
<td>IV</td>
<td>System Development and Demonstration (SDD)</td>
<td>Post MS-B, Leading to Design Readiness Review (DRR)</td>
</tr>
<tr>
<td></td>
<td>(System Integration)</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>SDD (System Demonstration)</td>
<td>Post DRR, Leading to MS-C</td>
</tr>
<tr>
<td>VI</td>
<td>Production and Deployment</td>
<td>Post MS-C, Leading to Full Rate Production (FRP) Decision</td>
</tr>
<tr>
<td>VII</td>
<td>Operations and Support</td>
<td>Post FRP Decision Review</td>
</tr>
</tbody>
</table>
Status Reporting Based on Metrics

- Examples of basic and general usage of metrics:
 - Scope creep and software stability based on software size metrics/trends
 - Software cost and schedule variances, trends, and performance indexes
 - Software defects, trouble reports, and other quality trends
 - Software personnel staffing actuals vs. planned, including training and turnover metrics

- Software 4 Core Metrics infused into Naval Probability of Program Success (PoPS) - Complete
SPII is Institutionalized!

- **Software Process Improvement Initiative completed – Sept 2008**
 - Software Measurement for Naval Software Intensive Systems
 - 4 core metrics
 - Overarching Software Process Improvement Policy for Acquisition of Naval Software Intensive Systems
 - Software Process Management Improvement
 - Contract Language
 - Software Measurement
 - Personnel experience or training
 - Ensure implementation and adherence to processes Software Measurement for Acquisition of Naval Software Intensive Systems
 - Guidebook for Software Process Improvement for Acquisition of Naval Software Intensive Systems
 - Provide support to acquisition stakeholder team
 - Organize to capture focus teams products
 - Structure follows acquisition process timeline
“Should-Be” Software Environment

Historical Software Data
- Domain
 - Similar systems
- Key attributes
 - E.g.,
 - Accurate
 - Normalized
 - Etc.

Legend:
- Process
- Product

SW Infused WBS Supports Effective Software Metrics and Program Management
Institutionalization Next Steps

- Infuse software into SE Planning, SE Management, and SE Technical Reviews processes
 - Systems Engineering Technical Review (SETR)
 - Systems Assurance
 - Work Breakdown Structure friendly to Software
- Continue working with USD(AT&L), Services, and DAU to meet human resources and training needs
- RDA CHSENG sponsor next updates to:
 - Software development techniques
 - Contract language guidance, when required
Back-up slides
Mapping of software metrics-related timeline phases to Gate Reviews

<table>
<thead>
<tr>
<th>Lifecycle Phases</th>
<th>SECNAVNOTE 5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>I: Concept Development</td>
<td>Gate 1</td>
</tr>
<tr>
<td>II: Concept Refinement</td>
<td>Gates 2 & 3</td>
</tr>
<tr>
<td>III: Technology Development</td>
<td>Gates 4 & 5</td>
</tr>
<tr>
<td>IV: System Development</td>
<td>Gate 6</td>
</tr>
<tr>
<td>V: System Demonstration</td>
<td>Gate 6 (Phase 2)</td>
</tr>
<tr>
<td>VI: Production & Deployment</td>
<td>Gate 6 (Phase 3)</td>
</tr>
<tr>
<td>VII: Operations & Support</td>
<td>Gate 6 (Phase 4)</td>
</tr>
</tbody>
</table>

See backup slides for overview/description of each Gate Review and policy memos for use of PoPS methodology at Gate Reviews.
SPII Core Measurement and Metrics Update

Program Office Metrics

- KPP and requirements driven
- Organization

Contract Metrics

- Software Size
- Cost/Schedule

Cross Functional Match – Effective Communications

- Key Billets/Skills – DAIWIA driven
- Defect Rate/Cost of Rework

Key Billets/Skills – Contract/RFP Identified

Government Independent Cost Estimate (ICE); Official Stamp of Program Baseline; Delta in KPP/Requirements

Contract Mods/Out of Scope/Scope Creep based on KPP/req delta

KPP and requirements driven

T&E Outcomes

Based on Quality

Details are dependent on SAM organization micro-product, HR skills and capability micro-product; BI contract language review
Efforts to develop appropriate metrics for performance measurement and continual process improvement.

- **Software Size**: software acquisition planning, requirements development, requirements management
- **Software Organization**: ensure that key program personnel have an appropriate level of experience or training in software acquisition
- **Software Cost/Schedule**: Project Management and Oversight
- **Software Quality**: Risk Management
“Successful development and acquisition of software is paramount for acquiring Naval Warfighting and business systems. There are many parallel and related efforts underway that address improvement in the acquisition of software products: mandates such as Public Law 107-314 Section 804 and the Clinger-Cohen Act; initiatives such as Software Assurance and Open Architecture (OA); and the development of best practice models such as the Capability Maturity Model Integration (CMMI) for Acquisition. To consolidate these efforts into a focused initiative, I have formed a steering group composed of my senior engineering professionals and led by the ASN (RD&A) Chief Engineer. This group will evaluate existing policies and implement process improvements to enhance our ability to develop and acquire software without sacrificing the cost, schedule and performance goals of our acquisition programs.

Additionally, five focus teams, led by department software engineering professionals, have been established to achieve our strategic software goals (see attachment):

- Software Acquisition Management (SAM) Focus Team
- Software Systems Engineering (SSE) Focus Team
- Software Development (SWDEV) Techniques Focus Team
- Business Implications Focus Team
- Human Resources Focus Team”

ASN RDA Memo dtd May 15, 2006, subj: Software Process Improvement Initiative
Business Implications (BI)

❖ Accomplished – As Is and To Be
 – Contract Language policy memo signed 17 Nov 2006
 • Directs standardized contract language for all contracts containing software development, acquisition and life cycle support beginning with RFPs issued after 1 Jan 2007
 - Requires developers to submit Software Development Plan (SDP)
 – Contract Language Guidance policy memo signed 13 Jul 2007
 • Provides amplifying guidance information on the 17 Nov 2006 Contract Language policy memo

❖ Institutionalize
 – Re-enforced in the overarching Policy and Guidebook for Acquisition of Naval Software Intensive Systems – signed September 16, 2008
 – Update Contract Language based on future need
Accomplished – As Is and To Be
- “Software Development Techniques Phase 1 Report”
 signed 10 Jul 2007
 • Provides an overview of existing software development techniques
 and suggestions for evaluating emerging software development
 techniques
 • Facilitates program managers software risk management

Institutionalize
- Guidebook for Acquisition of Naval Software Intensive
 Systems – signed September 16, 2008
- Annual update to reflect maturity of existing techniques and
 emergence of new techniques
Accomplished – As Is and To Be
- Program Office Survey Findings Report promulgated July 2007
 - Report verifies the findings of previous studies (e.g., Defense Science Board (DSB)-2000 and Naval Research Advisory Committee (NRAC)-2006) by tracking them directly to current programs of record
- Software Metrics White Paper – identified 4 core metrics
- Develop software reviews for inclusion in Systems Engineering Technical Review (SETR)

Institutionalize
 - Provides a set of software metrics to assess program performance
- Incorporate software reviews into SETR (planned March 2009)
 - Executing under Systems Engineering Stakeholders Group (SESG)
Accomplished – As Is and To Be
- “As Is” Report signed 17 May 2007
 - Uncovers the current environment for the acquisition of software intensive systems across the Naval Enterprise
 - Findings are consistent with past DSB and NRAC findings
- “To Be” Report signed 6 Nov 2007
 - Assists acquisition professionals with a preview of key considerations for major problems having been found to be most troublesome and most commonly documented

Institutionalize
- Tailorable Organization Structure (included in Guidebook Sept 2008)
 - Tool for assessing organizational structure, software expertise, and staffing requirements for software intensive systems program offices
 - Provides a set of software metrics to assess program performance
- Use the Systems Engineering Plan (SEP) and SETR (planned March 2009)
 - On-going effort through the SESG
Human Resources (HR)

- Accomplished – As Is and To Be
 - “Role Base Right Fit Training” Report signed 6 Nov 2007
 - Addresses the training issues highlighted by the SAM focus team “As Is” state report, SSE focus team “Program Management Office Survey Findings,” DSB, and NRAC findings

- Institutionalize
 - “Establishment of DAWIA Software Acquisition Training and Education Working Group” draft memo by OUSD(AT&L)
 - The “Role Base Right Fit Training” report serves as Naval input to OSD sponsored reviews of software acquisition management competencies for six acquisition disciplines (Program Management, Contracting, Acquisition Logistics, Systems & Software Engineering, and Legal)
Institutionalize – Guidebook

- **Signatory:** ASN RDA
- **Audience:**
 - Primary: Government acquisition community
 - Secondary: Stakeholder community (e.g., developers)
- **Objective:**
 - To provide support to acquisition stakeholder team
 - Organize to capture focus teams products
 - Structure follows acquisition process timeline
- **Status:** Signed September 16, 2008
Institutionalize – Policy

- **Signatory:** ASN RDA
- **Audience:**
 - Primary: Government acquisition community
 - Secondary: Stakeholder community (e.g., developers)
- **Objective:**
 - Improve software acquisition processes
1. **Software Measurement for Naval Software Intensive Systems**
 - 4 core metrics
2. **Overarching Software Process Improvement Policy for Acquisition of Naval Software Intensive Systems**
 - Software Process Management Improvement
 - Contract Language
 - Software Measurement
 - Personnel experience or training
 - Ensure implementation and adherence to processes
- **Status:** signed July 22, 2008 & September 16, 2008
Weighting of Core Metrics Across Gates

<table>
<thead>
<tr>
<th>Core Metric</th>
<th>Gate 1 / Ph I: Concept Development</th>
<th>Gate 2 / Ph II: Concept Refinement</th>
<th>Gate 3 / Ph II: Concept Refinement</th>
<th>Gate 4 / Ph III: Technology Development</th>
<th>Gate 5 / Ph III: Technology Development</th>
<th>Gate 6 / Ph IV: System Development</th>
<th>Gate 6 Phase 2 / Ph V: System Demonstration</th>
<th>Gate 6 Phase 3 / Ph VI: Production & Deployment</th>
<th>Gate 6 Phase 4 / Ph VII: Operations & Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size/Stability</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>20%</td>
<td>30%</td>
<td>25%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>Organization</td>
<td>50%</td>
<td>40%</td>
<td>50%</td>
<td>40%</td>
<td>30%</td>
<td>25%</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>Cost/Schedule</td>
<td>30%</td>
<td>40%</td>
<td>30%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>Quality</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>15%</td>
<td>15%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Notes

- The table above outlines the weighting of core metrics across different gates in the project development phases.
- Size/Stability, Organization, Cost/Schedule, and Quality are the core metrics considered.
- Each metric is assigned a percentage weight at each phase, totaling 100% across all gates.
- The graphical representation at the bottom visually depicts the weight distribution for each metric across the phases.
Software Size/Stability Metric

<table>
<thead>
<tr>
<th>Phase</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline/ Basis of Metric</td>
<td>Concept expectation of %-age of system functionality to be delivered by SW (vice, e.g., HW)</td>
<td>Concept expectation of %-age of system functionality to be delivered by SW (vice, e.g., HW)</td>
<td>SW Size Estimates</td>
<td>SW Size Baseline</td>
<td>SW Stability</td>
<td>SW Stability</td>
<td>SW Stability</td>
</tr>
<tr>
<td>Who Collects Measurements</td>
<td>Program Office</td>
<td>Program Office</td>
<td>Program Office / Bidders</td>
<td>SW developer/ integrator</td>
<td>SW developer/ integrator</td>
<td>SW developer/ integrator</td>
<td>Program Office / SW developer/ integrator</td>
</tr>
<tr>
<td>Who Analyzes</td>
<td>Program Office</td>
<td>Program Office</td>
<td>Program Office / SW developer/ integrator</td>
<td>SW developer/ integrator</td>
<td>SW developer/ integrator</td>
<td>SW developer/ integrator</td>
<td>Program Office</td>
</tr>
<tr>
<td>Metric</td>
<td>%-age of functionality in SW</td>
<td>%-age of functionality in SW</td>
<td>Estimated SLOC, FP, or Req'ts.</td>
<td>ESLOC, FP, or Req'ts.</td>
<td>ESLOC, FP, or Req'ts.</td>
<td>ESLOC, FP, or Req'ts.</td>
<td>ESLOC, FP, or Req'ts.</td>
</tr>
<tr>
<td>Use of Metrics</td>
<td>Risk, Lessons Learned</td>
<td>Risk, Lessons Learned, Concept Selection</td>
<td>Risk, Lessons Learned, Source Selection</td>
<td>Risk, Lessons Learned, Performance</td>
<td>Risk, Lessons Learned, Performance</td>
<td>Risk, Lessons Learned, Performance</td>
<td>Risk, Performance, Lessons Learned, Database/ Archival</td>
</tr>
</tbody>
</table>

Software Cost/Schedule Metric

<table>
<thead>
<tr>
<th>Phase</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline/Basis of Metric</td>
<td>SW related IERs, SDXs</td>
<td>SW related IERs, SDXs</td>
<td>Actual SW cost & schedule data</td>
</tr>
<tr>
<td>Who Analyzes</td>
<td>Sponsors & Advocates</td>
<td>Sponsors & Advocates</td>
<td>Program Office</td>
<td>Program Office</td>
<td>Program Office</td>
<td>Program Office</td>
<td>Program Office</td>
</tr>
<tr>
<td>Metric</td>
<td># IERs/SDXs produced by SW</td>
<td># IERs/SDXs produced by SW</td>
<td>Cost/Schedule Variance/ Performance index</td>
</tr>
<tr>
<td>Use of Metrics</td>
<td>Risk, Lessons Learned</td>
<td>Risk, Lessons Learned</td>
<td>Risk, Lessons Learned</td>
<td>Risk, Performance, Lessons Learned</td>
<td>Risk, Performance, Lessons Learned</td>
<td>Risk, Performance, Lessons Learned</td>
<td>Risk, Performance, Lessons Learned</td>
</tr>
</tbody>
</table>

The table provides a comprehensive overview of the Software Cost/Schedule Metric, detailing the phases, baseline/basis of metric, who collects measurements, who analyzes, metric, and use of metrics. Each phase is associated with specific activities and responsibilities, ensuring a structured approach to managing software costs and schedules.
Software Quality Metric

<table>
<thead>
<tr>
<th>Phase</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline/Basis of Metric</td>
<td>SW related IERS & SDXs</td>
<td>SW related IERS & SDXs</td>
<td>Defects per SLOC</td>
<td>Defects per SLOC, Defects per system interface</td>
</tr>
<tr>
<td>Who Analyzes</td>
<td>Sponsors & Advocates</td>
<td>Sponsors & Advocates</td>
<td>Program Office</td>
<td>Program Office</td>
<td>Program Office</td>
<td>Program Office</td>
<td>Program Office</td>
</tr>
<tr>
<td>Metric</td>
<td>% SW generated IERS/SDXs</td>
<td>% SW generated IERS/SDXs</td>
<td>Qty performance index/variance</td>
</tr>
<tr>
<td>Use of Metrics</td>
<td>Risk, Lessons Learned</td>
<td>Risk, Lessons Learned</td>
<td>Risk, Lessons Learned</td>
<td>Risk, Performance, Lessons Learned</td>
<td>Risk, Performance, Lessons Learned</td>
<td>Risk, Performance, Lessons Learned</td>
<td>Risk, Performance, Lessons Learned</td>
</tr>
</tbody>
</table>

This table outlines the phases of a software quality metric, including the baseline/basis of the metric, who collects and analyzes the measurements, the specific metrics used, and the purposes to which the metrics are put.
Software Organization Metric

<table>
<thead>
<tr>
<th>Phase</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline/Basis of Metric</td>
<td>Effort/KSA</td>
<td>Effort/KSA</td>
<td>Effort/KSA/Turnover</td>
<td>Effort/KSA/Turnover</td>
<td>Effort/KSA/Turnover</td>
<td>Effort/KSA/Turnover</td>
<td>Effort/KSA/Turnover</td>
</tr>
<tr>
<td>Who Collects Measurements</td>
<td>Program Office</td>
<td>Program Office</td>
<td>Program Office / Bidders</td>
<td>Program Office / Contractor</td>
<td>Program Office / Contractor</td>
<td>Program Office / Contractor</td>
<td>Program Office / Contractor</td>
</tr>
<tr>
<td>Who Analyzes</td>
<td>Program Office</td>
<td>Program Office</td>
<td>Program Office</td>
<td>Program Office / SW developer/ integrator</td>
</tr>
<tr>
<td>Metric</td>
<td>Planned # of people or planned # of labor hours, KSA</td>
<td># of people or # of labor hours/actual trng vs required trng</td>
<td># of people or # of labor hours/actual trng vs required trng/# of people lost & gained</td>
<td># of people or # of labor hours/actual trng vs required trng/# of people lost & gained</td>
<td># of people or # of labor hours/actual trng vs required trng/# of people lost & gained</td>
<td># of people or # of labor hours/actual trng vs required trng/# of people lost & gained</td>
<td></td>
</tr>
<tr>
<td>Use of Metrics</td>
<td>Risk, Lessons Learned</td>
<td>Risk, Lessons Learned</td>
<td>Risk, Lessons Learned, Source Selection</td>
<td>Risk, Lessons Learned</td>
<td>Risk, Lessons Learned</td>
<td>Risk, Lessons Learned</td>
<td>Risk, Lessons Learned</td>
</tr>
</tbody>
</table>

Use of Metrics
- Risk, Lessons Learned
- Risk, Lessons Learned, Source Selection
- Risk, Lessons Learned
Natval Power 21 Integration & Interoperability Improvement

21 October 2008

Mr. Carl Siel
ASN(RDA) Chief Engineer
carl.siel@navy.mil

Mr. J. Kevin Smith
Technical Director
ASN(RDA) Chief Engineer’s Office
kevin.k.smith1@navy.mil
Purpose

- Provide an information briefing on the ASN(RDA) CHSENG initiative to improve integration, interoperability, and net-centricity across the Department of the Navy.
Agenda

- Background
- Overview of I&I Management
- Centralized Planning Processes
- Decentralized Execution Processes
- Capability Package Assessments
- Configuration Capture
- Role of Integrated Architectures
- Governance Structure
In February 2006, ASN(RDA) Chief Systems Engineer (CHSENG) undertook to improve systems engineering across the department in the area of integration and interoperability of “information-handling” systems.

- “Information-handling system” is the term used by RDA CHSENG to cover every data system within the Department, including both IT systems, national security systems, and everything else.

After reviewing the existing systems engineering organizations under the ASN(RDA), CHSENG determined that the best value-added for the CHSENG was to accept the role of systems-of-systems engineer at the Naval mission level.

- PEO systems engineers and technical directors already coordinated systems engineering within their organizations.
- PMO system engineers held responsibility for program-level systems engineering.
But a gap existed at the echelon above where any PEO had the authority to operate and, as a result, PEO-to-PEO collaboration was unsupervised and haphazard.

- ASN(RDA) CHSENG assumed the role of coordinator for issues which cross PEO boundaries.
To do Enterprise & SoS / FoS SE need to Execute Sound System SE Practices

ASN(RDA) CHSENG has assumed responsibility for Mission-Level Systems-of-Systems Engineering

PEOs and PMOs have responsibility for System/Program-level Engineering
However, to establish the boundaries within which the RDA CHSENG would operate, it was necessary to define the systems-of-systems for which RDA CHSENG would take responsibility.

- We created the DON Enterprise Architecture Hierarchy to establish those boundaries.
- Aligns Mission-Level SOSs to the Joint Capability Areas.
- Resulting mission-level architectures will describe the Secretariat, U.s. Navy, and U.S. Marine Corps’ contributions to each JCA.
- Approved for use across DON on 22 September 2008.
Sample page from DON EA Hierarchy.
Integrated architectures provide the means for defining the details of the operational and system requirements.

- Integrated architectures are needed for multiple echelons:
 - DON Enterprise Architecture.
 - Mission-level integrated architectures (244)
 - Program/Systems: ADNS, AEGIS, CVN, LHA-6, F/A-18

- Each tier of integrated architectures as a subset of the tier above it.
Integrated Architectures (continued)

- How do we use integrated architectures?

DARS

Integrated Hierarchic Database

Naval Architecture Elements Reference Guide

CPA Script Library

Architecture-Based Models Library

Information Support Plans and System/Program-Level Architectures

Operational Analysis M&S

Technical Analysis M&S

System OPEVAL

Pre-Deployment Capability Package Assessments

JCIDS Rqmts Developers

Program SEs

SOS Engineers

Interfacing PMOs

Portfolio Mgrs

DON Secretariat
Overview of I&I Management

- First order of business was to identify **ALL** of the missions in the Department of the Navy (DON).
 - Requires a definition of a Naval mission.

- Naval missions are defined as the Navy, Marine Corps, and Secretariat contributions to the Joint Capability Areas (JCAs).
 - Results in 244 mission areas, based on 2007 JCAs.
 - These are listed and collated in the DON Enterprise Architecture Hierarchy.
 - Will be updated following revisions to the JCAs scheduled for November 2008.
Because of the complexity of the Department of the Navy (DON), RDA CHSENG relies on assistance provided by Mission-Area Chief Engineers who are experts in particular systems-of-systems and/or mission areas.

- FORCEnet: SPSWARSYSCOM 5.1
- Sea Shield: NAVSEASYSCOM 05W
- Sea Strike/Shaping (Air, Sea, Land, INFO OPS, SPECWAR)
- Sea Basing: To be determined.
- Expeditionary Maneuver Warfare (MARCORSYSCOM DEP for ENG)
- Manpower, Personnel, Training, Education: To be determined.
- Sea Enterprise: To be determined.
Overview of I&I Management (continued)

- We are implementing an end-to-end management process for I&I of information systems which is based on the systems engineering needed by the mission-level system-of-systems.

- Relies on multi-tiered integrated architectures to set technical requirements and to communicate among engineers.
Centralized Planning

- Objectives for Centralized Planning include:
 - Consistent application of standards across PEOs/SYSCOMs.
 - Ensuring full understanding of the role of a single system within the SoSs where it participates. Overseeing the resolution of issues among PEOs/SYSCOMs.
 - Conduct initial evaluations of the operational effectiveness and technical performance of the mission-level SoSs.

- The Information Support Plan provides the means for accomplishing Centralized Planning across PEOs/SYSCOMs and with higher authorities.
 - Reviewed at each acquisition milestone and each major upgrade.
Centralized Planning Methods:

- Establishment of system-level and mission-level integrated architectures.
- Comparison of architectures of new systems with mission architectural baselines.
- Review of other ISP and NR-KPP requirements.
- Concurrence from PMOs of interfacing systems.
- Concurrence from CIO/DCIO(N)/DCIO(MC).
- Concurrence from NNWC, MCCDC and operational agents.
- Use existing processes for reviews of ISPs.
 - DON-level review.
 - DOD-level review using JCPAT-E
PMs and PEOs execute their acquisition programs according to plans (SEP, ISP).

ASN(RDA) CHENG, coordinating with the DON Engineering community, assists by:

– Providing a venue for coordinating across PEOs, especially to resolve cross-PEO/SYSCOM issues,
– Providing common dictionaries,
– Developing and distributing mission-level integrated architectures.
– Developing and interpreting policies of higher headquarters,
– Supporting program representation to higher headquarters,
– Providing a communications link to authoritative sources within the operational agents.
De-Centralized Execution (continued)

- Revised ISPs and system-level DT/OT test reports provide the means for oversight of De-Centralized Execution.
There is a need for formal evaluation of the performance of mission-level systems-of-systems.

- OPEVAL concentrates on single systems only.
- Evaluation needs to be done in an operationally-relevant context.

Capability Package Assessments (CPAs) will become the means for independent testing of SOSs.

- Based on a process prototyped by MCSC/MCTSSA since FY02.
- Aligns with NNWC desire for more relevant SOS assessments.

Evaluation criteria are defined by the mission-level integrated architecture.
Independent Assessments (continued)

- Test scripts are developed for CPAs from the following MCP-level architectural views:
 - OV-5 Activity Model,
 - OV-6C Operational Event Trace Description,
 - SV-1/2 Systems Interface and Communications Description,
 - SV-5 Operational Activity to Systems Function Matrix,
 - SV-10C Systems Event Trace Description
- Initial test thread is Close Air Support.
- We are coordinating with NNWC for access to conduct CPAs during battle group pre-deployment work-ups.

Centralized Planning → ISP → De-Centralized Execution → Independent Assessment → Configuration Capture → DGSIT CPA Report
The configuration observed aboard the battlegroup during the CPAs will be incorporated into the architecture repository as the “As-Is” configuration for the afloat portion of the DON Enterprise Architecture.

- CPA configurations and results inform the mission-level integrated architectures of real-world conditions.
ASN(RDA) View of I&I - Sea Strike: STOM Example

Navy Component Commander (COCOM)

USMC Component Commander (COCOM)

JTFHQ
JFMCC
JFACC
JFLCC

CAS Aircraft:
- JSF
- AV-8
- F-18C/D/E/F
- AH-1

CVTG:
- CVN(s)
- CG-47
- DDG-51
- SSN

NFSG:
- DDG-51
- FFG-7
- LCS
- SSGN

ATG Escorts:
- DDG-51
- FFG-7
- SSN

Landing Craft:
- EFV-C/P
- AAVC/P-7
- LCAC
- LCU

ATG:
- LHA-1/6
- LHD-1/4/8
- LPD-17/18
- LSD-42/49

Transport Aircraft:
- OV-22
- CH-53
- CH-46
- UH-1

GIG and FORCEnet Systems/Services:
- Comms & Networking Infostructure
- C2/DS Systems
- ISR/BA Systems

TDN/WIN-T Systems
MAGTF C2 Systems

Not Shown:
- MNW, LSG,
Sea shield functions.
I&I Management Structure

MA CHENGs

- Sea Strike
- Sea Shield
- Sea Base
- FORCEnet
- EMW
- Enterprise
- MPTE

NNFE

- CEO
- COO
- CFO

RDA CHSENG

FNCC Lvl 1

I&I Working Group

Leadership Team

ISP Process Team

CPA/CPE Process Team

Mission Architecture Support Team

NR-KPP Process Team

NSWG Product Team

Aggregation Product Team (FY09)
Survivable Network Design Framework

Dennis M. Moen, Ph.D., P.E.
Lockheed Martin MS2 Tactical Systems
Advanced Technology
Eagan, MN

©2008 Lockheed Martin
Agenda

• **MS2 Tactical Systems**

• **Motivation for Survivable Networks: C4ISR**

• **A Framework for cost-effective survivable network design**

• **Summary/Discussion**
MS2 Tactical Systems –
C4ISR Products and Solutions

Maritime Surveillance

Networked Systems
(C4ISR)

Global Support Services

Advanced Computing

Communications and Networking

System Integration

C2 Solutions

MS2 Tactical Systems Delivers and Supports Complex C4ISR Solutions
Motivation: Complexity of C4ISR and Battle Management

- **Sensors:** They are everywhere on many networks
 - Lots of data in many types and formats
 - Diverse capabilities: range, modality, maneuverability
 - Networks are poorly integrated

- **Communications and dissemination**
 - Inter and intra networking
 - Networking platforms have different characteristics: mobility, power, line-of-sight, latency, bandwidth
 - Network-to-network adaptation: adaptive data rate and waveforms

- **“Always-on”: Connectivity anytime, anywhere, anyhow**

Objective: Reliable information transfer under dynamic conditions with QoS
A survivable network has the characteristic that essential services are preserved under disruption and recover full services in a timely manner.

- Disruption can result from many factors
 - Congestion resulting from excess offered load
 - Protocol Interworking failure (configuration)
 - Physical disruption
 - Security failure (Denial of service)

- Service recovery
 - Priority of restoral
 - Automated vs manual
 - Efficiency (recover full service in a timely manner)
Survivability Framework: Three levels of Network Integrity during undesirable events

- **Network availability (planned)**
 - Normally associated with maintenance and configuration faults (single fault)
 - Represents the majority of faults
 - Automated recovery or inherent reliability in the design

- **Single, worst case failure (node, link, etc)**
 - Environmental failure
 - Accident
 - Manual recovery (minutes/hours)

- **Disaster-based event: Several links or nodes fail simultaneously**
 - Natural or man-made event
 - Manual recovery (lengthy-hours/days/weeks)
Network Level Emergent Behavior: System View

• System Requirements need to be integrated with survivability requirements at node and network level
 – Organize into essential and non-essential services
 – Organize by user or business function

• Survivability imposes new types of requirements
 – Emergent behavior: collective behavior of node services communicating across the network
 – Adaptive behavior, function, and resource allocation

Example: Functions and resources devoted to non-essential services could be reallocated to essential services
Sample Survivability Measures

- **Connectivity based measures**
 - Route availability ratio
 - Probability of node isolation

- **Traffic based measures**
 - Average network blocking given a failure
 - Average number of lost calls given a failure

- **Desirable characteristics of measures**
 - Technology independent
 - Measure survivability under the three described levels of failure
 - Can be applied to a subnetwork of the network
 - Can measure the customer/user impact
Survivability Framework: Analysis

<table>
<thead>
<tr>
<th>Survivability Level</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Criteria</td>
<td>Network Availability</td>
<td>Single, Worst Case Event</td>
<td>Disaster-based Event</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Fault Tolerance + Security)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(System Reliability)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovery Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Modifiability)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life Cycle Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimization Techniques

• **Architectural trade analysis using design patterns and styles**
 – DoDAF modeling
 – Exhibit 300

• **Formal methods using Markov modeling and simulation**
 – Hamiltonian Cycle based analysis
 – Generalized graph methods for clustering
 – Minimum-cost vertex-connectivity analysis

• **Scenario based methods**
Service Recovery and Efficiency

• **Maintainability: Fewer unique installations**
 - Default configurations
 - Training
 - Logistic support

• **Operational availability**
 - Faster restoral
 - Swap like components
 - Priorities: Know when I need a service

• **Life cycle cost management**

Objective: Commonality across the Enterprise
Summary

• The emphasis on net-centric operations makes it essential that we create effective methods for survivable network design

• We can apply system engineering methodologies similar to those we apply to other systems in order to define “essential” services

• We can use spiral model of analysis and design with appropriate measures to obtain desired properties
Questions?

Dennis.moen@lmco.com

(651)456-2421
Stop the Pain: Effective Requirements Definition and Management for Project Success

Scott Derby, Esterline AVISTA

NDIA Systems Engineering Conference
October 20-23, 2008
Agenda

» Why are good requirements so important?
» What makes a good requirement?
» Requirements definition
» Managing change
» Advantages in modeling
» Effective prototyping
» Summary
» Q & A
Why Are Good Requirements So Important?

Change Impact vs. Project Phase

Cost & Schedule Impact

Project Phase
Why Are Good Requirements So Important? (cont.)

» Requirements can be:
 » Unrealistic
 » Incomplete
 » Ambiguous
 » Contradictory
 » Un-testable
 » Poorly managed

» This leads to:
 » Rework, delays, budget over-runs, unhappy customers
What Makes a Good Requirement?

» Be S.M.A.R.T.*
 » Specific (concise, clear, unique)
 » Measurable
 » Achievable
 » Relevant
 » Testable

» What vs. How

» This leads to:
 » Less rework, shorter schedules, lower costs, happy customers

*http://www.win.tue.nl/~wstomv/edu/2lp30/references/smart-requirements.pdf
Requirements Definition

» Consider interests of ALL stakeholders

» Include all users in reviews
 » End user
 » Development/Safety Team
 » Production/Maintenance Team
 » Verification/Validation Team

» Don’t forget:
 » Traceability
 » Interface requirements
Requirement Layers

» Start with high level concept and technical requirements

» Drill down adding more detail with each layer
 » Highest level – capabilities
 » Next n levels – subsystems, architecture, high level design, low level design
 » The number is subjective - depends on complexity
 » Stop when you have enough detail to build it, buy it, code it, and test it
Requirements Layers

- Customer Requirements
- System Requirements
- Subsystem Requirements
- Component/Part (H/W & S/W) Req.
- Verif./Valid. Procedures
Managing Change

» During initiation:
 » Define and formalize change control process (internal and external)
 » Define how legacy issues will be handled

» Get to know the “customer” and learn their true priorities

» Good communications with stakeholders is key (include Contract Administrators)
Managing Change (cont.)

» Effectively and formally evaluate and control proposed changes

» Hold the line even on small impact changes

» Requirements vs. desires (what is in the contract?)

» Identify and address errors/issues as early as possible
Advantages of Model Based Development

» Early detection of errors in requirements and design
» Proof of concept
» Repeatable
» Reduces impact of changes
» Reduces cost of downstream activities (design, code)
Rapid Prototyping

» Formalize the process to provide proof of concept

» Make it repeatable – what if it works?

» Emphasis of testing on core functionality, doesn’t address capabilities such as operational environment
Summary

» Create S.M.A.R.T. requirements
» Communicate with stakeholders and dig deeper for clarification of requirements
» Formalize the change management process
» Identify legacy issues at the start of the project
» Leverage modeling to detect errors early and reduce downstream costs
» Use prototyping to help test functionality
Questions?

Contact Info:
Scott Derby
Programs Manager
Esterline AVISTA
Phone (608)348-8815
Fax (608)348-8819
Email Scott.Derby@avistainc.com
www.avistainc.com
Architecture and Model Based Systems Engineering For Lean Results

NDIA Systems Engineering Conference - October 2008

Timothy G. Olson, President
Lean Solutions Institute, Inc.
(760) 804-1405 (Office)
Tim.Olson@lsi-inc.com
www.lsi-inc.com

Chris Armstrong, President
Armstrong Process Group
Chris.Armstrong@aprocessgroup.com
www.aprocessgroup.com
“I have made this letter longer than usual because I lack the time to make it shorter”

Blaise Pascal
Objectives

Provide some “lean results” motivation.

Describe some engineering problems from industry.

Describe motivation and advantages of architectures.

Describe motivation and advantages of models.

Provide some examples.

Answer any of your questions.
Outline

Lean Results

Some Problems in Engineering

Systems Engineering Processes

Why Focus on Architectures?

Why Focus on Models?

The Future: Industry Standards and Tools

Summary
The Quality Crisis

The cost of poor quality:
• “In most companies the costs of poor quality run at 20 to 40 percent... In other words, about 20 to 40 percent of the companies’ efforts are spent in redoing things that went wrong because of poor quality” (Juran on Planning for Quality, 1988, pg. 1)

• Crosby’s Quality Management Maturity Grid states that if an organization doesn’t know it’s cost of quality, it’s probably at least 20%. (Crosby, Quality is Free, 1979, pg. 38-39)
What is Lean?

Lean has its roots in quality and manufacturing, and is a recent popular movement in quality.

“Lean Production” is the name for the Toyota Lean Production System.

The following are major lean references (see references in back of presentation for full references):

- “The Machine That Changed The World”
- “Learning to See”
- “The Toyota Way”
- “The Toyota Product Development System”
- “Lean Thinking”
Some Lean Principles - (1)

Establish customer defined value (i.e., identify the “value stream”). Process = “value”.

Continuously eliminate non-value added activities (e.g., waste, rework, defects).

Use leadership and standardization to create a lean culture.

Align your organization through visual communication.

Create an optimized process flow (e.g., “Flow”, “Pull”, “Just-In-Time”, “Leveled”).
Some Lean Principles - (2)

Use lean metrics to manage the value stream.

Front-Load the process for maximum design space.

Build a learning organization to achieve lean and continuous improvement.

Adapt technology to fit your people and processes.

Strive for perfection through continuous improvement.
Some Lean Results

<table>
<thead>
<tr>
<th>MEASUREMENT</th>
<th>WORLD-CLASS BENCHMARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs of Poor Quality (COPQ)</td>
<td>Reduced from ~33% to ~15% (e.g., cut COPQ in half)</td>
</tr>
<tr>
<td>Defect Removal Efficiency</td>
<td>70-90% defect removal before test</td>
</tr>
<tr>
<td>Post-Release Defect Rate</td>
<td>Six Sigma (i.e., 3.4 Defects Per Million)</td>
</tr>
<tr>
<td>Productivity</td>
<td>Doubled (e.g., in 5 years at ~20% a year)</td>
</tr>
<tr>
<td>Return on Investment</td>
<td>7:1 - 12:1 ROI</td>
</tr>
<tr>
<td>Schedule / Cycle Time</td>
<td>Reduced by 10-15% (e.g., per year)</td>
</tr>
</tbody>
</table>
Outline

Lean Results

Some Problems in Engineering

Systems Engineering Processes

Why Focus on Architectures?

Why Focus on Models?

The Future: Industry Standards and Tools

Summary
Some Engineering Problems

Numerous problems with requirements.

Too many defects (i.e., quality problems).

Lack of metrics (e.g., process improvement).

Major decisions made subjectively or without data.

Management problems (e.g., poor risk management).

Lack of product integrity.
Example Problem: Requirements

A research report from the Standish Group highlighted the continuing quality and delivery problems in our industry and identified three leading causes:

• Lack of user input

• Incomplete requirements and specifications

• Changing requirement specifications

Problems with Requirements

According to the SEI [Christel 92], problems of requirements elicitation can be grouped into 3 categories:

1. **Problems of Scope:** the requirements may address too little or too much information.

2. **Problems of Understanding:** problems within groups as well as between groups such as users and developers.

3. **Problems of Volatility:** the changing nature of requirements.
Outline

Lean Results

Some Problems in Engineering

Systems Engineering Processes

Why Focus on Architectures?

Why Focus on Models?

The Future: Industry Standards and Tools

Summary
CMMI® Process Areas

Engineering:
• Requirements Management (REQM)
• Requirements Development (RD)
• Technical Solution (TS)
• Product Integration (PI)
• Verification (VER)
• Validation (VAL)

Support:
• Measurement and Analysis (MA)
• Process & Product Quality Assurance (PPQA)
• Configuration Management (CM)
• Decision Analysis and Resolution (DAR)
• Causal Analysis and Resolution (CAR)

© CMMI is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University
CMMI® Process Areas

Project Management:
- Project Planning (PP)
- Project Monitoring and Control (PMC)
- Supplier Agreement Management (SAM)
- Risk Management (RSKM)
- Integrated Project Management + IPPD (IPM)
- Quantitative Project Management (QPM)

Process Management:
- Organizational Process Definition + IPPD (OPD)
- Organizational Process Focus (OPF)
- Organizational Training (OT)
- Organizational Process Performance (OPP)
- Organizational Innovation and Deployment (OID)

© CMMI is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University
NASA Systems Engineering Requirements (NPR-7123)
Outline

Lean Results

Some Problems in Engineering

Systems Engineering Processes

Why Focus on Architectures?

Why Focus on Models?

The Future: Industry Standards and Tools

Summary
Why Architectures?

Architectures are very powerful because they:

• Are graphical (a picture is worth a 1000 words) and can be powerful communication tools.

• Provide a framework for how components are related (e.g., interfaces, interdependencies, relationships) and how components fit together.

• Promote reuse (e.g., products, components, requirements, designs, tests, interfaces, etc.) and can improve productivity and quality.

• Can be modeled in an automated tool.
Architectures

Architectures consist of:

- Components
- Interfaces, interdependencies, and other relationships among components
- Ordering and rules for putting components together

Simple Architecture Example: Lego’s

Numerous Types of Architectures:
- Product and Domain Specific Architectures
- Business, Data, Technology, etc. Architectures
- Discipline Specific Architectures (e.g., software)
- Process Architectures
- Documentation Architectures
Example Product Architecture

- Simulator
 - Trainer System
 - Real-Time Master/Slave Executives
 - Computer System
 - I/O Handlers
 - Radar/Sonar
 - Real-Time Master/Slave Debuggers
 - ...
 - Weapons
Example Process Architecture

Management Processes

Project Management
Risk Management
Supplier Management

Engineering Processes

Requirements
Design
Implementation
Test

Support Processes

Configuration Management
Auditing
Measurement and Analysis
Decision Analysis & Resolution
Documentation Architecture

- **Policies**: “Laws” or “Principles” that govern operations
- **Standards**: “Operational definitions” & “acceptance criteria”
- **Processes**: “What happens over time” to build products
- **Procedures**: “How to” or step by step instructions
- **Training**: Provides the needed knowledge and skills
- **Tools**: Supports and automates operations

Slide adapted from "A Software Process Framework for the SEI Capability Maturity Model", CMU/SEI-94-HB-01
Outline

Lean Results

Some Problems in Engineering

Systems Engineering Processes

Why Focus on Architectures?

Why Focus on Models?

The Future: Industry Standards and Tools

Summary
Why Models?

Models are very powerful because they:

• Are graphical (a picture is worth a 1000 words) and can be powerful communication tools.

• Can scale up to complex systems and provide a tool to analyze complex relationships and dependencies.

• Promote reuse (e.g., products, components, requirements, designs, tests, interfaces, etc) and can improve productivity and quality.

• Can be represented in an automated tool, and simulated.
Models

Models are abstractions of reality constructed for a (useful) purpose consisting of:

- Formal notations and rules for representations
- Model components or building blocks
- Ways to model interfaces, interdependencies, and other relationships among the model components

There are numerous modeling languages and tools.

A Few Modeling Examples:

- Behavioral Models (e.g., timing, states)
- Structural Models (e.g., hierarchy, order)
- Functional Models (e.g., input, function, output)
- Process Models (e.g., the 5 W’s)
What is a Process Model?

Process Model:
• An abstraction of a process typically characterized by formal notations for representing roles, activities, and/or work products, and the relationships (e.g., events, transformations) among them.

Types of process models:
• Descriptive (as-is): describes what is actually done
• Prescriptive (to-be): prescribes what to do (e.g., by new policies, standards, process guidelines, etc.)
• Mixed (both): most process models are a mixture of prescriptive and descriptive processes
Popular Process Models: CMM/CMMI

SADT: Structured Analysis and Design Technique (SADT) is a graphical systems modeling language developed at Softech/MIT by Doug Ross in early 1970's. Used extensively to document all manner of systems including manufacturing processes. Has automated tool support (e.g., IDEF).

ETVX: Entry criteria/Tasks/Verification/eXit criteria (ETVX). Developed at IBM in the mid 1980's. Simple to use, but no automated tool support.

Role/Flow or Swim-Lane Models: Like flow charts, but have swim-lanes for roles and are formal process models. Have become very popular in the last decade. [Example Handout].
Example Requirements Process: NASA Onboard Shuttle Project

Requirements conception
- Identify need
- Examine architectural options
- Develop software system solution

Requirements generation
- Define software requirements in accordance with operational concept and system requirements
- Produce requirements specification

Requirements analysis
- Assess technical and resource impact
- Determine acceptability, implementability, testability
- Examine requirements readiness

Requirements inspection
- Discuss proposed requirement in detail
- Discuss operational scenarios
- Identify issues and errors

Requirements approval
- Evaluate risks and benefits
- Decide on resource expenditures
- Establish baseline

Iteration
- Correct errors
- Resolve issues
- Rewrite
Outline

Lean Results

Some Problems in Engineering

Systems Engineering Processes

Why Focus on Architectures?

Why Focus on Models?

The Future: Industry Standards and Tools

Summary

1970s & 1980s

Three-Ring Binders
- Demonstrated organization commitment
- Often became shelfware

1990s

Websites
- More accessible by practitioners
- Often difficult to navigate and maintain

2000s

Model-Driven
- Access to industry standard frameworks
- Integration of multiple lifecycles
- Formal process asset management

Copyright © 1998-2008, Armstrong Process Group, Inc., All rights reserved.
Benefits of a Standards-Based Approach

Increased sustainability:
- Lower cost and shorter time of initial adoption
- Widespread availability of knowledgeable employee, contractor, and vendors
- Lower cost of maintenance

Lower risk:
- Apply proven best practices
- Widespread adoption across industry
Some Industry Standards

OMG: Object Management Group

UML: Unified Modeling Language

SysML: Systems Modeling Language

SPEM: Software and Systems Process Engineering Metamodel

OpenUP: Open Unified Process - process framework

TOGAF: The Open Group Architecture Framework

DoD4F: DoD Architecture Framework

IEEE 1471: Recommended Practice for Architecture Description of Software Intensive Systems
Outline

Lean Results

Some Problems in Engineering

Systems Engineering Processes

Why Focus on Architectures?

Why Focus on Models?

The Future: Industry Standards and Tools

Summary
Summary

There are many industry engineering problems.

Systems engineering needs to focus on improving those engineering problems.

Organizations need lean measurable results (e.g., 7:1 ROI).

Architectures and models are powerful tools to help improve engineering and obtain measurable results.

The future of architectures and models is industry standards and tools. Architectures can also be represented with models.
Architecture and Model Based Systems Engineering For Lean Results

NDIA Systems Engineering Conference - October 2008

Timothy G. Olson, President Lean Solutions Institute, Inc. (760) 804-1405 (Office) Tim.Olson@lsi-inc.com www.lsi-inc.com

Chris Armstrong, President Armstrong Process Group Chris.Armstrong@aprocessgroup.com www.aprocessgroup.com

Reliability Growth of Mobile Gun System during PVT

Dmitry E. Tananko, Ph.D., Reliability and Robust Engineering, GDLS
Sharad Kumar, Senior Director, System Engineering, GDLS
John Paulson, Director, Stryker Program, GDLS
Jenny Chang, PM SBCT, TACOM
LTC David J. Rohall, PM SBCT, TACOM
James Ruma, VP, Engineering Programs, GDLS
Agenda

- **What is MGS**
- **Success Factors of MGS PVT**
 - Program Management – Integrated Team
 - System Engineering and Reliability Attainment
 - Reliability Data Analysis – RGA
 - FDSC – Failure Definition Scoring Criteria
 - Failure Categories
 - Inherent vs. Induced Reliability
 - Mission Profile and Life Variable
 - Data Grouping and Modeling
 - Instantaneous vs. Cumulative Reliability
- **MGS Lesson Learned - DFR**
Agenda

- **What is MGS**
- **Success Factors of MGS PVT**
 - Program Management – Integrated Team
 - System Engineering and Reliability Attainment
 - Reliability Data Analysis – RGA
 - FDSC – Failure Definition Scoring Criteria
 - Failure Categories
 - Inherent vs. Induced Reliability
 - Mission Profile and Life Variable
 - Data Grouping and Modeling
 - Instantaneous vs. Cumulative Reliability
- **MGS Lesson Learned - DFR**
Stryker Family of Vehicles

- Infantry Carrier Vehicle (ICV) 130
- Commander’s Vehicle (CV) 28
- Fire Support Vehicle (FSV) 14
- Mobile Gun System (MGS) 27
- NBC Reconnaissance Vehicle (NBCRV) 3
- Medical Evacuation Vehicle (MEV) 16
- Engineer Squad Vehicle (ESV) 13
- Anti Tank Guided Missile (ATGM) 10
- 120mm Mounted Mortar Carrier (MC-B) 37
- Reconnaissance Vehicle (RV) 52
- Infantry Carrier Vehicle (ICV) 130

Approved for Public Release, Distribution Unlimited, GDLS approved, log 2008-04, dated 02/11/08.
Mobile Gun System – The Bunker Buster
BLUF – Key Factors for Successful Reliability Growth Program

- **Program Management – Integrated Team**
 - The systems, tools, and practices now in place between the US Government and General Dynamics Land Systems allowed the system’s reliability to grow (repeatable process)
 - Reliability growth requires commitments from Material Developer Team, Combat Developer, and Independent Test and Evaluation Communities (requirements, test, data, methodology, tools)

- **System Engineering – Reliability Backbone**
 - Integrates All Reliability Tasks
 - Redirects Tasks Toward a Single Objective
 - Crosses Boundaries Affecting Operational Reliability
 - Provides Program Manager Authority, Funding, and Focus on Engineering, Processes, Documentation, Training, Manufacturing, and Testing for Reliability

- **Reliability Data Analysis – Reliability Assessment**
 - FDSC – Failure Definition Scoring Criteria
 - Failure Categories
 - Inherent vs. Induced Reliability
 - Mission Profile and Life Variable
 - Data Grouping and Modeling
 - Instantaneous vs. Cumulative Reliability
Agenda

● What is MGS
● Success Factors of MGS PVT
 ➤ Program Management – Integrated Team
 ➤ System Engineering and Reliability Attainment
 ➤ Reliability Data Analysis – RGA
 ■ FDSC – Failure Definition Scoring Criteria
 ■ Failure Categories
 ■ Inherent vs. Induced Reliability
 ■ Mission Profile and Life Variable
 ■ Data Grouping and Modeling
 ■ Instantaneous vs. Cumulative Reliability
● MGS Lesson Learned - DFR
MGS Program Management

Plan

- **Phase I** - Conduct an Additional Reliability Test (ART)
 - Validate effectiveness of 216 PQT and Post-PQT corrective actions

- **Phase II** - Implement changes to Government and GDLS Systems Engineering Processes
 - Management and process changes

- **Phase III** - Redesign of Sub-System components and integration

Tests

 - 2 vehicles
 - Pre-ART – XXX rounds & X00 miles
 - ART – XXX rounds & X,000 miles
 - Reliability Point Estimate XX MRBSA

- **Reliability Growth Test (JUL-AUG 2005)**
 - 2 Vehicles
 - XXX rounds
 - X,000 miles
 - Reliability Point Estimate XX MRBSA

- **Production Verification Testing (APR 2006 - DEC 2007)**
 - 3 Vehicles
 - XXXXX rounds
 - XX,000 miles
 - On-going – Current estimate XXX MRBSA
MGS Idealized Growth Curve

MGS Rebaselined MEP Idealized Growth Curve
RGT Demonstrated Reliability

Input Parameters

- MTBF[i] = 47
- ti = 909
- T = 6757
- \(\alpha = 0.22 \)

RGT Demonstrated Reliability

20% RGT Threshold
Agenda

- **What is MGS**
- **Success Factors of MGS PVT**
 - Program Management – Integrated Team
 - System Engineering and Reliability Attainment
 - Reliability Data Analysis – RGA
 - FDSC – Failure Definition Scoring Criteria
 - Failure Categories
 - Inherent vs. Induced Reliability
 - Mission Profile and Life Variable
 - Data Grouping and Modeling
 - Instantaneous vs. Cumulative Reliability
- **MGS Lesson Learned - DFR**
MGS - Systems Engineering Approach

- Integrates All Reliability Tasks
- Redirects Tasks Toward a Single Objective
- Crosses Boundaries Affecting Operational Reliability
- Provides Program Manager Authority, Funding, and Focus on Engineering, Processes, Documentation, Training, Manufacturing, and Testing for Reliability
- Approach Provides Metrics that can be Measured
SE Approach to Reliability

Design Phase

Increase Initial MTBF

Manage Growth Potential

Potential MTBF

Higher Initial MTBF At Start Of Test

Increase Design Effectiveness Using Robust Design Methodology

Modeling Allocation Prediction FMEA Parts Program FRACAS Failure Prevention & Review Board Verification

Failure Prevention Failure Categorization Timely Corrective Actions

RG/DT
Design for Reliability Management
Focuses on Failure Prevention

- Requirements Review
 - Performance Requirements
 - Environmental Requirements
 - Reliability Requirements Definitions
 - Safety Requirements
 - Maintainability Requirements
 - Support Requirements

- Analyses
 - FMEA and Fault Tree
 - Reliability Design Tradeoff
 - Design – Stress Reliability
 - Safety
 - Maintainability Analysis
 - Parts Selection
 - Manufacturing for Reliability

- Testing
 - Verification
 - Validation
 - Reliability Growth
 - IRGT, FRACAS

- Design for Reliability
 - Reliability Growth
 - Mitigation Risk Modes
 - Expanded FMEA Worksheet
 - Critical Issues

- Failures Prevention and Review Board (FPRB)
 - DART Process
 - Outputs, Results, Issues
 - Interactive Reliability and Design Activity And Reviews
 - Issues Resolved / Closed
 - Update Status

General Dynamics Land Systems

© 2000 – 2007 Dr. Larry H. Crow Used by GDLS With The Permission of Dr. Crow.
Approved for Public Release, Distribution Unlimited, GDLS approved, log 2008-04, dated 02/11/08.
Stryker – Mobile Gun System
Failure Prevention and Resolution Implementation

- External Experts
- FPRB Steering Committee
 - Weekly
- Corrective Action
 - 2X per Week
- PVT Retrofit Review
 - 2X per Week
- CA Design Oversight
- Quality Committee
 - 2X per Week
- Prevention & Systemic Issue Committee
 - Weekly
- Reliability Assessments and Predictions

Teams:
- Hydraulic Leaks Focus Team
- Harness & Electrical Focus Team
- LRU & Sights Focus Team
- ADDITIONAL TEAMS AS REQ'D

DECISIONS / APPROVAL

Issues

Status
Agenda

● **What is MGS**

● **Success Factors of MGS PVT**
 - Program Management – Integrated Team
 - System Engineering and Reliability Attainment
 - Reliability Data Analysis – RGA
 - FDSC – Failure Definition Scoring Criteria
 - Failure Categories
 - Inherent vs. Induced Reliability
 - Mission Profile and Life Variable
 - Data Grouping and Modeling
 - Instantaneous vs. Cumulative Reliability

● **MGS Lesson Learned - DFR**
Reliability Data Analysis

- Proper Reliability Assessment is a key for the program success at PVT
- Reliability Assessment must be discussed up front and consensus should be reached on:
 - FDSC – Failure Definition Scoring Criteria
 - Failure Categories
 - Inherent vs. Induced Reliability
 - Mission Profile and Life Variable
 - Data Grouping and Modeling
 - Instantaneous vs. Cumulative Reliability
FDSC – Failure Definition Scoring Criteria

- FDSC is Contractual Document that defines
 - Failure/non-Failure Event
 - Test related Event
 - Severity of Failure as it relates to the Mission
 - Cause of the Failure

- FDSC is prepared as required by Army Regulation 70-1, Army Acquisition Policy.

- FDSC is being used throughout the test for Scoring purposes, hence it is a major document for Reliability Assessment
Failure Categories

- Performance FM – FM is repeatable with 100% probability of failure for the given procedure/conditions. (Example: TDS overheating)
- Software FM – same as above, but software related.
- Quality FM – happens when vehicle is not built/maintained/operated as designed and is not repeatable after fixing (probability of failure = 0%). Can be broken down into Initial Quality, Maintenance, Operator error, etc. (Example: Improperly installed harness, turret lock bended, etc.)
- Potential Reliability FM – happens when vehicle was built/maintained/operated as designed/intended; probability of failure is greater than 0% and less than 100%; usually happens due to wear out, environment, insufficient design, manufacturing variability, etc.
Failure Mode Categorization Process
Inherent vs. Induced Failure
Categorize Failures and take Relevant Management Actions

- Root Cause Analysis
- Design Corrections
- Selective Redesigns

- Training and Manuals
- Design Simplifications
- Management of Maintenance Actions

- Supplier Quality Management

- Human: 26%
- Performance: 43%
- Quality: 7%
- Reliability: 24%

- Robust Design
- Adequate Design Margin
- DFMEA
- Step-wise Verification

- Failure Chargeability

Approved for Public Release, Distribution Unlimited, GDLS approved, log 2008-04, dated 02/11/08.
Data Grouping

Known Equivalent Time

Unknown Equivalent Time

Instantaneous MRBSA

Crow (NHPP)

Beta = 0.5945

Instantaneous Failure Intensity

Crow (NHPP)

Beta = 0.5827
Rounds and Miles Accumulation per Vehicle vs. Calendar Time

UET model takes into account any discrepancies between different vehicles following through the test in calendar time.

KET Model can be useful in the beginning of the test when vehicles have not accumulated enough mileage and rounds.
Crow/AMSAA Model

Cum Number of Failures

\[E(N) = \lambda \cdot T^\beta \]

Cum Failure Rate

\[r_c = \frac{E(N)}{T} = \lambda \cdot T^{\beta-1} \]

Cum MTBF

\[MTBF_c = (r_c)^{-1} = \left(\lambda \cdot T^{\beta-1}\right)^{-1} \]

Inst Failure Rate

\[r_i = \frac{d(E(N))}{dt} = \frac{d\left(\lambda \cdot t^\beta\right)}{dt} = \lambda \cdot \beta \cdot t^{\beta-1} \]

Inst MTBF

\[MTBF_i = (r_i)^{-1} = \left(\lambda \cdot \beta \cdot T^{\beta-1}\right)^{-1} \]
Cumulative vs. Instantaneous Reliability

- Reliability growth on the Development test is the result of Corrective Actions.
- Estimating Reliability of the product by taking the Cumulative reliability (total number of failures / total time on the test) does not take into account the growth on the test.
Idealized Growth Curve and Observed Parametric Curve for Demonstrated Instantaneous MRBSA
Agenda

- **What is MGS**
- **Success Factors of MGS PVT**
 - Program Management – Integrated Team
 - System Engineering and Reliability Attainment
 - Reliability Data Analysis – RGA
 - FDSC – Failure Definition Scoring Criteria
 - Failure Categories
 - Inherent vs. Induced Reliability
 - Mission Profile and Life Variable
 - Data Grouping and Modeling
 - Instantaneous vs. Cumulative Reliability
- MGS Lesson Learned - DFR
DFR Process Elements

- Boundary Diagram / System Block Diagram
- Interface matrix
- P-Diagram
- DFMEA
- Reliability & Robustness Metrics
- DVP&R
- Reliability Demonstration Metrics
DFSS (DCOV) Flow of Analysis & Tools

VOC
- Customer Needs/Statements

KJ
- Customer Requirements

QFD
- Technical Requirements

FMEA
- DFMEA
 - Functions

Concept Generation & Selection
- Concepts

Function Modeling
- Boundary Diagram
 - P-Diagram

Reliability & Robustness Design
- Reliability & Robustness Metrics

DoE
- Reliability Demonstration

Reliability/Robustness Demonstration

GENERAL DYNAMICS
Land Systems

Approved for Public Release, Distribution Unlimited, GDLS approved, log 2008-04, dated 02/11/08.
Design For Reliability Map
MIL-HDBK-189 RGA Method
MGS MEP PVT Instantaneous MRBSA

- Demonstrated Instantaneous MRBSA for decision-makers
- Growth Rate is 0.4
- RGA Methodology was developed and agreed by RAM-T Community

• Failure Rate continues to decrease, thus demonstrating substantial reliability growth in PVT
• Sustained decrease of MGS Failure Rate suggests infant mortality region is passed and design is maturing

Continuing the effort to ensure MGS reliability growth
- Systems Engineering Process continues to be worked “24/7”
- GDLS Senior Leadership briefed on a daily basis
- Focus on implementation of Corrective actions on both the Test Vehicles and the Fielded vehicles
- GDLS teams at our vendors to work failure analysis and ensure MGS gets their top priority
- Outside experts on reliability and quality regularly review our processes in engineering and Manufacturing so we keep getting better

General Dynamics
Land Systems

Approved for Public Release, Distribution Unlimited, GDLS approved, log 2008-04, dated 02/11/08.
Keys to Success

- Program Management forms Integrated Team (Material Developers, Tester/Evaluators, User) that has clear priority and focus on Reliability with clear understanding of Evaluation Criteria and Test Methods up front.

- System Engineering assembles Reliability tools into Disciplined processes and Working Organizations

- Reliability Assessment is reached through in-depth analysis and consensus between all involved parties

Program Management + System Engineering + Reliability = Success
Questions and Discussion
• Dmitry Tananko, Ph.D.
 ➤ General Dynamics Land Systems
 ➤ Tel.: (586) 634-5071
 ➤ E-mail: tanankod@gdls.com
Establishing a Systems Engineering Center of Excellence within PEO GCS

Mike Phillips

PM MBE Systems Engineer
Jacobs

Distribution approved for Public Release; distribution Unlimited, per AR 380-5. OPSEC Review conducted per AR 530-1 and HQ TACOM OPSEC SOP.
The TACOM LCMC unites all of the organizations that focus on Soldier and Ground Systems. The PEOs and PMs are able to work as an integral part of the Logistics and Technology efforts of the LCMC, while enterprise level partnerships are maintained with the Research, Development, and Engineering Centers (RDECs).
TACOM LCMC Playbook

TACOM LCMC Vision
Providing our warfighters with overwhelming lethality, survivability, mobility, and sustainment for battlefield dominance, now and in the future.

TACOM LCMC Mission
Develop, acquire, field, and sustain soldier and ground systems for the warfighter through the integration of effective and timely acquisition, logistics, and cutting-edge technology.
Vision

Exceed Warfighter expectations as the Army’s Lifecycle Manager and systems integrator for current and future Ground Combat Systems.

Mission

Manage the development, systems integration, acquisition, testing, fielding, sustainment and Improvement of ground combat systems in accordance with the Army’s initiatives to provide mission-capable systems to the Warfighter while meeting cost, schedule and Performance goals.
Supporting the Army Vision Requires Synchronized Modernization

WHAT WORKED BEFORE...

- GCS Platform infrastructure has remained relatively constant since the last development/improvement program
- Requirements are evolving and expanding which requires integration of new capabilities
 - New/Updated CDDs/CPDs under development
 - Integrating new capability to already strained power, space, and weight claims
- Integrating more in current vehicle configuration impacts crew and vehicle capability

...DOESN’T NECESSARILY WORK NOW!

We are at the degradation point
SECOE
Systems Engineering Center of Excellence
SECOE Description

Systems Engineering Center Of Excellence is an operational organization infused with common SE processes and tools to optimize execution of acquisition programs.

DEVELOPMENT TENETS:

- Comprehensive system-of-systems integration methodologies
- Support senior management fact-based decision making
- End-to-end processes that are tailorable, scalable, & portable
- Focus on PEO-wide problem sets
- Maximize common tools and processes

Systems Engineering

A branch of engineering whose responsibility is creating and executing an interdisciplinary process to ensure that customer and stakeholder's needs are satisfied in a high quality, trustworthy, cost efficient and schedule compliant manner throughout a system's entire life cycle, from development to operation to disposal.

- International Council on Systems Engineering (INCOSE)
The transition plan brings a PEO from its initial SE capability to a mature capability.
SECOE COMPONENTS

Processes
A set of formalized methodologies that guide program execution

Tools
Software applications that enable the execution of processes

Training
Increasing knowledge of SE processes and SE ability of the staff executing the acquisition programs

Standard Operational Procedures
Procedures that describe how processes, tools, and training are applied to bring about an SE capability

Transition Plan
Plan that moves PEO from its initial state to desired SE culture

Resources
The personnel, funding, and facilities necessary to execute the processes, tools, and training
Integrated Scheduling
Aligning Across Platforms

Individual Schedules
Differing formats
Differing detail
Differing software

Scheduling Tools
Built using off-the-shelf software SOPs being developed

PEO GCS
Integrated Master Master Schedule

Schedule Maintenance Tool
Enterprise Project Management (EPM)

MS Project

PEO GCS Knowledge Center

HBCT
SBCT
MRAP
JLWH
RS JPO

Cross Platform Analysis

Scheduling Opportunities
- PEO and PMs gaining better insight across programs
- Focusing on sustainment & modernization
- Managing Schedule Risk
- Identifying Commonality Opportunities
- Supporting “What If Drills”
- Synchronizing/Standardizing schedules across PEO
Risk Management

- PEO GCS risk management tool is being used to automate the risk management process
- Integrated in the PEO GCS Knowledge Center
- The process is based on and aligns with DOD risk guidance
- The tool is portable and tailorable to other PEOs

Improving Risk Management

- Proactively Managing Risk
- PEO and PMs using a common understanding of program risk
- Supporting “What If Drills”
SE Analyses Processes & Tools

- **Functional**
 - CONOPS
 - OV-1
 - Use Case Diagrams
 - Use Case Text

- **Human Factors**
 - Operator Interface
 - Roles
 - PDDs

- **Division of Responsibilities**
 - Sequence Diagrams
 - FFBDS
 - Spreadsheets

- **Cross Platform analysis**
 - Physical Block Diagrams
 - Align Schedules

- **Performance**
 - Timing
 - TPMs
 - Performance Analysis

- **Life Cycle Analysis**
 - Life Cycle Costs
 - Program/System Risks

- **Modernization & Commonality Analysis**

What does it do?
- Which subsystem does it impact?

How does a user perform the behavior?
- On what assets is the behavior performed?

What is the total cost impact to the program?
- How well, how fast and at what frequency?
Two-Level Platform Analysis

System Wide Analysis of Potential Components

- Component
 - Performance/ Capability
 - Needed Power
 - Space Claim
 - Thermal

- Vehicle
 - Performance Needs
 - Available Power
 - Space Claim
 - Thermal Limits

- Needed Vehicle Infrastructure Improvements
 - Component
 - Mods to support vehicle needs

Coordinated Vehicle Modernization Plans & Component Development Plans

Commonality Analysis

Move
Shoot
Comm
Survive

Commonality Optimization
SE Training

- SECOE Training Objectives:
 - Train a SE qualified workforce
 - Trained to understand systems engineering
 - Trained to manage systems engineering
 - Increase visibility into available SE training and certifications
 - Establish single training tracking tool for SE training & certifications
 - Working with DAU to customize & implement PEO GCS training
 - Available to PEO CS/CSS, TARDEC, and TACOM
 - Focusing on growing number of Level III certified SPRDE, Program Systems Engineers
 - Working with professional organizations, academia
 - Aligning and educating workforce on available SE certifications and degree programs for those interested
 - Utilize existing TACOM training databases (e.g., TEDS) to implement

- Near Term Timeline:
 - Sep 08: Draft Training Plan
 - Sep 08: Draft Training Curriculum
 - Nov 08: SE Workforce Briefing Complete
 - Nov 08: Pilot Training Delivery
 - Dec 08: SE Library Initiated
 - Jan 09: Professional Development Opportunities Identified
 - Feb 09: SE Training Process Approved
Approval Process

Process Steps

Phase 1: Need and Concept
1.1 Identify SE Product Need
1.2 Define Scope and High-level Solution Concept
1.3 Present Draft SE Project Directive to SEIT for Approval
1.4 Present Draft SE Project Directive to SEAC for Approval

Phase 2: Draft Development
2.1 Form IPT to Develop Product
2.2 Develop Draft Product
2.3 Present Draft Product to SEIT for Guidance

Phase 3: Final Development
3.1 Develop Final Product
3.2 Develop Associated Training
3.3 Present Final Product to SEIT for Approval
3.4 Present Final Product to SEAC for Approval
3.5 Present Final Product to PEO GCS for Approval

Phase 4: Implementation
4.1 Add Product to the PEO GCS Baseline
4.2 Deliver Training to the User
4.3 User Execution
4.4 Maintain and Continuously Improve Product

Process Flow

Baseline SE Processes and Tools

Approval to Implement

SEAC

Approval to Proceed

SEIT

Approval to Proceed

SEs and SMEs

Systems Engineering & Integration (SEIT) Membership: *PEO Lead SE (chair), PM Lead SEs, CIO*

Systems Engineering Advisory Council (SEAC) Membership: *PEO Lead SE (chair), PMs, CIO*
SECOE Steady State

A Lifecycle of Continuous Improvement
SECOE Stakeholder Benefits

Army Benefits
PEOs executing acquisition programs with greater efficiency while reducing turbulence and disruption to the Unit

APEO SEIO

TACOM Community
Benefits Growing systems engineering capabilities within the community and building for the future

Other Orgs
(PEO CS/CSS, TARDEC,...)

PM Benefits
Suite of processes, tools, and training to enable more efficient program planning and execution in terms of cost, schedule, and performance

PEO/PM Benefits
Provides synchronized views across the PMs
The Future

• Update on PEO GCS progress will be provided at NDIA 12th Annual Systems Engineering Conference

• In the meantime, contact me if you want to:

 - Contribute good ideas to our effort

 - Steal good ideas from our effort

Mike Phillips
mike.h.phillips@us.army.mil
586.574.8879
Two-Step Methodology to Reduce Software System Requirement Defects

Presented to

NDIA Systems Engineering Conference

21 October 2008

Presented by

Robert J. Kosman
Operational Systems Division/1552
(401) 832-8571, robert.kosman@navy.mil

APPROVAL FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED
Software System Development

“Typical” Software System Development

- Waterfall / Incremental model
- Spiral model similar for a spiral
- Implies a sequential process to resolve problems (defects)
- Does not provide an adequate illustration of defect impacts
Software System Development

“Realistic” Software System Development

- Added links backwards to reflect origin of defects
- Omitted links other than those back to the first phase – software system requirements development
- Rework caused by defects can impact cost and schedule

Defect Detection

Cost to Fix

Schedule
DEFECTS AND REWORK

$ Rework caused by defects can impact cost and schedule

$ The later a defect is found, the greater the cost to correct

$ Defects found and fixed in later phases of development can cost up to 100x the cost to correct if detected in early phases
 ▪ Software Specifications
 ▪ S/W designs, code, test, documentation
 ▪ Integration, T&E plans and procedures
 ▪ Integrated Logistics Support (ILS) products (Operator / User manuals, Training materials, etc)
 ▪ Distribution costs
 ▪ Change documentation

REQUIREMENT DEFECTS

▪ Impacts all phases and products ("Negative Ripple Effect")

▪ Most costly to correct

▪ Cause delays in schedule and product delivery

▪ Initial system may have reduced capability and functionality, and most likely operational limitations

▪ Usually require formal documentation to correct, e.g., Engineering Change Proposal (ECP)
S/W System Requirement Defects

PROPOSED METHOD TO REDUCE SOFTWARE SYSTEM REQUIREMENT DEFECTS

☐ When:

- Focus on software development phase of acquisition; initial development or maintenance phase
- Prior to Software Specification Review (SRR) and Preliminary Design Review (PDR)
 - Low-level, defect detection process prior to high-level, program milestone review
 - Process generates better products input to SRR and PDR, or an Engineering Change Proposal (ECP) during life-cycle maintenance phase
- Used during system software specification generation, i.e., during translation of high level Performance Specification and user requirements (CONOPS) or User Requirements Document into low-level Software Requirement Specifications (SRSs)
- Systems Engineering (SE) organizes and runs the defect detection process
 - SE oversees technical aspects of the entire system acquisition, including processes to find defects in ALL products
S/W System Requirement Defects

PROPOSED METHOD TO REDUCE SOFTWARE SYSTEM REQUIREMENT DEFECTS

☐ How:

- Analysis on past defects identifies two basic types of s/w system requirement defects

- The defect that is unintentionally introduced into the s/w system requirement specifications during specification generation
 - Ambiguous text
 - Equation errors (algorithms)
 - Figure errors (functional and processing flows)
 - Table errors (wrong units, input ranges, etc.)
 - Connectivity and inconsistency issues
 - Missing or incomplete requirements

- The defect that causes effort to be expended producing unnecessary, incorrect or unwanted functionality
 - “Bells and whistles”
 - Inadequate graphical user interface (GUI)
 - Systems are becoming more user interface driven (COTS) so the proposed GUI should be included in the s/w specification

CAUTION

S/W engineers will fill in the ‘holes’ and ‘gaps’

Need to eliminate user comments like, “system should work this way”
PROPOSED METHOD TO REDUCE SOFTWARE SYSTEM REQUIREMENT DEFECTS

How:

- Develop methodology/process to address both types of s/w system requirement defects

- First, tackle the mistakes made translating P-Spec and User specifications/CONOPS into functional flows and the GUI
 - “Bells and whistles”
 - Unnecessary, incorrect or unwanted functionality

- Second, tackle the mistakes made generating the s/w system requirements specifications
 - Usual mistakes made producing specifications, e.g., ambiguous text, etc.
S/W System Requirement Defects

PROPOSED METHOD TO REDUCE SOFTWARE SYSTEM REQUIREMENT DEFECTS

☐ Introduce a two-step methodology for s/w system requirements clean-up

1: Operational Demonstration (OP-DEMO) of the User Requirements
 » Visual demonstration of proposed GUI and functional flows
 » Allows evaluation of system functionality prior to development

2: S/W Inspection conducted on software requirement specifications
 » Rigorous review originally developed for s/w but can be applied to any “readable” products
Step 1: OP-DEMO

PROPOSED METHOD TO REDUCE SOFTWARE SYSTEM REQUIREMENT DEFECTS

- **Visualization of the User Requirements**
 - Operability and functional flow
 - Graphical User Interface (GUI)
 - Target Machine or other

- **Different levels of OP-DEMO**
 - Operability features and functional flow
 - Operability features and functional flow with limited processing (e.g., algorithms)

- **Form of Software Rapid Prototyping**
 - Disposable code
 - Developed FAST using appropriate tools
 - User involvement early – during s/w requirements phase
Step 1: OP-DEMO

- **Wrong Concept of OP-DEMO (prototyping)**
 - Target machine is always utilized
 - Deliverable code
 - Considered ‘full’ system operability
 - User involvement in later phases
 - Fix problems in maintenance phase

CAUTION

OP-DEMO is Similar to Prototyping and Prototyping Means Different Things to Different People
OP-DEMO Benefits

PROPOSED METHOD TO REDUCE SOFTWARE SYSTEM REQUIREMENT DEFECTS

- Involves the User during the early phases, as opposed to the later phases or after system delivery
- Eliminates unnecessary and incorrect functionality and helps prioritize remaining functionality
- Provides a working model of intended operation for reference, as well as tool to allow parallel development of operator/training materials
- Identifies areas of uncertainty for risk management
- Promotes faster and more accurate s/w system specification writing
Step 2: Requirement Inspection (RI)

PROPOSED METHOD TO REDUCE SOFTWARE SYSTEM REQUIREMENT DEFECTS

- “Software Inspection” applied to the Software System Specifications
- Not like an informal ‘Code Walkthrough’
- Formal, intensive review process designed to detect errors
 - Ambiguous text
 - Equation errors (algorithms)
 - Figure errors (functional and processing flows)
 - Table errors (wrong units, input ranges, etc.)
 - Connectivity and inconsistency issues
 - Missing or incomplete requirements
- Basic characteristics
 - Team approach, with assigned roles (reader, moderator, author)
 - Standards of conduct
 - Collect metric data
 - Criteria for Quality

Documented results indicate up to 85% of design and code errors can be detected by “Software Inspections”
Step 2: Requirement Inspection (RI)

PROPOSED METHOD TO REDUCE SOFTWARE SYSTEM REQUIREMENT DEFECTS

☐ Team Members
 ● Software Engineer (Lead)
 ● System Engineer
 ● User (or ILS person)
 ● Test Engineer

☐ Multiple teams (2 or 3) detect more defects (N-Fold Inspection)
 ● Small % of duplicate defects found between multiple teams

Multiple discipline involvement ensures consistent interpretation of software system requirements across phases
Requirement Inspection Benefits

PROPOSED METHOD TO REDUCE SOFTWARE SYSTEM REQUIREMENT DEFECTS

- Ensures User requirements are accurately specified
- Ensures developer requirements are accurately specified
- Real-time metric data collection identifies areas of improvement w/ specification generation
- Errors corrected in single pass versus iterative correction process
- Detects errors associated with all phases of the Development
- Low cost / defect ratio
- Reduces software development costs by detecting errors early, avoids REWORK
Requirement Inspection Benefits

PROPOSED METHOD TO REDUCE SOFTWARE SYSTEM REQUIREMENT DEFECTS

Impact of RI on Development (modified from [1])

Case Study

PROPOSED METHOD TO REDUCE SOFTWARE SYSTEM REQUIREMENT DEFECTS

- Two extensive upgrades to an existing system – approx 100 KSLOC each
 - Existing system was really a “prototype/experimental” system delivered as a production system; so had to fix in Maintenance phase via ECPs
 - First upgrade did not use 2-Step Methodology to reduce Software System Requirement Defects; second upgrade did
 - Software System Specifications for first upgrade were developed by SE with only informal reviews, and significant portion of user interface was “TBD/TBS”
 - Software development team was already using Software Inspection during development so extensive defect metric data was collected during both upgrades
 - Causal analysis was conducted on all defects found to determine origin of defect
 - Both types of OP-DEMO were utilized on second upgrade (algorithms); 2-Fold RI also used on second upgrade
Case Study

PROPOSED METHOD TO REDUCE SOFTWARE SYSTEM REQUIREMENT DEFECTS

Upgrade 1 Observations

Requirement Defects By Phase - UPGRADE 1

- Informal reviews found some defects but not enough
- Defects found during Design and Code could have been found by RI
- Defects found during computer-based Test and Post-delivery could have been found by OP-DEMO
- Rework caused schedule delays and end product had reduced functionality
- Defects required multiple updates to s/w system spec
Case Study

PROPOSED METHOD TO REDUCE SOFTWARE SYSTEM REQUIREMENT DEFECTS

Upgrade 2 Observations

- OP-DEMO significantly reduced defects in computer-based Test and post-delivery phases
- RI significantly reduced defects in Design and Code phases
- S/W Requirement Spec had a “positive ripple effect” on development
- Significantly less rework for 2nd upgrade and product was delivered on schedule w/ full functionality
- Req defects were less severe and were easily fixed
Summary

PROPOSED METHOD TO REDUCE SOFTWARE SYSTEM REQUIREMENT DEFECTS

- Software system requirement defects can impact cost, schedule, and delivered functionality due to REWORK
- OP-DEMOS are useful in reducing defects that would be identified during computer-based Test and Deployment phases
- Requirement Inspections are useful in reducing defects that would be identified during Design & Code phases
- Improved s/w requirement specifications can cut costs in ALL s/w system development phases, including life-cycle maintenance
- Combining OP-DEMO and Requirement Inspection is a low-tech approach to reducing s/w requirement defects; is simple to apply and requires minimal training
NDIA 11th Annual Systems Engineering Conference

“Daily Challenges of Requirements Engineering”

October 22, 2008

Frank Salvatore
High Performance Technologies, inc.
3159 Schrader Road
Dover NJ, 07801
(973) 442-6436 ext 249
fsalvatore@hpti.com
Outline

- Requirements Elicitation
- Requirements Capture and Management
- Requirements Traceability
- Requirements Control
- Reaching Consensus
- Eliciting Verifications
- Communicating Requirements
- Metrics
Requirements Elicitation

How do you gather the requirements?

- Interviews
- QFD Workshops
- Web Based Surveys
- Vignettes and Scenarios
- Questionnaires
- Brainstorming and Mind Mapping
- Analysis/Derivation
 - Hazard
 - Fault Tree
 - Sensitivity
 - Trade Studies
- Existing Documentation and or Policies
- Quality Assurance Provisions

It involves a lot of research and is evolutionary!

Don’t forget to Document Rational. It will save you time latter when you will need to defend the requirements.
Interview Based Elicitation

Using an Enterprise Architecture approach, one can first probe into Business Goals and Architecture Principles by asking questions to understand:

- Mission and Values of your organization
- Understand importance (PM Level)
- Understand organization structure
- Understand Products
- Understand Customers and Stakeholders
- Understand Daily Activities

Mostly used for Business Systems
Interview Based Elicitation

Project and Product Data can be understood by asking these leading questions

- What are the Projects/Products that the organization manages?
- Who do you interact with?
- What data types do you manage?
- How do you organize your data?
- What data do you view as being most important?
- Who are the Customers for each product?
- Who are the stakeholders for each product?
- What are the day to day activities that go on for the projects you choose?
QFD Based Elicitation

Also helps to Build Consensus and Understanding of complex relationships as well as importance.
Requirements are Discovered Thru
The SW Safety Process
Eliciting Verification Methods

Similar to Requirements. Stakeholders are different. Methods are typically thru Analysis, Test, Inspection, Measurement.

- Use Interview
- Use Questionnaires
- Include Stakeholders Early and Often.
- Have Stakeholders Peer Review Requirements
- Use a JCCB
How and where do you store the requirements?

Word Documents are standard. Tools are useful and can help. But try to get everyone to use them consistently!!!!!!

- Access
- Excel
- DOORS
- RTM
- Requisite Pro
- RM Calibre
- etc....

Use Document Templates Based On Standards. Also IM is Important for Efficiency.
Establish Hierarchy and Naming Convention, Follow IEEE Standard
Document Outline is Standard Throughout Project.

- Using Mil-STD-490/961C standard template
- Standardized Documentation format makes it easier to find what you are looking for
Level 1 User Requirements

- This is where the User Requirements would be stored.
- Everyone on the project can read only few can change.
Level 2 System Requirements

- System Requirements and Verification Methods.
Level 3 Product Requirements

- Product Requirements and Verification Methods.
- IPT’s Manage and communicate changes to SEIT.
Level 4-6 Subassembly to Component Requirements

- IPT’s Own and work to requirements
- Designers communicate Changes and assess impact.
- Everyone works together to achieve a common goal.
Requirements Traceability

How do you understand how the requirements are being satisfied, are complete, are accurate, etc…….

- Trace Matrices are Typical and require constant care and feeding to maintain.
- Use a tool to manage your requirements and capture traceability so you can search and query when doing impact analysis.

- More accurate
- More efficient
- More complete

If a requirement isn’t traceable to anything it doesn’t belong!!!

This is Important when performing Impact Analysis, doing FCA and PCA, etc….

No tool will automatically generate but they will preserve it once you do it the first time.
If a Requirement is changed, how do we determine effects on other Requirements, Verifications or Schedule Events?

- Use Inter-IPT Coordination
- Use Impact Analysis & Visualization Tools
- Use Formal Change Control Procedures
- Attributes

With a tool you have better and more efficient ways of controlling the requirements.
Follow a Change Proposal Process

Step 1
Perform Impact Analysis and collaborate with IPT Rep to create CP(s).

Step 2
Submit Change Proposal and/or Suggestions. Submit additional CPs for impacted objects.

Step 3
Review CPs and Suggestions for Submittal to CCB.

Step 4 & 6
Determine which CPs and Suggestions to review and assemble review package/CP list. Distribute actions.

Step 5
Conduct CCB Review & Disposition of CP and Suggestions

Step 7
Coordinate formal change actions to the requirements database.

Diagram:

1. Start
2. Problem Detected
3. Project Member
 - Collaborate
4. IPT Rep
 - Hold
5. Other IPT Reps
 - In-Review
6. CM
 - Review Package
 - Reject
7. CCB
 - Accept
8. CM
9. Finish
10. Requirements Database
Starting the Change Process

IPT Member brings an issue to attention of IPT Lead
IPT Lead makes an initial determination:

- **PURSUE** – Proposed change has merit and is worth further investigation
- **DISCARD** – Proposed change does not have merit or is not worth further investigation at this time

If you choose to **PURSUE** the potential change:

1. Coordinate with other IPT's to discuss
2. Initiate working group(s) as needed

COMMUNICATE !!!
Still think a change is needed? Perform an "Impact Analysis"
Impact Analysis Complete... Submit a Change Proposal

Step 1: Perform Impact Analysis and collaborate with IPT Rep to create CP(s).

Step 2: Submit Change Proposal and/or Suggestions. Submit additional CPs for impacted objects.

Step 3: Review CPs and Suggestions for Submittal to CCB.

Step 4 & 6: Determine which CPs and Suggestions to review and assemble review package/CP List Distribute actions.

Step 5: Conduct CCB Review & Disposition of CP and Suggestions.

Step 7: Coordinate formal change actions to the requirements database.
Fill out appropriate fields in the ‘Proposed’ half of the Change proposal Form. Remember to address any affected attributes.

Select Change Type

Select Very High, High, Medium or Low (refer to CPP Document for details)

Make adjustments to the Reason for change as needed. BE SURE TO NOTATE ANY CONTRACTUAL IMPLICATIONS!!!

When satisfied with form, press Submit to create the new Change proposal
When 5 or more actions need to occur (i.e., Change proposals) in order to fully satisfy a Change Proposal, a Change Suggestion should be created instead of a change proposal.

Fill out fields as needed and press **Submit** to create a new suggestion. The JCCB will approve and apply suggestions via the Change Proposal System.
Review CP’s and Suggestion

Step 1: Perform Impact Analysis and collaborate with IPT Rep to create CP(s).

Step 2: Submit Change Proposal and/or Suggestions. Submit additional CPs for impacted objects.

Step 3: Review CPs and Suggestions for Submittal to CCB. Hold.

Step 4 & 6: Determine which CPs and Suggestions to review and assemble review package/CP List. Distribute actions.

Step 5: Conduct CCB Review & Disposition of CP and Suggestions.

Step 7: Coordinate formal change actions to the requirements database.

Problem Detected

Requirements Database

START

FINISH

Accept

Apply

CM
Views can be built in an RM Tool to help in the review process.
Forms are another way of stepping thru changes and suggestions made by the IPT.
ID CP’s and Suggestions and Schedule JCCB

Step 1: Perform Impact Analysis and collaborate with IPT Rep to create CP(s).

Step 2: Submit Change Proposal and/or Suggestions.

Step 3: Review CPs and Suggestions for Submittal to CCB.

Step 4 & 6: Determine which CPs and Suggestions to review and assemble review package/CP List. Distribute actions.

Step 5: Conduct CCB Review & Disposition of CP and Suggestions.

Step 7: Coordinate formal change actions to the requirements database.
Perform JCCB and Update dB with Results.

Approved (ready for implementation)
On-Hold (further investigation needed)
Rejected (requested change discarded)
Reaching Consensus

Use IPT forum to Elicit Requirements.

- Include Stakeholders Early and Often.
- Have Stakeholders Peer Review Requirements
- Document Rational. It will save you time latter when you will need to defend the requirements.
- Use a JCCB
- Try using QFD Method to Build Consensus
Communicating Requirements

Use of DOORS has helped BUT!!

- Culture shock is hard to overcome.
- Revert back to WORD and EXCEL documents.
 - Not so efficient and may introduce errors.
- May need to hold hands
- Provide Training and Tailor it to the project.
- Need to pay close attention to Permission and database administration details.
- JCCB has forced communication to happen and has made it mandatory.
- Will need good IT support to reach remote locations when using a tool.
Requirements Metrics

Select metrics you will use.
Don’t try to many or they won’t be managed.
You can build them into an RM tool.

Some Examples Include:
 Volatility
 # Requirements
 # TBD
 # Verified

Using a tool will produce metrics naturally.
Requirements Attributes

Attributes are additional defined characteristics of a requirement and they provide essential information in addition to requirement text.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Who specified this requirement?</td>
</tr>
<tr>
<td>Priority</td>
<td>What is the priority of this requirement?</td>
</tr>
<tr>
<td>Verifiability</td>
<td>Is the requirement verifiable?</td>
</tr>
<tr>
<td>Accepted</td>
<td>Has this requirement been accepted by the developers?</td>
</tr>
<tr>
<td>Review</td>
<td>Review status of this requirement</td>
</tr>
<tr>
<td>Safety</td>
<td>Is this a safety-critical requirement?</td>
</tr>
<tr>
<td>Comments</td>
<td>Any comments on the requirement to clarify its meaning</td>
</tr>
<tr>
<td>Questions</td>
<td>Any questions that must be clarified with the source</td>
</tr>
</tbody>
</table>

You can define attributes that will support your process and make your database more productive for you.
The use of an RM tool is an enabling technology to achieve greater accuracy and efficiency when engineering requirements.

There are definite skills and disciplines required to do requirements engineering.

Not only will One need to understand how to:

- Elicit Requirements
- Capture and Control Them
- Establish and maintain Traceability
- Reach Consensus
- Elicit Verification Methods
- Communicate Requirements
- Defined some Metrics and Attributes

They will also need to be proficient in using and tailoring an RM Tool.
Questions?
NDIA 11th Annual Systems Engineering Conference

“\textit{The Value of Architecture}”

October, 2008

Frank Salvatore
High Performance Technologies, inc.
3159 Schrader Road
Dover NJ, 07801
(973) 442-6436 ext 249
fsalvatore@hpti.com
Outline

- Architecture
- Operational View
- Goal Hierarchy
- Process Flow
- 7.0 Identify and Define Alternatives
- Tools Architecture
- Summary
During the systems engineering process, architectures are generated to better describe and understand the system. Architectures provide a description of how subsystems join together to form a system.

- The Functional Architecture identifies and structures the allocated functional and performance requirements.
- The Physical Architecture depicts the system product by showing how it is broken down into subsystems and components.
- The System Architecture identifies all the products (including enabling products) that are necessary.
- Operational Views provide a frame of reference that the project work can be related to.
Identify, define, and evaluate potential Universal (Objective) Active Protection System (APS) approaches for the Future Combat System (FCS).

Provide decision makers the tools/data to help identify RDECOM’s Science and Technology investments needed to get to an objective APS system.

An Operational View was key. It gave everyone a common frame of reference to work from when executing their part of the analysis.
This was the Goal Hierarchy. Essentially an Architecture. Without it we were not focused on what was important to consider in the trade study.
Trade Study Process Flow Diagram was the Process Architecture used. It kept the team aligned and was a central communication tool.
7.0 Identify & Define Alternatives

Candidate Systems 7.1
- List Systems/Components
- Previous Trades
- Component Data
- Requirements
- Integrate System Candidates
- Organize Component Data
- ID Functional Architectures

Evaluate Candidates 7.2
- Existing Systems
- Analysis Method, Tools
- System Assumptions
- Analyze System Candidate Potential
- Timeline
- Accuracy
- Component Compatibility

Define Alternatives 7.3
- System Alternatives
- System ID
- System Alternatives
- System ID

Subject Matter Experts

Reach Consensus

System and Technology Architectures Required!!!!!
The Physical Architecture was core to understanding the basic construct of an Active Protection System. All 10,080 Systems Evaluate had the same Physical Architectures.
Major component of the trade study was the Functional Analysis and Allocation (FAA).

- It allowed for a better understanding of what the technologies could and had to be able to do to satisfy the performance requirements of the system, in what ways they could do it, and to some extent, the priorities and conflicts associated with lower-level functions.
- It provided information essential to optimizing physical solutions.
- Key tools were Functional Flow Block Diagrams, and the Time Line Analysis.
7.2 Evaluate Candidates (System Functions)

<table>
<thead>
<tr>
<th>Function</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detect, Acquire</td>
<td>Measure and report an event not due to ambient noise</td>
</tr>
<tr>
<td>Declare</td>
<td>Measure and report an persistent object that should be tracked</td>
</tr>
<tr>
<td>Classify</td>
<td>Measure and report what the persistent object is either by class or specific type/item.</td>
</tr>
<tr>
<td>Coarse Track</td>
<td>Measure and report an object and determine that it’s trajectory point of closest approach to our platform is threatening. Classify and coarse track may be based on the same measured data set and completed at the same time</td>
</tr>
<tr>
<td>Initial Slew</td>
<td>Initial slew of launcher to launch position using fire control solution based on coarse track</td>
</tr>
<tr>
<td>Initial Tube Selection</td>
<td>Initial designation of launch tube or tubes in fixed system that need to be “warmed up” using fire control solution based on coarse track</td>
</tr>
<tr>
<td>Fine Track</td>
<td>Measure and report a target to enable calculation of a fire control solution</td>
</tr>
<tr>
<td>Fine Slew & Fire Control</td>
<td>Slew launcher to final position and launch an interceptor loaded with any required flight path, terminal guidance, and fuzing information</td>
</tr>
<tr>
<td>Final Tube Selection & Fire Control</td>
<td>Final designation of launch tube in fixed system and launch an interceptor loaded with any required flight path, terminal guidance, and fuzing information</td>
</tr>
</tbody>
</table>

Established a common vocabulary for understanding and describing how each for the systems studies operated.
7.2 Evaluate Candidates

System Functions (cont.)

<table>
<thead>
<tr>
<th>Function</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Flight Track</td>
<td>Measure and report a target trajectory to provide in-flight guidance to an interceptor</td>
</tr>
<tr>
<td>No-Op</td>
<td>“No operation” - used to designate function not performed</td>
</tr>
<tr>
<td>In-Flight Guidance</td>
<td>Propulsion to change flight path of interceptor</td>
</tr>
<tr>
<td>Terminal Track</td>
<td>Measure and report a target trajectory to provide terminal guidance & fuzing updates to an interceptor</td>
</tr>
<tr>
<td>Terminal Guidance & Fuze</td>
<td>Orient (focus) the warhead to produce the desired effect & initiate the effect at the prescribed time and / or the prescribed distance from target</td>
</tr>
<tr>
<td>Warhead Effect</td>
<td>Target negation</td>
</tr>
</tbody>
</table>

Established a common vocabulary for understanding and describing how each for the systems studies operated.
7.2 Evaluate Candidates

Functional Flow Block Diagram (Unguided Interceptor)
7.2 Evaluate Candidates

Functional Flow Block Diagram (Guided Interceptor)
7.2 Evaluate Candidates
(Functional to Physical Allocation)

<table>
<thead>
<tr>
<th>System Functions</th>
<th>U1</th>
<th>U2</th>
<th>U3</th>
<th>U4</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classify</td>
<td>Active Tracker</td>
<td>Passive or Active Coarse Tracker</td>
<td>Passive or Active Coarse Tracker</td>
<td>Active Tracker</td>
<td>Passive or Active Coarse Tracker</td>
<td>Passive or Active Coarse Tracker</td>
<td>Active Tracker</td>
<td></td>
</tr>
<tr>
<td>Coarse Track</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Slew / Tube Selection</td>
<td>Launcher</td>
<td>Launcher</td>
<td>Launcher</td>
<td>Launcher</td>
<td>Launcher</td>
<td>Launcher</td>
<td>Launcher</td>
<td>Launcher</td>
</tr>
<tr>
<td>Fine Track</td>
<td>Active Tracker</td>
<td>Active Fine Tracker</td>
<td>Active Fine Tracker</td>
<td>Active Cuer / Tracker</td>
<td>Active Tracker</td>
<td>Active Fine Tracker</td>
<td>Active Fine Tracker</td>
<td>Active Cuer / Tracker</td>
</tr>
<tr>
<td>Final Slew / Tube Selection & Fire Control</td>
<td>Launcher</td>
<td>Launcher</td>
<td>Launcher</td>
<td>Launcher</td>
<td>Launcher</td>
<td>Launcher</td>
<td>Launcher</td>
<td>Launcher</td>
</tr>
<tr>
<td>In-Flight Track</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Active Tracker</td>
<td>Active Tracker</td>
<td>Active Tracker</td>
<td>Active Tracker</td>
</tr>
<tr>
<td>In-Flight Guidance</td>
<td>Guided Interceptor</td>
</tr>
<tr>
<td>Terminal Track</td>
<td>Active Tracker</td>
<td>Active Fine Tracker</td>
<td>Active Fine Tracker</td>
<td>Active Cuer / Tracker</td>
<td>Active Tracker</td>
<td>Active Fine Tracker</td>
<td>Active Fine Tracker</td>
<td>Active Cuer / Tracker</td>
</tr>
<tr>
<td>Terminal Guidance & Fuze</td>
<td>Unguided Interceptor</td>
<td>Unguided Interceptor</td>
<td>Unguided Interceptor</td>
<td>Unguided Interceptor</td>
<td>Guided Interceptor</td>
<td>Guided Interceptor</td>
<td>Guided Interceptor</td>
<td>Guided Interceptor</td>
</tr>
<tr>
<td>Warhead Effect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Functional allocation to physical components provided context for data provided on specific components and was critical in both the Timeline and Accuracy Analysis.
7.2 Evaluate Candidates
Timeline Analysis

The results of the Functional Analysis and Allocation effort provided the basis for how time was to be calculated for each of the 10K plus systems to be evaluated.
Physical to Functional Allocations helped in determining what the interfaces would be and gave us a way to make subjective evaluations of their maturity.
7.3 Define Alternatives

Physical to Functional Allocation allowed us to define the system configuration, system architecture, and principle of operation of each system analyzed.
Tools Architecture

Abstract Architecture
- Schematic Block Diagrams
 - Physical Architecture
 - Interfaces
 - Data Flow
 - Easy to Read
 - Hard to Maintain

Formal Architecture
- IDEF0, FFBD, EFFBD, Hierarchy
 - Physical Architecture
 - Functional Architecture
 - Interfaces
 - Data Flow
 - Easy to Maintain
 - Hard to Read
Schematic Block Diagram

Evaluation Tools [Tool Users]

- Integration
- Timeline
- Accuracy
- Fratricide

[Threat Community]

Threat Data

[SI Community]

Component Data

OTAPS Simulation

Evaluation Criteria

Goals (Performance, Cost, Risk)

Report

[Threat Community]

[SI Community]

[SI Community]

[SI Community]
The FFBD (Function Flow Block Diagram) of the APS Tool shows the sequencing and control flow of the functions of the integrated set of trade study tools.
The Hierarchy Diagram was a quick way to quickly capture all the Trade Study Tools and their Hierarchical relationships. These ultimately became the configuration items that were kept under version control.
Use of Business Process Models helped everyone to understand the trade study approach that was being used.

Using Hierarchy Diagrams helped the trade study team stay focused on the goals and criteria being evaluated.

Physical Architecture, Functional Architectures provided the trade study team and the rest of industry a common language to work from. It also was core to defining systems, organizing data.

Functional Flow Block Diagrams and Functional To Physical Allocation was instrumental to establishing rules used to automating the evaluation of 10K plus system alternatives. More importantly it allowed the entire APS community to agree it was being done correctly in all 10k plus cases.

Capturing System Architectures was essential to understand how to model system time function and communicate it to the community.

Structured Physical and Functional decomposition made establishing a System ID scheme simple.

Tool Architecture helped to communicate how each tool was used in the trade study process

- many tool interface gaps were identified and fixed.
Improving Weapon System Investment Decisions

A Knowledge-based Approach to Weapon System Acquisitions Could Improve Outcomes

Travis Masters
Senior Defense Analyst
U.S. Government Accountability Office
Wright-Patterson AFB, OH
DOD Framework vs. Knowledge-based Best Practices Model

Sources: DOD and GAO.
Major Determinant Of Program Outcomes Is The Level Of Knowledge Attained At Key Junctures

Knowledge Point 1: At milestone B, a match is achieved between the user’s needs and the developer’s resources (indicator: technology readiness level)

Knowledge Point 2: At critical design review, the product design demonstrates its ability to meet user needs and is stable (indicator: % of engineering drawings released)

Knowledge Point 3: At milestone C, it is demonstrated that the product can be produced within cost, schedule, and quality targets (indicator: % of key processes in statistical control)
Making a Business Case that a Product Can Be Developed Within Resource Constraints

At milestone B programs should present a business case that provides evidence that:

(1) Warfighter needs are valid and can be met with chosen concept, and

(2) The chosen concept can be developed and produced within resources—technologies, funding, design knowledge, and time
Resolving Gaps Between Requirements and Resources Before Program Start

Early systems engineering enables a developer to identify and resolve gaps between resources and requirements before product development begins.

- **Requirements Analysis**
 - Definition of customer wants including planned use, operating environment, and performance characteristics.

- **Functional Analysis and Allocation**
 - Decomposition of the requirements into a set of specific functions that the system must perform.

- **Design Synthesis**
 - Identification of the technical and design solutions needed to meet the required functions.

Source: GAO.
DOD Programs Continue to Experience Cost and Schedule Problems

Source: GAO analysis of DOD data.
GAO Continues to Find That Programs Begin Without Key Knowledge

- Requirements are not well understood
- Quantum leaps in capability not incremental changes
- Technologies are not mature
- Cost and schedule estimates are overly optimistic
- Program cycle times are too lengthy
Little Evidence of Widespread Adoption of Knowledge-based Acquisition Process

- DOD’s acquisition practices necessary to ensure effective implementation of knowledge-based process are not always followed despite policies and guidance to the contrary.

<table>
<thead>
<tr>
<th>Key junctures</th>
<th>Development start</th>
<th>Design review</th>
<th>Production start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge point 1</td>
<td>Mature all critical technologies</td>
<td>Achieve knowledge point 1 on time and complete 90 percent of engineering drawings</td>
<td>Achieve knowledge points 1 and 2 on time, and have all critical processes under statistical control</td>
</tr>
</tbody>
</table>

DOD outcomes

- 12 percent of programs
- 4 percent of programs
- 0 percent of programs

Source: GAO presentation of DOD data.

a Not all programs provided information for each knowledge point or had passed through all three key junctures.
b In our assessment of two programs, the Light Utility Helicopter and the Joint Cargo Aircraft, are depicted as meeting all three knowledge points when they began at production start. We excluded these two programs from our analysis because they were based on commercially available products and we did not assess their knowledge attainment with our best practices metrics.
GAO’s Review of the Acquisition Decision Support Systems

GAO has done a lot of work looking at the DAS

Congress directed GAO to initiate a body of work looking at the funding and requirements processes and how they could support better program outcomes
Portfolio Management: A Successful Commercial Model

- Each investment must be viewed from an enterprise level as contributing to the collective whole, rather than independent and unrelated
 - Identify and Prioritize Market Opportunities to Lay the Foundation for Achieving the Right Mix of Products
 - Use a Disciplined Process to Identify New Products and Achieve a Balanced Portfolio
 - Ensure strong governance, committed leadership, empowered decision makers, and effective accountability
The Portfolio Management Funnel

Source: GAO analysis and presentation of commercial best practices.
DOD’s Decision Making Processes are Service-centric and Fragmented

- Services identify needs and budget for solutions
 - FCBs don’t have the resources to effectively evaluate the service assessments within the context of the broader portfolio
 - FCBs don’t have the authority to allocate resources

- Service funding appears to be allocated according to historical percentages
 - 40% AF, 20% Army, 30% Navy, and 10% DOD Wide

- JCIDS, PPBE, and DAS led by different organizations
 - Joint Staff, USD(AT&L), OSD (PA&E and Comptroller)
Fragmented Processes With Adverse Incentives

Requirements Process

Budgeting Process

Acquisition Process

Source: GAO.
DOD Commits to Solutions Early and With Limited Knowledge

- Review points prior to milestone B are “optional” and typically by-passed

- Key processes are not integrated early to provide insight into cost and feasibility
 - ICDs don’t address cost or technical feasibility
 - AOAs often make the case for a specific solution vs. identifying the preferred solution

- Programs don’t have sound business cases
 - Undefined requirements
 - Immature technology
 - Optimistic cost and schedule estimates
DOD’s Funding Process Contributes to Poor Acquisition Outcomes

- Assessed cost and funding data for 20 major acquisition programs, and conducted detailed analysis of five of those programs:
 - Global Hawk
 - Joint Strike Fighter (JSF)
 - Future Combat Systems (FCS)
 - Warfighter Information Network – Tactical (WIN-T)
 - Multi-mission Maritime Aircraft (MMA)

- Leveraged work GAO has been doing in cost estimating and earned value best practices (GAO Cost Assessment Guidebook)

- Leveraged prior best practices work and obtained additional input from several of the companies that contributed to our prior work
Accurate Cost Estimates Are Needed Before Adequate Funding Can Be Allocated

• Without accurate estimates it is not realistic to assume that funding will be adequate

• Cost estimating best practice is to assess risk and uncertainty and present estimate as range of potential costs
 • Conduct sensitivity analysis and identify the range of likely costs
 • Ranges will be “broader” as knowledge is limited but as knowledge is gained (before development begins) the range should “narrow” until
 • Ranges allow decision makers to make more informed decisions—they can test the estimate’s reasonableness and decide on what level of funding risk they want to take)
The Cone of Uncertainty

Range of cost estimating uncertainty

Margin for overestimating

Margin for underestimating

Concept refinement phase
Concept definition phase
Product development phase

Source: GAO.
Built-in Funding Instability

- DOD programs often initiate development with funding that does not reflect true costs
 - 75% of the programs we reviewed were under-funded in the FYDP when they began development
 - The FYDP doesn’t cover the entire development program

- DOD makes unplanned and inefficient adjustments to compensate for poor planning / projections
 - Creates / perpetuates instability
 - Pushes costs into the future
 - “Rob Peter to pay Paul”
 - Reduces procurement quantities
Unrealistic Cost Estimates Hinder Accurate Funding Commitments

- Estimates are often based on limited knowledge about requirements and technologies and optimistic assumptions—lack of systems engineering analysis up front

- Our analysis of 20 programs found that both CAIG and Service estimates tended to be too low

- Estimates are presented as point estimates representing “most likely cost” and do not depict risk and uncertainty

- Program cycle times are longer than the FYDP timeframe
DOD’s Failure to Balance Needs with Resources Promotes Unhealthy Competition

• Relying on unrealistically low estimates, DOD has committed to more programs than its resources can support

• In a zero-sum game, increases in one program will impact other programs

• Pressure to make a program stand out from others

• Pressure to appear affordable (fit within the FYDP)

• When “reality” hits and things don’t go as planned, instability is the inevitable result
Recommended Steps to Improve Program Funding

• Balance the current portfolio (to reduce the pressures of unhealthy competition)

• Require programs to have short, manageable development cycles (5 to 6 years long)

• Require cost estimates to be presented as a range of likely costs (wider at a milestone A point and more narrow at milestone B)
DOD’s Requirements Process (JCIDS) Has Not Been Effective in Prioritizing Joint Capabilities

- JCIDS is not meeting its objective to prioritize joint warfighting needs
 - Military services, not the joint warfighting community continue to sponsor most JCIDS proposals
 - Almost 70% of initial capability proposals submitted to JCIDS since 2003 were sponsored by a military service
 - Virtually all capability proposals that go through the JCIDS process are validated—or approved
 - Of 140 capability proposals since 2003 that completed the process, only 6 were not validated
 - Process is also lengthy and cumbersome, making it difficult to respond to near-term needs

- DOD is losing opportunities to strengthen joint warfighting capabilities and constrain its portfolio of weapon system programs to match available resources
DOD Lacks An Approach and Alignment of Resources to Prioritize and Balance Capability Needs

- JCIDS largely responds to capability proposals that are submitted by sponsors on a case-by-case basis.

- Lacking a more proactive and analytic approach, JCIDS has been ineffective at integrating and balancing needs.

- The military services continue to drive the determination of capability needs, in part because they retain most of DOD’s analytic capacity and resources.

- Without an approach and entity in charge to determine what capabilities are needed, all proposals tend to be treated as priorities within the JCIDS process.
Recommended Steps To Improve JCIDS

• Develop an analytic approach within JCIDS to better prioritize and balance capability needs department-wide, and

• Determine and allocate appropriate resources for conducting joint capabilities development planning
Related GAO Products

- **Defense Acquisitions: Assessments of Selected Weapon Programs.** GAO-08-467SP. March 31, 2008.

Standardized Documentation for Verification, Validation, and Accreditation - An Update to the Systems Engineering Community

Mission II
M&S Session 3A5
Wednesday, October 22, 2008
8:00 am - 9:45 am

Presented by
DoD M&S Project
Project Management Team
Outline

• Why VV&A Background
• DoD M&S Project Overview
• Policy, Guidance & Standards
• Discoverable Metadata
• DoD VV&A Documentation Tool (DVDT)
• Data Discovery Mechanisms
• Summary
VV&A - where it all started …
"Those who cannot remember the past are condemned to repeat it."

1980

1987

Military Operational Research Society (MORS) Simulation Validation Mini-Symposiums and Workshops (http://www.mors.org/reports.htm)

1993

DoDD 5000.59 *DoD M&S Management*, January 4, 1994

1994

DoDI 5000.61 *DoD M&S VV&A*, April 29, 1996

1996
Everything Is Simulation Except Combat*

• Modeling and Simulation (M&S) is a key enabler for systems engineers in the acquisition process.

• Using M&S that provide credible results is crucial to fielding defense weapon systems to the warfighter.

• Credibility and confidence in the use of M&S results are achieved through implementation of Verification, Validation, and Accreditation (VV&A) processes.

• VV&A is critical for ensuring M&S is correct, is used correctly, and can produce results a systems engineer can trust.

Naval Undersea Warfare Center Newport
Synthetic Environment Tactical Integration
Virtual Torpedo Project
HLA federation linking live submarines to high-fidelity torpedo hardware-in-the-loop facility

*Defense Science Board, January 1993
Three Methods of Simulation
*Defense Science Board, January 1993

*Findings - Continued
DoD investment required in VV&A: “Techniques routinely used for VV&A of single models or simulations face new challenges in a multi-source, highly interactive, internettet M&S environment where complex software modules are required to interoperate. New techniques of VV&A are likely required.”

“The important task of verifying, validating, and accrediting battlefield behavior, modeled in some form, should receive greater attention in all DoD M&S programs.”

LIVE
Real people operating real systems in real environments in the air and space, on the ground, on and below the sea

VIRTUAL
Real people operating simulated systems in simulated environments included are wargames, models and analytic tools

CONSTRUCTIVE
Simulated people operating simulated systems in simulated environments
DoD M&S Project

- Project title: Standardized Documentation for VV&A

- Sponsor: Department of Defense (DoD) M&S Steering Committee (M&S SC)

- Oversight: Acquisition Community Lead
Project Organization

M&S Steering Committee (M&S SC)
M&S Integrated Process Team (M&S IPT)

DoD Acquisition Community Lead

Team Manager

Acquisition M&S Working Group

M&S Coordination Office (M&S CO)
Acquisition Community Coordinator

M&S CO VV&A

Project Management Team
Policy, Guidance & Standards Team
Taxonomy & Metadata Team
Architecture & Software Development Team
Project Scope

• Three major tasks and associated deliverables:
 – recommend updates to associated policy, guidance, and standards documents
 – design, describe, and register VV&A XML schemas
 – design, develop, test, and deploy the DVDT
Plan of Action and Milestones
Concept of Operations

DoD VV&A Documentation Tool

Producer

DoD VV&A Documentation Tool

M&S Reuse

Consumer

Search for VV&A Documents

Policy, Guidance & Standards

M&S Acquisition Data

XML Schemas

Acc Plan

V&V Plan

V&V Rpt

Acc Rpt

Searchable Data

Discovery Metadata Specification
VV&A information is important not only for the decision at hand, but for future decisions to reuse M&S.

Level 1
- M&S: DoDI 5000.59
- Acquisition: DoDI 5000.2
- Data: DoD Discovery Metadata Specification (DDMS)

Level 2
- MIL-STD-3022
 - DoDI 5000.61
 - DoD VV&A Recommended Practices Guide
- Defense Acquisition Guidebook
 - Sec 4.5.7 M&S
 - Sec 9.6.2 & 9.10 TEMP
- M&S Community of Interest Discovery Metadata Specification (MSC DMS)
- DAU Continuous Learning Modules
 - CLE011 M&S in Sys Eng
 - CLE 023 M&S for T&E
MIL-STD-3022

28 January 2008

- **2008:** Approved as a DoD Standard Practice with four associated Data Item Descriptions (DIDs)
 - DI-MSSM-81750 DoD M&S Accreditation Plan
 - DI-MSSM-81751 DoD M&S V&V Plan
 - DI-MSSM-81752 DoD M&S V&V Report
 - DI-MSSM-81753 DoD M&S Accreditation Report
- MIL-STD-3022 may be cited as a solicitation requirement and DIDs included on Contract Data Requirements List
- Available at Acquisition Streamlining and Standardization Information System (ASSIST) - http://assist.daps.dla.mil/

DVDT automates standard templates enabling sharing of VV&A information across Global Information Grid (GIG) enterprise
M&S SC directed a 5-year review in 2008

Working Group kickoff meeting (21 Feb 2008)
 - Drafting Group formed

M&S IPT informal review of draft revision (25 Jul-8 Aug 2008)

Comment Resolution Panel (CRP) (Aug-Sep 2008)

USD(AT&L) Review Process
 - Not begun

DoD Directives Program Coordination Process (SD-106)
 - Signature authorities for DoD issuances include Presidentially Appointed, Senate-confirmed (PAS) officials
 - Processing might wait for new administration
Discovery Metadata

DoD Discovery Metadata Specification (DDMS) describes DoD resources - is very broad

M&S Community of Interest Discovery Metadata Specification (MSC DMS) provides more detail to describe resources in the M&S domain - is more precise

VV&A metadata describes VV&A resources – is most precise
The DoD Metadata Registry and metadata registration process together collect, store, and disseminate structural metadata information resources, e.g.:

- schemas
- data elements
- attributes
- document type definitions
- style-sheets
- data structures

The project’s XML products will be registered and available for use by industry and government.

http://metadata.dod.mil
DVDT

• Automates production of VV&A documentation in compliance with MIL-STD-3022
• Enables search and discovery of VV&A document information via the GIG enterprise
• Produces documents that enable DoD data sharing in compliance with:
 – DoD Directive 8320.02, Data Sharing in a Net-Centric DoD
 – DoD Discovery Metadata Specification
 – M&S Community of Interest Discovery Metadata Specification
• Helps organizations
 – produce documents more efficiently and consistently
 – organize information
 – output documents in a common format
 – share discovery metadata about VV&A documents across GIG enterprise
Architecture Focus

• In January 2008 focus turned
 – to an architecture that would allow offline document production and storage
 – from one that would provide an online capability to produce documents

• Offline production and storage capability assists producer in managing information common to all four documents identified in MIL-STD-3022

• DVDT populates the four documents with the common information when documents are stored together

• Coordination on production of each individual document by disparate organizations will occur through means used by those organizations
 – e.g., integrated digital environment, engineering environment, knowledge sharing environment, or sharing files through email

• Decisions where to retain the documents under control left to producers
DVDT Architecture

Producer

register

produce

Acc Plan
V&V Plan
V&V Report
Acc Report

update

Acc Plan XML Schema
V&V Plan XML Schema
V&V Report XML Schema
Acc Report XML Schema

Minimal Set Searchable Data

M&S Catalog
DVDT Screenshots

{Placeholder for tool demonstration or screenshots}
My Projects

After submitting VV&A project information a list of projects with versioning information is provided.
Project Information

Project information provides configuration management as well as discoverable Metadata.
Download Offline Tool and/or Templates

Download Project Templates

If you have misplaced the project templates for "MODSIM", you can download them again. Each of these document templates will only be populated with data you provided during your registration for this specific project.

![Download Project Templates Only](image)

Download VV&A Documentation Tool

If you need to reinstall the VV&A Documentation Tool, you can do so by downloading the tool below and following the instructions provided.

STEP 1: Download VV&A Documentation Tool

If you need to reinstall the VV&A Documentation Tool, you can do so by downloading the tool below and following the instructions provided.

![Download VV&A Documentation Tool and Project Templates](image)

STEP 2: INSTALL VV&A DOCUMENTATION TOOL

After downloading, unzip/extract 'wadoctool.zip' to a folder on your computer. Locate SETUP.EXE within the folder you extracted to and double-click it to run the program.

Upon install a word template file (`.dot`) from the VV&A Documentation Tool will be copied to your computer and if not already installed, Visual Studio Tools for Office (VSTO) will be added. The VSTO simply supports the customized task pane used among all the documents.

STEP 3: START USING THE PROJECT TEMPLATES

After installation, locate the folder DODMS-VVA-2008-3 within the area you extracted the wadoctool.zip to and move it to an area on your computer that you will work on the VV&A project at (such as My Documents).
XML via MS Word Interface
Standardized Outputs

Standards driven user interface

Produces MS Word documents
(view in print-preview)

And discoverable metadata
Consumer Side - M&S Catalog

VV&A Project information is discoverable as MSC-DMS compliant XML. The VV&A XML schema is an extension of the DDMS.

Search result with Metadata from DVDT Alpha .01
Beta Testing

- Alpha testing (internal) conducted 29 Sep-3 Oct 2008
- Beta testing (external) scheduled to start 3-7 Nov 2008
Why is VV&A Information Important?

• VV&A information tells consumers about
 – M&S assumptions (simplifications and potential failure points)
 – M&S capabilities (what the M&S can be used to do)
 – M&S limitations (what it should not be used to do)

• Consistently documenting VV&A information across DoD yields many returns
 – Discoverable VV&A information saves time and money finding an M&S to satisfy a need
 – VV&A documents provide evidence to determine credibility of M&S results to support an intended use
 – Credible M&S results can be defended and used with confidence
Discoverable VV&A Document Metadata

Producer
- produces VV&A documents
- shares VV&A document information

Consumer
- discovers VV&A document information

GIG Enterprise
- DoD Discovery Catalogs
- DoD Service Registry
- DoD Metadata Registry
- DoD Community Content

DVDT
- M&S resources in the GIG Enterprise
 - M&S Resources described by metadata

Pull data
- Pull structural & semantic metadata
- Query catalog & registry
- Publish data

Producer and **Consumer** interactions are indicated by arrows.

28
M&S Search Tool

Need VV&A information?

Using the power of search and discovery capability to conduct focused federated searches for information about VV&A documents
Summary

• Updated the Systems Engineering Community on the DoD M&S Project, *Standardized Documentation for VV&A*

• Provided information about related policy, guidance, and standards

• Discussed Discovery Metadata and discovery mechanisms

• Described and demonstrated DVDT

Using the DVDT to document implementation of VV&A processes enables systems engineers to use M&S results with confidence
Point of Contact

Kevin Charlow
Space and Naval Warfare Systems Center Atlantic
P.O. Box 190022
North Charleston, SC 29419
843-218-5372
kevin.charlow@navy.mil
Published Papers

Acronyms

CRP Comment Resolution Panel
DDMS DoD Discovery Metadata Specification
DG Drafting Group
DID Date Item Description
DMSP DoD M&S Project
DoD Department of Defense
DVDT DoD VV&A Documentation Tool
GIG Global Information Grid
M&S Modeling and Simulation, model(s) and simulation(s)
M&S CO M&S Coordination Office
M&S IPT M&S Integrated Product Team
M&S SC M&S Steering Committee
MIL-STD Military Standard
MORS Military Operational Research Society
MSC DMS M&S Community of Interest Discovery Metadata Specification
USD(AT&L) Under Secretary of Defense for Acquisition, Technology and Logistics
VV&A Verification, Validation, and Accreditation
WG Working Group
XML Extensible Markup Language

For: NDIA Systems Engineering Conference
Date: 23 October 2008
Presented By: Teresa Doran
Overview

- Purpose
- TECHSOFT
- Standards-based Process Improvement Success
- Why Harmonize?
 - Issues
 - Impacts to you
- SE/SW LCP Alignment and Integration
 - Path
 - Concepts
 - Where we are today
 - How we got here – Key changes in 15288 & 12207
- Large Scale Harmonization
- Benefits Summary
Purpose

Show how the key changes in the alignment of a foundational systems/software standards set (ISO/IEC/IEEE 15288 and ISO/IEC/IEEE 12207) facilitates integrated systems and software engineering, project management, and acquisition
Who We Are

- Founded in 1990
- Based in Pensacola, Florida
 - Presence in Charleston, SC
- Primarily, a DoD Contractor
- Experienced Staff
 - High % Masters level personnel
 - Majority with Security Clearances
 - SEI-Authorized CMMI® Lead Appraisers
 - SEI-Authorized CMMI® Instructors
 - International SE/SW Standards Expertise

What We Do

- Systems & Software Development
- Database Applications
- Security / IA
- Web Development
- Network Engineering/Hosting
- Training
- Process Engineering/Process Improvement
 - CMMI®
 - SEI Partner
Standards-based Process Improvement

Example of a Successful Approach

Process Improvement and Systems Engineering Strategy - 2003

• Vision
 – Develop and maintain a World Class Systems Engineering Organization

• Approach
 – Achieve Command-wide operational consistency
 – Based on ISO 15288 – systems engineering
 – Based on ISO 12207 – software engineering
 – Measure using best practices of CMMI®

• Goals
 – CMMI® Maturity Level 2 by April, 2005
 – CMMI® Maturity Level 3 by April, 2007

Both Goals attained on schedule
1st SPAWAR Systems Center to Achieve ML2 and ML3

New Goal: Maturity Level 4 & 5

Source: N65236-ENGOPS-BRIEF-0068-1.1, Standardization of Systems Engineering & Project Management Using CMMI, M.T. Kutch, Jr., 17JUL08

Approved for public release; distribution is unlimited (15 JUL 2008)
This SSC has 15288 and 12207-based SE/SWE Technical Processes

SSC-C SE Revitalization Plan
Aligned with DoD SE Revitalization

Elements of SSC-C SE Revitalization

Policy / Guidance
- SSC-C SE Instruction
- SSC-C SE Process Manual
- SSC-C SW-Dev Process Manual
- SSC-C SW-Maint Process Manual
- EPO Website
- ePlan Builder

Training / Education
- Intro to PI WBT
- SE 101 WBT
- SE Fundamentals
- SE for Managers
- Project & Process Workshop
- Intro to Software Engr.
- Architecture Dev. WBT
- Certification/Degrees

Assessment & Support
- CMM® Level 2
- CMM® Level 3
- CMM® Level 4/5
- Project Reviews
- Balanced Scorecard
- Lean Six Sigma
- Integrated Product Teams
- IT Tools

With Extensive OPA Support

Source: N65236-ENGOPS-BRIEF-0048-1.2, Tools and Resources to Enable Systems Engineering Improvement, M.T. Kutch, Jr. & M. Knox, NOV07
So what’s the problem with 15288 and 12207

ISO/IEC 15288:2002

Enterprise Processes
- Enterprise Environment Management Process
- Investment Management Process
- System Life Cycle Processes Management Process
- Resource Management Process
- Quality Management Process

Agreement Processes
- Acquisition Process
- Supply Process

Project Processes
- Project Planning Process
- Project Assessment Process
- Project Control Process
- Decision-making Process
- Risk Management Process
- Configuration Management Process
- Information Management Process

Technical Processes
- Stakeholder Requirements Definition Process
- Requirements Analysis Process
- Architectural Design Process
- Implementation Process
- Integration Process
- Verification Process
- Transition Process
- Validation Process
- Operation Process
- Maintenance Process
- Disposal Process

ISO/IEC 12207:1995

5. PRIMARY LIFE CYCLE PROCESSES
- 5.1 Acquisition
- 5.2 Supply
- 5.3 Development
- 5.4 Operation
- 5.5 Maintenance

6. SUPPORTING LIFE CYCLE PROCESSES
- 6.1 Documentation
- 6.2 Configuration Management
- 6.3 Quality Assurance
- 6.4 Verification
- 6.5 Validation
- 6.6 Joint Review
- 6.7 Audit
- 6.8 Problem Resolution

7. ORGANIZATIONAL LIFE CYCLE PROCESSES
- 7.1 Management
- 7.2 Infrastructure
- 7.3 Improvement
- 7.4 Training

Using Them Together!
- Conflicting terms and definitions
- Overlapping, yet distinct processes
- Different process architectures
- Different levels of prescription

Unintegrated 12207 amendments from 2002 and 2004 are difficult to use and also not adopted by IEEE.
Why You Should Care

- Leverage the Commonalities
 - Identify and explain the differences
 - Use the interfaces
- Promote Communication and Team Integration
 - Identify strengths, views, and appropriate focused implementations
 - Reduce us/them, finger-pointing, stove-piping
- Improve Resource Performance
 - Personnel, Processes, Tools, Services
- Lower Costs
 - Reduce redundancy and inefficiency

Benefits of Standards Harmonization
Supports Integration, Facilitates Management, Simplifies Acquisition
15288-12207 Harmonization Path

Studies

Implementation hits a snag

Harmonization revised concept

Eat that elephant one bite at a time!

Align – Publicize - Integrate
Concept for the Harmonized Set

Source: ISO/IEC JTC1/SC7 WG7 N01025 Briefing Material, 24MAY07
Where We Are Today

Nearly identical process models

System Level Processes

Life Cycle Concepts
Process Concepts
LC Models, Stages

ISO/IEC 15288
IEEE
Std 15288-2008
Second edition
2008-02-01

ISO/IEC 12207
IEEE
Std 12207-2008
Second edition
2008-02-01

LC Adaptation
Domains, Disciplines, & Specialties
Prior Version Transition

ISO/IEC JTC 1/SC 7
Date: 2008-08-11
ISO/IEC DTR 24748-1
ISO/IEC JTC 1/SC 7/NG 7 N1140
Secretariat: SCC

DRAFT

It is the intention of this project to create a Technical Report of Type 3 that may be made freely available in accordance with the provisions of JTC 1 N 7209 and Sendto Resolution 13. In particular, the document has the following...

12207:Amends = 12207:1995

Processes = Processes

Sub-Processes = Activities

P + O

12207:2008

Processes

Lower-level Processes

Activities

Tasks

Lists

Notes

PRM Annex

P + O

15288:2008

Processes

Activities

Tasks

Notes

PRM Annex

P + O

15288:2002

Processes

Activities

Tasks

Notes

PRM Annex

P + O

New “groupings”

Adapted from ISO/IEC JTC1/SC7 WG7 N1111 briefing material
Source: Anatol Kark, National Research Council, Canada

= means equals to
P+O means Process + Outcomes
Processes require a purpose and outcome. All processes have at least one activity. The processes, with their statements of purpose and outcomes, constitute a Process Reference Model (PRM).

Activities are constructs for grouping together related tasks. The activities provide a means to look at related tasks within the process to improve understanding and communication of the process. If an activity is cohesive enough, it can be converted to a (lower level) process by defining a purpose and a set of outcomes.

A task is a detailed provision for implementation of a process. It may be a requirement (“shall”), a recommendation (“should”), or a permission (“may”).

Notes are used when there is a need for explanatory information to better describe the intent or mechanics of a process. Notes provide insight regarding potential implementation or areas of applicability such as lists, examples and other considerations.

Adapted from ISO/IEC JTC1/SC7 WG7 N1025 briefing material
The Life Cycle Processes of 15288:2002

Source: WG7 N1111; Adapted by Jim Moore, MITRE Corporation from chart by Anatol Kark, National Research Council, Canada
Building 15288:2008 – Activities and Tasks

Activity-Task allocation is new to 15288:2008
Provides structural alignment with 12207

Adapted from WG7 N1111; Source: Jim Moore, MITRE Corporation and Anatol Kark, National Research Council, Canada
15288:2008 has the same set of technical processes as 15288:2002

<table>
<thead>
<tr>
<th>Agreement</th>
<th>Project</th>
<th>Technical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition Process</td>
<td>Project Planning Process</td>
<td>Stakeholder Reqmts Definition Process</td>
</tr>
<tr>
<td>Supply Process</td>
<td>Project Assessment Process</td>
<td>Requirements Analysis Process</td>
</tr>
<tr>
<td>Enterprise</td>
<td>Project Control Process</td>
<td>Architectural Design Process</td>
</tr>
<tr>
<td>Investment Management Process</td>
<td>Risk Management Process</td>
<td>Integration Process</td>
</tr>
<tr>
<td>Quality Management Process</td>
<td></td>
<td>Validation Process</td>
</tr>
</tbody>
</table>

Source: WG7 N1111; Adapted by Jim Moore, MITRE Corporation from chart by Anatol Kark, National Research Council, Canada
Building 15288:2008 – Project Processes

15288:2008 has a similar set of project processes as 15288:2002

Source: WG7 N1111; Adapted by Jim Moore, MITRE Corporation from chart by Anatol Kark, National Research Council, Canada
15288:2008 has a similar set of project-enabling processes as 15288:2002

Source: WG7 N1111; Adapted by Jim Moore, MITRE Corporation from chart by Anatol Kark, National Research Council, Canada
Building 15288:2008 – Agreement Processes

15288:2008 has the same set of agreement processes as 15288:2002

<table>
<thead>
<tr>
<th>Agreement</th>
<th>Project</th>
<th>Technical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition Process</td>
<td>Project Planning Process</td>
<td>Stakeholder Reqmts Definition Process</td>
</tr>
<tr>
<td>Supply Process</td>
<td>Project Assessment and Control Process</td>
<td>Requirements Analysis Process</td>
</tr>
<tr>
<td></td>
<td>Decision Management Process</td>
<td>Architectural Design Process</td>
</tr>
<tr>
<td></td>
<td>Risk Management Process</td>
<td>Implementation Process</td>
</tr>
<tr>
<td></td>
<td>Configuration Management Process</td>
<td>Integration Process</td>
</tr>
<tr>
<td></td>
<td>Information Management Process</td>
<td>Verification Process</td>
</tr>
<tr>
<td></td>
<td>Measurement Process</td>
<td>Transition Process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Validation Process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operation Process</td>
</tr>
<tr>
<td>Organizational Project-Enabling</td>
<td></td>
<td>Maintenance Process</td>
</tr>
<tr>
<td>Life Cycle Model Management Process</td>
<td></td>
<td>Disposal Process</td>
</tr>
<tr>
<td>Infrastructure Management Process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Portfolio Management Process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Resource Management Process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality Management Process</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: WG7 N1111; Adapted by Jim Moore, MITRE Corporation from chart by Anatol Kark, National Research Council, Canada
The Life Cycle Processes of 15288:2008

Source: WG7 N1111; Adapted by Jim Moore, MITRE Corporation from chart by Anatol Kark, National Research Council, Canada
The Life Cycle Processes of 12207:1995

<table>
<thead>
<tr>
<th>5. PRIMARY LIFE CYCLE PROCESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Acquisition</td>
</tr>
<tr>
<td>5.2 Supply</td>
</tr>
<tr>
<td>5.3 Operation</td>
</tr>
<tr>
<td>5.4 Maintenance</td>
</tr>
<tr>
<td>5.5 Maintenance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. SUPPORTING LIFE CYCLE PROCESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Documentation</td>
</tr>
<tr>
<td>6.2 Configuration Management</td>
</tr>
<tr>
<td>6.3 Quality Assurance</td>
</tr>
<tr>
<td>6.4 Verification</td>
</tr>
<tr>
<td>6.5 Validation</td>
</tr>
<tr>
<td>6.6 Joint Review</td>
</tr>
<tr>
<td>6.7 Audit</td>
</tr>
<tr>
<td>6.8 Problem Resolution</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. ORGANIZATIONAL LIFE CYCLE PROCESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Management</td>
</tr>
<tr>
<td>7.2 Infrastructure</td>
</tr>
<tr>
<td>7.3 Improvement</td>
</tr>
<tr>
<td>7.4 Training</td>
</tr>
</tbody>
</table>

Adapted from WG7 N1111 briefing material
The Life Cycle Processes of 12207:1995

<table>
<thead>
<tr>
<th>Primary</th>
<th>Development Process</th>
<th>Process Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>System Requirements Analysis</td>
<td>Software Requirements Analysis</td>
</tr>
<tr>
<td></td>
<td>System Architectural Design</td>
<td>Software Architectural Design</td>
</tr>
<tr>
<td></td>
<td>Software Detailed Design</td>
<td>Software Detailed Design</td>
</tr>
<tr>
<td></td>
<td>Software Coding & Testing</td>
<td>Software Coding & Testing</td>
</tr>
<tr>
<td></td>
<td>Software Integration</td>
<td>Software Integration</td>
</tr>
<tr>
<td></td>
<td>Software Qualification Testing</td>
<td>Software Qualification Testing</td>
</tr>
<tr>
<td></td>
<td>Software Detailed Design</td>
<td>Software Detailed Design</td>
</tr>
<tr>
<td></td>
<td>Software Coding & Testing</td>
<td>Software Coding & Testing</td>
</tr>
<tr>
<td></td>
<td>Software Integration</td>
<td>Software Integration</td>
</tr>
<tr>
<td></td>
<td>Software Qualification Testing</td>
<td>Software Qualification Testing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supporting</th>
<th>Documentation Management Process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configuration Management Process</td>
</tr>
<tr>
<td></td>
<td>Quality Assurance Process</td>
</tr>
<tr>
<td></td>
<td>Verification Process</td>
</tr>
<tr>
<td></td>
<td>Validation Process</td>
</tr>
<tr>
<td></td>
<td>Joint Review Process</td>
</tr>
<tr>
<td></td>
<td>Audit Process</td>
</tr>
<tr>
<td></td>
<td>Problem Resolution Process</td>
</tr>
</tbody>
</table>

Adapted from WG7 N1111; Source: Jim Moore, MITRE Corporation

Box with dashed border was an Activity in 1995
Defined a Process Reference Model (PRM) for 12207
 - Process Name, Purpose, and Outcomes

Restructured processes to provide higher granularity
 - Introduced sub-processes (e.g. based on Development activities)
 - Improvement, Human Resource, Acquisition, Supply, Development, Operation, Management

Introduced extensions, elaborations and new processes
 - e.g. to better support process assessment (15504-2), usability (13407), measurement (15939), product evaluation (14598), and reuse/asset management (IEEE 1517)

Added activities and tasks for 8 new processes

Made some corrections

Generally aligned and incorporated in body of revised 12207
Several sub-processes allocated as lower-level PRM only processes
The Life Cycle Processes of 12207:2008

Adapted from WG7 N1111; Source: Jim Moore, MITRE Corporation

TSDoran-NDIA-SE_23OCT08_v1.0
Building 12207:2008 – System Context

Structural alignment with 15288 system level categories

<table>
<thead>
<tr>
<th>Agreement</th>
<th>Technical</th>
<th>SW Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition Process</td>
<td>Stakeholder Reqsmts Definition Process</td>
<td>Software Implementation Process</td>
</tr>
<tr>
<td>Supply Process</td>
<td>System Requirements Analysis Process</td>
<td>Software Requirements Analysis Process</td>
</tr>
<tr>
<td></td>
<td>System Architectural Design Process</td>
<td>Software Architectural Design Process</td>
</tr>
<tr>
<td></td>
<td>Implementation Process</td>
<td>Software Construction Process</td>
</tr>
<tr>
<td></td>
<td>System Integration Process</td>
<td>Software Detailed Design Process</td>
</tr>
<tr>
<td></td>
<td>System Qualification Testing Process</td>
<td>Software Integration Process</td>
</tr>
<tr>
<td></td>
<td>Implementation Process</td>
<td>Software Validation Process</td>
</tr>
<tr>
<td></td>
<td>System Qualification Testing Process</td>
<td>Software Review Process</td>
</tr>
<tr>
<td></td>
<td>Software Installation Process</td>
<td>Software Audit Process</td>
</tr>
<tr>
<td></td>
<td>Software Acceptance Support Process</td>
<td>Software Problem Resolution Process</td>
</tr>
<tr>
<td></td>
<td>Software Operation Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software Maintenance Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software Configuration Management Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software Disposal Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software Documentation Management Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software Support Management Process</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from WG7 N1111; TSDoran-NDIA-SE_23OCT08_v1.0
Building 12207:2008 – System Context

System Context Processes based on 15288 Processes

Agreement
- Acquisition Process
- Supply Process

Organizational Project-Enabling
- Life Cycle Model Management Process
- Infrastructure Management Process
- Project Portfolio Management Process
- Human Resource Management Process
- Quality Management Process

Project
- Project Planning Process
- Project Assessment and Control Process
- Decision Management Process
- Risk Management Process
- Configuration Management Process
- Information Management Process
- Measurement Process

Technical
- Stakeholder Reqmts Definition Process
- System Requirements Analysis Process
- System Architectural Design Process
- Implementation Process
- System Integration Process
- System Qualification Testing Process
- Software Installation Process
- Software Acceptance Support Process
- Software Operation Process
- Software Maintenance Process
- Software Disposal Process

SW Implementation
- Software Implementation Process
- Software Requirements Analysis Process
- Software Architectural Design Process
- Software Detailed Design Process
- Software Construction Process
- Software Integration Process
- Software Qualification Testing Process
- Software Validation Process
- Software Verification Process
- Software Review Process

SW Support
- Software Documentation Management Process
- Software Configuration Management Process
- Software Quality Assurance Process
- Software Validation Process
- Software Review Process
- Software Audit Process
- Software Problem Resolution Process

SW Reuse
- Domain Engineering Process
- Reuse Asset Management Process
- Reuse Program Management Process

Adapted from WG7 N1111; TSDoran-NDIA-SE_23OCT08_v1.0
Building 12207:2008 – System Context

Include 12207 Organizational Processes: Improvement, Infrastructure, Human Resource/Training, Management

Adapted from WG7 N1111; TSDoran-NDIA-SE_23OCT08_v1.0

Adapted 15288 Outcome/s Activities, Tasks

One or more 12207 Outcomes

Blended 12207 & 15288 Activities and Tasks

One or more 15288 Outcomes

12207-based Outcome/s Activities, Tasks
Building 12207:2008 – System Context

Risk Management from 16085 and Measurement from 15939 are added

Adapted from WG7 N1111;
TSDoran-NDIA-SE_23OCT08_v1.0
Building 12207:2008 – System Context

Risk Management and Measurement are now almost identical to 15288

12207 Acquisition and Supply are blended with 15288 Agreement Processes

Adapted from WG7 N1111; TSDoran-NDIA-SE_23OCT08_v1.0
Building 12207:2008 – System and Software

Development Activities form System Context and Software Specific Processes

<table>
<thead>
<tr>
<th>Agreement</th>
<th>Project</th>
<th>Technical</th>
<th>SW Implementation</th>
<th>SW Support</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configuration Management Process</td>
<td>System Integration Process</td>
<td>Software Construction Process</td>
<td>Software Validation Process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Acceptance Support Process</td>
<td></td>
<td>Software Problem Resolution Process</td>
</tr>
<tr>
<td>Organizational Project-Enabling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life Cycle Model Management Process</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrastructure Management Process</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Portfolio Management Process</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Resource Management Process</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality Management Process</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from WG7 N1111; TSDoran-NDIA-SE_23OCT08_v1.0

<table>
<thead>
<tr>
<th>Adapated 15288 Outcome/s Activities, Tasks</th>
<th>One or more 12207 Outcomes</th>
<th>Blended 12207 & 15288 Activities and Tasks</th>
<th>One or more 15288 Outcomes</th>
<th>12207-based Outcome/s Activities, Tasks</th>
</tr>
</thead>
</table>
Building 12207:2008 – System Context

12207 Operation and Maintenance Processes complete the System Context

Agreement
- Acquisition Process
- Supply Process

Organizational Project-Enabling
- Life Cycle Model Management Process
- Infrastructure Management Process
- Project Portfolio Management Process
- Human Resource Management Process
- Quality Management Process

Project
- Project Planning Process
- Project Assessment and Control Process
- Decision Management Process
- Risk Management Process
- Configuration Management Process
- Information Management Process
- Measurement Process

Technical
- Stakeholder Reqmts Definition Process
- System Requirements Analysis Process
- System Architectural Design Process
- Implementation Process
- System Integration Process
- System Qualification Testing Process
- Software Installation Process
- Software Acceptance Support Process
- Software Operation Process
- Software Maintenance Process
- Software Disposal Process

SW Implementation
- Software Implementation Process
- Software Requirements Analysis Process
- Software Architectural Design Process
- Software Detailed Design Process
- Software Construction Process
- Software Integration Process
- Software Qualification Testing Process
- Software Operation Process
- Reuse Asset Management Process
- Reuse Program Management Process

SW Support
- Software Documentation Management Process
- Software Configuration Management Process
- Software Quality Assurance Process
- Software Verification Process
- Software Validation Process
- Software Review Process
- Software Audit Process
- Software Problem Resolution Process

Adapted from WG7 N1111;
TSDoran-NDIA-SE_23OCT08_v1.0

Adapted 15288 Outcome/s Activities, Tasks
One or more 12207 Outcomes
Blended 12207 & 15288 Activities and Tasks
One or more 15288 Outcomes
12207-based Outcome/s Activities, Tasks
Building 12207:2008 – Software Specific

Software Specific Support almost the same as 12207 Supporting Processes

Adapted from WG7 N1111;
TSDoran-NDIA-SE_23OCT08_v1.0

Adapted 15288 Outcome/s Activities, Tasks
One or more 12207 Outcomes
Blended 12207 & 15288 Activities and Tasks
One or more 15288 Outcomes
12207-based Outcome/s Activities, Tasks
Building 12207:2008 – Software Specific

12207 Organizational Processes for Reuse conclude the Software Specific set

<table>
<thead>
<tr>
<th>Agreement</th>
<th>Project Planning Process</th>
<th>Technical</th>
<th>SW Implementation</th>
<th>SW Support</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Information Management Process</td>
<td>System Integration Process</td>
<td>Software Construction Process</td>
<td>Software Validation Process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Installation Process</td>
<td>Software Qualification Testing Process</td>
<td>Software Audit Process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Acceptance Support Process</td>
<td>SW Reuse</td>
<td>Software Problem Resolution Process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Operation Process</td>
<td>Domain Engineering Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Maintenance Process</td>
<td>Reuse Asset Management Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Disposal Process</td>
<td>Reuse Program Management Process</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from WG7 N1111; TSDoran-NDIA-SE_23OCT08_v1.0

| Adapted 15288 Outcome/s Activities, Tasks | One or more 12207 Outcomes | Blended 12207 & 15288 Activities and Tasks | One or more 15288 Outcomes | 12207-based Outcome/s Activities, Tasks |

Adapted 15288 Outcome/s Activities, Tasks One or more 12207 Outcomes Blended 12207 & 15288 Activities and Tasks One or more 15288 Outcomes 12207-based Outcome/s Activities, Tasks
Another Way of Looking at It

1. Processes common to both

2. Processes similar between the two

3. Processes unique to domain

Source: WG7 N1103 Strategy for Integration Study Group Final Report, 22APR08, slide by Richard Kitterman, Northrop Grumman
Revised Content (Viewed from 12207)

Revised Standards

- Front Matter
- Scope
- Conformance
- Normative References
- Terms and Definitions
- Application of this International Standard
- System Life Cycle Processes
- Software Life Cycle Processes \textit{(Italicized indicates 12207 Only)}

The 12207 Annexes (12207 and 15288 differ somewhat in format and content here)

A. Tailoring \textit{(Normative)}
B. Process Reference Model \textit{(Normative)}
C. History and Rationale \textit{(Informative)}
 - History, Process Integration/Constructs and Usage, Relationships, Process Definition Sources
D. Process Alignment of 12207-15288 \textit{(Clause 6)} \textit{(Informative)}
E. Process Views \textit{(Informative)}
 - Concepts, and Process View for Usability Example
F. Some Example Process Descriptions \textit{(Informative)}
G. Relationship to other IEEE standards \textit{(Informative)}
H. Bibliography \textit{(Informative)}
I. List of \{IEEE\} participants \textit{(Informative)}
Aligned 15288 and 12207 Set Provides

- Coordinated Terms and Definitions
- Integrated Process Structure
- Coordinated Process Sets
 - Backward compatible
 - Usable stand alone or jointly by systems and software teams
 - System Context processes are nearly identical or the 12207 processes provide software-appropriate specializations of, or contribute to the outcomes of, the corresponding 15288 processes
 - Especially on Agreement and Project Processes
- Common Conformance/Tailoring
- Common Life Cycle Model and Stage Concepts
- Free Guidance (Annexes and Plan for TR 24748-1)

Easier Joint Use – Improved Efficiency – Reduced Costs
Common Acquisition, Supply and Management Views
Towards Full LCP Integration

- WG7 Study Group on Harmonization Integration Strategy Report
 - SC7 Life Cycle Process Harmonization Advisory Group (LCPHAG)
 - Work with SWG5 across SC7 and externally for analyses and recommendations
 - Model SC7’s current LCPs and supporting standards
 - Study Process Repository and Electronic Publishing Concepts
 - Rigorous review of SC7 Vocabulary (WG22)
 - Start revision to 15289 (Documentation) to reflect aligned set.

- Some 15288-12207 Integration Considerations:
 - Common purpose and outcomes
 - Architecture of the standards
 - Level of prescription of activities and tasks
 - Life cycle treatments
 - Application to services and operations
 - Common verification and validation concepts
 - Common configuration management concepts
 - Alignment with other applicable standards
 - Rationalization of application guides

Source: WG 7 N1103 – Strategy for Integration Study Group Final Report, 22APR08
Harmonization Across Collections

The State of Harmonization … Today

<table>
<thead>
<tr>
<th>Topic</th>
<th>Status</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminology & Concepts</td>
<td>Yellow</td>
<td>Shared BCP, joint review project, potential certification framework</td>
</tr>
<tr>
<td>Quality management</td>
<td>Yellow</td>
<td>IEEE is adopting ISO/IEC 29500 approach</td>
</tr>
<tr>
<td>Testing</td>
<td>Orange</td>
<td>Both IEEE and SC7 fully harmonized with SC7 processes</td>
</tr>
<tr>
<td>Architecture description</td>
<td>Yellow</td>
<td>SC7 adopted IEEE standard and will harmonize with processes</td>
</tr>
<tr>
<td>Product quality</td>
<td>Yellow</td>
<td>ISO/IEC 12194 was revised on 2008, IEEE will withdraw its standard</td>
</tr>
<tr>
<td>Life cycle processes</td>
<td>Green</td>
<td></td>
</tr>
<tr>
<td>Systems engineering</td>
<td>Green</td>
<td>Shared SE process standard, harmonization with other LC progresses underway</td>
</tr>
<tr>
<td>SW maintenance</td>
<td>Yellow</td>
<td>Project for merging IEEE and ISO standards is completed</td>
</tr>
<tr>
<td>Measurements</td>
<td>Yellow</td>
<td>IEEE will adopt ISO/IEC 12194 after its current system, Some data to remain</td>
</tr>
<tr>
<td>Risk management</td>
<td>Yellow</td>
<td>SC7 adopted IEEE standard and is now extending it to the systems level</td>
</tr>
<tr>
<td>Project management</td>
<td>Yellow</td>
<td>Project is emerging the interoperable standards</td>
</tr>
<tr>
<td>Verification and validation</td>
<td>Red</td>
<td>Fundamentally different approaches, Good inventions, but no action yet</td>
</tr>
<tr>
<td>Configuration management</td>
<td>Yellow</td>
<td>SC7 with its standard, systemic issues remain, IEEE is about to resolve</td>
</tr>
<tr>
<td>Wiki process assessment</td>
<td>Yellow</td>
<td>Harmonization with LC process standards is underway</td>
</tr>
<tr>
<td>Requirements engineering</td>
<td>Orange</td>
<td>Joint project has been approved, roadmap of relevant standards is being prepared</td>
</tr>
<tr>
<td>SW life cycle data</td>
<td>Yellow</td>
<td>IEEE is adopting ISO/IEC 12194 to replace 12207-1</td>
</tr>
<tr>
<td>User documentation</td>
<td>Yellow</td>
<td>IEEE 1609 has been incorporated into 2005-14, IEEE will adopt it</td>
</tr>
<tr>
<td>CASE tools</td>
<td>Yellow</td>
<td>Minor incompatibilities</td>
</tr>
<tr>
<td>Notation</td>
<td>Green</td>
<td>Harmonized standards for distinct notations</td>
</tr>
<tr>
<td>IT Services, Management, Governance</td>
<td>Yellow</td>
<td>IEEE will adopt IT0203 standards</td>
</tr>
<tr>
<td>Specialty Engineering (Safety, Security)</td>
<td>Orange</td>
<td>Unrelated approaches will be addressed in part by coordination revision of IEEE 1609 standards</td>
</tr>
<tr>
<td>Others</td>
<td>Yellow</td>
<td>Many unrelated standards</td>
</tr>
</tbody>
</table>

The State of Harmonization in 1995

<table>
<thead>
<tr>
<th>Topic</th>
<th>Status</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminology & Concepts</td>
<td>Red</td>
<td>Different vocabulary standards</td>
</tr>
<tr>
<td>Quality management</td>
<td>Orange</td>
<td>ISO: Driven down from ISO 9001, IEEE: traditional CA approach</td>
</tr>
<tr>
<td>Testing</td>
<td>Orange</td>
<td>IEEE standards unrelated to SC7 processes</td>
</tr>
<tr>
<td>Architecture description</td>
<td>Orange</td>
<td>SC7 don’t have architecture standards</td>
</tr>
<tr>
<td>Product quality</td>
<td>Yellow</td>
<td>Unrelated standards</td>
</tr>
<tr>
<td>Life cycle processes</td>
<td>Yellow</td>
<td>Incompatible standards</td>
</tr>
<tr>
<td>Systems engineering process</td>
<td>Yellow</td>
<td>Unrelated standards</td>
</tr>
<tr>
<td>SW maintenance</td>
<td>Red</td>
<td>Incompatible standards</td>
</tr>
<tr>
<td>Measurement</td>
<td>Yellow</td>
<td>Unrelated standards</td>
</tr>
<tr>
<td>Risk management</td>
<td>Yellow</td>
<td>No standards at all</td>
</tr>
<tr>
<td>Project management</td>
<td>Red</td>
<td>Incompatible standards</td>
</tr>
<tr>
<td>Verification and validation</td>
<td>Red</td>
<td>Fundamentally different approaches, minor incompatibilities in details</td>
</tr>
<tr>
<td>Configuration management</td>
<td>Yellow</td>
<td>Incompatible standards</td>
</tr>
<tr>
<td>SW process assessment</td>
<td>Yellow</td>
<td>Nothing in IEEE/ISO process assessment incompatible with ISO/IEC 12194</td>
</tr>
<tr>
<td>Requirements engineering</td>
<td>Orange</td>
<td>IEEE standards unrelated to SC7 processes</td>
</tr>
<tr>
<td>SW life cycle data</td>
<td>Red</td>
<td>Incompatible standards</td>
</tr>
<tr>
<td>User documentation</td>
<td>Yellow</td>
<td>Incompatible standards</td>
</tr>
<tr>
<td>CASE tools</td>
<td>Yellow</td>
<td>Minor incompatibilities</td>
</tr>
<tr>
<td>Notation</td>
<td>Orange</td>
<td>Distinct standards for distinct notations</td>
</tr>
<tr>
<td>Internet</td>
<td>Orange</td>
<td>Distinct standards for distinct notations</td>
</tr>
<tr>
<td>IT Services, Management, Governance</td>
<td>Yellow</td>
<td>No standards</td>
</tr>
<tr>
<td>Specialty Engineering (Safety, Security)</td>
<td>Orange</td>
<td>Unrelated approaches will be addressed in part by coordination revision of IEEE 1609 standards</td>
</tr>
<tr>
<td>Others</td>
<td>Yellow</td>
<td>Many unrelated standards</td>
</tr>
</tbody>
</table>
Harmonization Benefits Summary

Alignment
- Achieves short term objectives
- Maintains backward compatibility
- Starts disparate users towards goal

Integration
- Tackles the ‘religious’ issues
 - Technical and Political
- Achieves long term goals in a set

Large Scale Harmonization
- Solves big picture issues within and across SDOs

Each Level Brings You
- Easier process definition and implementation
- Better team communication and integration
- Improved performance at lower cost
- Increased benefit and usefulness of implementing these standards in your organization

Eases Your Integration, Management, and Acquisition Burden
Questions?
For More Information Contact

- Teresa ‘Terry’ Doran
 TECHSOFT
 31 West Garden Street, Suite 100
 Pensacola, FL 32502-5685
 Internet: www.techsoft.com

 NY Office Tel: 1 631-266-2191
 Email: tsdoran@techsoft.com

- ISO/IEC/IEEE 12207 Project Editor
- 15288-12207-24748 Editorial Team Member
- ISO/IEC JTC1/SC7 Life Cycle Process Advisory Group Chair
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>CMMI</td>
<td>Capability Maturity Model Integration</td>
</tr>
<tr>
<td>CMU</td>
<td>Carnegie Mellon University</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IEEE CS</td>
<td>IEEE Computer Society</td>
</tr>
<tr>
<td>INCOSE</td>
<td>International Council on Systems Engineering</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>JTC1</td>
<td>ISO/IEC Joint Technical Committee 1: Information Technology</td>
</tr>
<tr>
<td>LCP</td>
<td>life cycle process</td>
</tr>
<tr>
<td>NWIP</td>
<td>new work item proposal</td>
</tr>
<tr>
<td>OPA</td>
<td>organizational process assets</td>
</tr>
<tr>
<td>OPD</td>
<td>organizational process definition</td>
</tr>
<tr>
<td>SC</td>
<td>subcommittee</td>
</tr>
<tr>
<td>SG</td>
<td>study group</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>SC7</td>
<td>ISO/IEC JTC1 SC 7: Software and Systems Engineering</td>
</tr>
<tr>
<td>SE</td>
<td>systems engineering</td>
</tr>
<tr>
<td>SEI</td>
<td>Software Engineering Institute (at CMU)</td>
</tr>
<tr>
<td>S2ESC</td>
<td>Software and Systems Engineering Standards Committee (IEEE CS)</td>
</tr>
<tr>
<td>SEP</td>
<td>SE process</td>
</tr>
<tr>
<td>SWE</td>
<td>software engineering</td>
</tr>
<tr>
<td>SWG</td>
<td>special WG</td>
</tr>
<tr>
<td>WG</td>
<td>working group</td>
</tr>
<tr>
<td>WG7</td>
<td>ISO/IEC JTC1 SC7 WG 7: Life Cycle Management</td>
</tr>
<tr>
<td>VSE</td>
<td>very small enterprise</td>
</tr>
</tbody>
</table>
For ISO and ISO/IEC Standards (Current and Withdrawn):

http://www.iso.org/iso/iso_catalogue.htm

1) ISO 9001:2005, Quality management systems — Requirements
2) ISO/IEC 12207:2008, Systems and software engineering — Software life cycle processes

For ISO/IEC documents and in-process standards and technical reports (TRs): http://www.jtc1-sc7.org/

For IEEE Standards:
http://www.ieee.org/web/standards/home/index.html

Or related information:
http://standards.computer.org/s2esc/
IEEE CS Software and Systems Engineering Standards Committee – for on-going SE/SW standards activities
http://pascal.computer.org/sev_display/index.action
SEVOCAB: An IEEE CS and ISO/IEC JTC 1/SC7 project, SEVOCAB includes definitions from international standards; This database is issued periodically as a formal, published International Standard (ISO/IEC 24765) reflecting a "snapshot" of the database.

For: NDIA Systems Engineering Conference
Date: 23 October 2008
Presented By: Teresa Doran
Overview

- Purpose
- TECHSOFT
- Standards-based Process Improvement Success
- Why Harmonize?
 - Issues
 - Impacts to you
- SE/SW LCP Alignment and Integration
 - Path
 - Concepts
 - Where we are today
 - How we got here – Key changes in 15288 & 12207
- Large Scale Harmonization
- Benefits Summary
Purpose

Show how the key changes in the alignment of a foundational systems/software standards set (ISO/IEC/IEEE 15288 and ISO/IEC/IEEE 12207) facilitates integrated systems and software engineering, project management, and acquisition
Who We Are
- Founded in 1990
- Based in Pensacola, Florida
 - Presence in Charleston, SC
- Primarily, a DoD Contractor
- Experienced Staff
 - High % Masters level personnel
 - Majority with Security Clearances
 - SEI-Authorized CMMI® Lead Appraisers
 - SEI-Authorized CMMI® Instructors
 - International SE/SW Standards Expertise

What We Do
- Systems & Software Development
- Database Applications
- Security / IA
- Web Development
- Network Engineering/Hosting
- Training
- Process Engineering/Process Improvement
 - CMMI®
 - SEI Partner
Standards-based Process Improvement

Example of a Successful Approach

Vision
- Develop and maintain a World Class Systems Engineering Organization

Approach
- Achieve Command-wide operational consistency
- Based on ISO 15288 – systems engineering
- Based on ISO 12207 – software engineering
- Measure using best practices of CMMI®

Goals
- CMMI® Maturity Level 2 by April, 2005
- CMMI® Maturity Level 3 by April, 2007

Both Goals attained on schedule

1st SPAWAR Systems Center to Achieve ML2 and ML3

New Goal: Maturity Level 4 & 5

Source: N65236-ENGOPS-BRIEF-0068-1.1, Standardization of Systems Engineering & Project Management Using CMMI, M.T. Kutch, Jr., 17JUL08
Full OPD, But Today’s Focus: 15288/12207

This SSC has 15288 and 12207-based SE/SWE Technical Processes

SSC-C SE Revitalization Plan
Aligned with DoD SE Revitalization

Elements of SSC-C SE Revitalization

- Policy / Guidance
 - SSC-C SE Instruction
 - SSC-C SW-Dev Process Manual
 - SSC-C SW-Maint Process Manual
 - EPO Website
 - ePlan Builder

- Training / Education
 - Intro to PI WBT
 - SE 101 WBT
 - SE Fundamentals
 - SE for Managers
 - Project & Process Workshop
 - Intro to Software Engr.
 - Architecture Dev. WBT
 - Certification/Degrees

- Assessment & Support
 - CMMI® Level 2
 - CMMI® Level 3
 - CMMI® Level 4/5
 - Project Reviews
 - Balanced Scorecard
 - Lean Six Sigma
 - Integrated Product Teams
 - IT Tools

Process Asset Library

With Extensive OPA Support

Source: N65236-ENGOPS-BRIEF-0048-1.2, Tools and Resources to Enable Systems Engineering Improvement, M.T. Kutch, Jr. & M. Knox, NOV07
So what’s the problem with 15288 and 12207?

ISO/IEC 15288:2002

Enterprise Processes
- Enterprise Environment Management Process
- Investment Management Process
- System Life Cycle Processes Management Process
- Resource Management Process
- Quality Management Process

Project Processes
- Project Planning Process
- Project Assessment Process
- Project Control Process
- Decision-making Process
- Risk Management Process

Technical Processes
- Stakeholder Requirements Definition Process
- Requirements Analysis Process
- Architectural Design Process
- Implementation Process
- Integration Process
- Verification Process
- Transition Process
- Validation Process
- Operation Process
- Maintenance Process
- Disposal Process

Agreement Processes
- Acquisition Process
- Supply Process

ISO/IEC 12207:1995

5. PRIMARY LIFE CYCLE PROCESSES

- **5.1 Acquisition**
- **5.2 Supply**
- **5.3 Development**
- **5.4 Operation**
- **5.5 Maintenance**

6. SUPPORTING LIFE CYCLE PROCESSES

- **6.1 Documentation**
- **6.2 Configuration Management**
- **6.3 Quality Assurance**
- **6.4 Verification**
- **6.5 Validation**
- **6.6 Joint Review**
- **6.7 Audit**
- **6.8 Problem Resolution**

7. ORGANIZATIONAL LIFE CYCLE PROCESSES

- **7.1 Management**
- **7.2 Infrastructure**
- **7.3 Improvement**
- **7.4 Training**

Using Them Together!

- Conflicting terms and definitions
- Overlapping, yet distinct processes
- Different process architectures
- Different levels of prescription

Unintegrated 12207 amendments from 2002 and 2004 are difficult to use and also not adopted by IEEE.
Why You Should Care

- Leverage the Commonalties
 - Identify and explain the differences
 - Use the interfaces
- Promote Communication and Team Integration
 - Identify strengths, views, and appropriate focused implementations
 - Reduce us/them, finger-pointing, stove-piping
- Improve Resource Performance
 - Personnel, Processes, Tools, Services
- Lower Costs
 - Reduce redundancy and inefficiency

Benefits of Standards Harmonization
Supports Integration, Facilitates Management, Simplifies Acquisition
15288-12207 Harmonization Path

Studies

Implementation hits a snag

Eat that elephant one bite at a time!

Harmonization revised concept

 Align – Publicize - Integrate

ISO/IEC 15288 & ISO/IEC 12207 Revisions

STOCKHOLM meeting
Project Editor report

Missed
Implementation Guidance

ISO/IEC TR xxxx Guidelines for
Process Definition

ISO/IEC 15939
ISO/IEC 16085
ISO/IEC 19760
ISO/IEC 24748
ISO/IEC 15271
ISO/IEC 15288
ISO/IEC 12207

Life cycle concepts
Process Architecture

To Be Determined

‘02-’03
‘03-’04
‘05-’07
‘08-’1x
Concept for the Harmonized Set

Source: ISO/IEC JTC1/SC7 WG7 N01025 Briefing Material, 24MAY07
Where We Are Today

Nearly identical process models

System Level Processes

Life Cycle Concepts
Process Concepts
LC Models, Stages

ISO/IEC 15288
IEEE Std 15288-2008

ISO/IEC 12207
IEEE Std 12207-2008

Systems and software engineering —
System life cycle processes

Systems and software engineering —
Software life cycle processes

DRAFT

Systems and software engineering — Guide for life cycle management

It is the intention of this project to create a Technical Report of Type 3 that may be made freely available in accordance with the provisions of JTC 1 N 7299 and SC41 Resolution 17. In particular, the document has the following:

Processes = Sub-Processes = Activities

Processes = Activities

= means equals to
P+O means Process + Outcomes

Adapted from ISO/IEC JTC1/SC7 WG7 N1111 briefing material
Source: Anatol Kark, National Research Council, Canada
Processes require a purpose and outcome. All processes have at least one activity. The processes, with their statements of purpose and outcomes, constitute a Process Reference Model (PRM).

Activities are constructs for grouping together related tasks. The activities provide a means to look at related tasks within the process to improve understanding and communication of the process. If an activity is cohesive enough, it can be converted to a (lower level) process by defining a purpose and a set of outcomes.

A task is a detailed provision for implementation of a process. It may be a requirement (“shall”), a recommendation (“should”), or a permission (“may”).

Notes are used when there is a need for explanatory information to better describe the intent or mechanics of a process. Notes provide insight regarding potential implementation or areas of applicability such as lists, examples and other considerations.

Adapted from ISO/IEC JTC1/SC7 WG7 N1025 briefing material
The Life Cycle Processes of 15288:2002

Source: WG7 N1111; Adapted by Jim Moore, MITRE Corporation from chart by Anatol Kark, National Research Council, Canada
Building 15288:2008 – Activities and Tasks

Activity-Task allocation is new to 15288:2008
Provides structural alignment with 12207

Adapted from WG7 N1111; Source: Jim Moore, MITRE Corporation and Anatol Kark, National Research Council, Canada
Building 15288:2008 – Technical Processes

15288:2008 has the same set of technical processes as 15288:2002

Source: WG7 N1111; Adapted by Jim Moore, MITRE Corporation from chart by Anatol Kark, National Research Council, Canada
Building 15288:2008 – Project Processes

15288:2008 has a similar set of project processes as 15288:2002

Source: WG7 N1111; Adapted by Jim Moore, MITRE Corporation from chart by Anatol Kark, National Research Council, Canada
Building 15288:2008 – Project-Enabling Processes

15288:2008 has a similar set of project-enabling processes as 15288:2002

Source: WG7 N1111; Adapted by Jim Moore, MITRE Corporation from chart by Anatol Kark, National Research Council, Canada
Building 15288:2008 – Agreement Processes

15288:2008 has the same set of agreement processes as 15288:2002

Source: WG7 N1111; Adapted by Jim Moore, MITRE Corporation from chart by Anatol Kark, National Research Council, Canada
The Life Cycle Processes of 15288:2008

Source: WG7 N1111; Adapted by Jim Moore, MITRE Corporation from chart by Anatol Kark, National Research Council, Canada
The Life Cycle Processes of 12207:1995

5. PRIMARY LIFE CYCLE PROCESSES
 5.1 Acquisition
 5.2 Supply
 5.3 Development
 5.4 Operation
 5.5 Maintenance

6. SUPPORTING LIFE CYCLE PROCESSES
 6.1 Documentation
 6.2 Configuration Management
 6.3 Quality Assurance
 6.4 Verification
 6.5 Validation
 6.6 Joint Review
 6.7 Audit
 6.8 Problem Resolution

7. ORGANIZATIONAL LIFE CYCLE PROCESSES
 7.1 Management
 7.2 Infrastructure
 7.3 Improvement
 7.4 Training

The Familiar 1995 LCP Categories Process Structure and Titles

Adapted from WG7 N1111 briefing material
The Life Cycle Processes of 12207:1995

- **Primary**
 - Acquisition Process
 - Supply Process
 - Development Process
 - System Requirements Analysis
 - System Architectural Design
 - System Integration
 - System Qualification Testing
 - Software Installation
 - Software Acceptance Support
 - Process Implementation
 - Software Requirements Analysis
 - Software Architectural Design
 - Software Detailed Design
 - Software Coding & Testing
 - Software Integration
 - Software Qualification Testing
 - Operation Process
 - Maintenance Process

- **Organizational**
 - Improvement Process
 - Management Process
 - Infrastructure Process
 - Training Process

- **Supporting**
 - Documentation Management Process
 - Configuration Management Process
 - Quality Assurance Process
 - Verification Process
 - Validation Process
 - Joint Review Process
 - Audit Process
 - Problem Resolution Process

Adapted from WG7 N1111; Source: Jim Moore, MITRE Corporation

Box with dashed border
was an Activity in 1995
12207 Amd.1:2002 and Amd.2:2004

- Defined a Process Reference Model (PRM) for 12207
 - Process Name, Purpose, and Outcomes
- Restructured processes to provide higher granularity
 - Introduced sub-processes (e.g. based on Development activities)
 - Improvement, Human Resource, Acquisition, Supply, Development, Operation, Management
- Introduced extensions, elaborations and new processes
 - e.g. to better support process assessment (15504-2), usability (13407), measurement (15939), product evaluation (14598), and reuse/asset management (IEEE 1517)
- Added activities and tasks for 8 new processes
- Made some corrections

Generally aligned and incorporated in body of revised 12207
Several sub-processes allocated as lower-level PRM only processes
The Life Cycle Processes of 12207:2008

Adapted from WG7 N1111; Source: Jim Moore, MITRE Corporation

TSDoan-NDIA-SE_23OCT08_v1.0
Building 12207:2008 – System Context

Structural alignment with 15288 system level categories

Adapted from WG7 N1111;
System Context Processes based on 15288 Processes

Adapted from WG7 N1111; TSDoran-NDIA-SE_23OCT08_v1.0
Building 12207:2008 – System Context

Include 12207 Organizational Processes: Improvement, Infrastructure, Human Resource/Training, Management

- Agreement
 - Acquisition Process
 - Supply Process

- Organizational Project-Enabling
 - Life Cycle Model Management Process
 - Infrastructure Management Process
 - Project Portfolio Management Process
 - Human Resource Management Process
 - Quality Management Process

- Project
 - Project Planning Process
 - Project Assessment and Control Process
 - Decision Management Process
 - Risk Management Process
 - Configuration Management Process
 - Information Management Process
 - Measurement Process

- Technical
 - Stakeholder Reqmts Definition Process
 - System Requirements Analysis Process
 - System Architectural Design Process
 - Implementation Process
 - System Integration Process
 - System Qualification Testing Process
 - Software Installation Process
 - Software Acceptance Support Process
 - Software Operation Process
 - Software Maintenance Process
 - Software Disposal Process

- SW Implementation
 - Software Implementation Process
 - Software Requirements Analysis Process
 - Software Architectural Design Process
 - Software Detailed Design Process
 - Software Construction Process
 - Software Integration Process
 - Software Qualification Testing Process
 - Software Operation Process
 - Software Maintenance Process
 - Software Disposal Process

- SW Support
 - Software Documentation Management Process
 - Software Configuration Management Process
 - Software Quality Assurance Process
 - Software Detailed Design Process
 - Software Verification Process
 - Software Validation Process
 - Software Review Process
 - Software Audit Process
 - Software Problem Resolution Process

- SW Reuse
 - Domain Engineering Process
 - Reuse Asset Management Process
 - Reuse Program Management Process

Adapted from WG7 N1111;
TSDoran-NDIA-SE_23OCT08_v1.0

Adapted 15288 Outcome/s Activities, Tasks
One or more 12207 Outcomes
Blended 12207 & 15288 Activities and Tasks
One or more 15288 Outcomes
12207-based Outcome/s Activities, Tasks
Building 12207:2008 – System Context

Risk Management and Measurement are now almost identical to 15288

12207 Acquisition and Supply are blended with 15288 Agreement Processes

Adapted from WG7 N1111; TSDoran-NDIA-SE_23OCT08_v1.0
Development Activities form System Context and Software Specific Processes

Agreement
- Acquisition Process
- Supply Process

Organizational Project-Enabling
- Life Cycle Model Management Process
- Infrastructure Management Process
- Project Portfolio Management Process
- Human Resource Management Process
- Quality Management Process

Project
- Project Planning Process
- Project Assessment and Control Process
- Decision Management Process
- Risk Management Process
- Configuration Management Process
- Information Management Process
- Measurement Process

Technical
- Stakeholder Reqsmts Definition Process
- System Requirements Analysis Process
- System Architectural Design Process
- Implementation Process
- System Integration Process
- System Qualification Testing Process
- Software Installation Process
- Software Acceptance Support Process
- Software Operation Process
- Software Maintenance Process
- Software Disposal Process

SW Implementation
- Software Implementation Process
- Software Requirements Analysis Process
- Software Architectural Design Process
- Software Detailed Design Process
- Software Construction Process
- Software Integration Process
- Software Qualification Testing Process
- Software Operation Process
- Software Maintenance Process
- Software Disposal Process

SW Support
- Software Documentation Management Process
- Software Configuration Management Process
- Software Quality Assurance Process
- Software Verification Process
- Software Validation Process
- Software Review Process
- Software Audit Process
- Software Problem Resolution Process

Adapted from WG7 N1111;
TSDoran-NDIA-SE_23OCT08_v1.0

Adapted 15288 Outcome/s Activities, Tasks
- One or more 12207 Outcomes

Blended 12207 & 15288 Activities and Tasks
- One or more 15288 Outcomes

12207-based Outcome/s Activities, Tasks
Building 12207:2008 – System Context

12207 Operation and Maintenance Processes complete the System Context

Adapted from WG7 N1111; TSDoran-NDIA-SE_23OCT08_v1.0

Adapted 15288 Outcome/s Activities, Tasks
One or more 12207 Outcomes
Blended 12207 & 15288 Activities and Tasks
One or more 15288 Outcomes
12207-based Outcome/s Activities, Tasks
Software Specific Support almost the same as 12207 Supporting Processes

<table>
<thead>
<tr>
<th>Agreement</th>
<th>Project</th>
<th>Technical</th>
<th>SW Implementation</th>
<th>SW Support</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configuration Management Process</td>
<td>System Integration Process</td>
<td>Software Construction Process</td>
<td>Software Validation Process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Acceptance Support Process</td>
<td>SW Reuse</td>
<td>Software Problem Resolution Process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Operation Process</td>
<td>Domain Engineering Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Maintenance Process</td>
<td>Reuse Asset Management Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Disposal Process</td>
<td>Reuse Program Management Process</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from WG7 N1111; TSDoran-NDIA-SE_23OCT08_v1.0

Adapted 15288 Outcome/s Activities, Tasks | One or more 12207 Outcomes | Blended 12207 & 15288 Activities and Tasks | One or more 15288 Outcomes | 12207-based Outcome/s Activities, Tasks
Building 12207:2008 – Software Specific

12207 Organizational Processes for Reuse conclude the Software Specific set

Agreement
- Acquisition Process
- Supply Process

Organizational Project-Enabling
- Life Cycle Model Management Process
- Infrastructure Management Process
- Project Portfolio Management Process
- Human Resource Management Process
- Quality Management Process

Organizational Process
- Project Planning Process
- Project Assessment and Control Process
- Decision Management Process
- Risk Management Process
- Configuration Management Process
- Information Management Process
- Measurement Process

Technical
- Stakeholder Reqmts Definition Process
- System Requirements Analysis Process
- System Architectural Design Process
- Implementation Process
- System Integration Process
- System Qualification Testing Process
- Software Installation Process
- Software Acceptance Support Process
- Software Operation Process
- Software Maintenance Process
- Software Disposal Process

SW Implementation
- Software Implementation Process
- Software Requirements Analysis Process
- Software Architectural Design Process
- Software Detailed Design Process
- Software Construction Process
- Software Integration Process
- Software Qualification Testing Process

SW Support
- Software Documentation Management Process
- Software Configuration Management Process
- Software Quality Assurance Process
- Software Validation Process
- Software Verification Process
- Software Review Process
- Software Audit Process
- Software Problem Resolution Process

Adapted 15288 Outcome/s Activities, Tasks
One or more 12207 Outcomes
Blended 12207 & 15288 Activities and Tasks
One or more 15288 Outcomes
12207-based Outcome/s Activities, Tasks

Adapted from WG7 N1111;
TSDoran-NDIA-SE_23OCT08_v1.0
Another Way of Looking at It

1. Processes common to both
2. Processes similar between the two
3. Processes unique to domain

Source: WG7 N1103 Strategy for Integration Study Group Final Report, 22APR08, slide by Richard Kitterman, Northrop Grumman
Revised Standards

- Front Matter
1. Scope
2. Conformance
3. Normative References
4. Terms and Definitions
5. Application of this International Standard
6. System Life Cycle Processes
7. Software Life Cycle Processes *(Italicized indicates 12207 Only)*

The 12207 Annexes *(12207 and 15288 differ somewhat in format and content here)*

A. Tailoring *(Normative)*
B. Process Reference Model *(Normative)*
C. History and Rationale *(Informative)*
 - History, Process Integration/Constructs and Usage, Relationships, Process Definition Sources
D. Process Alignment of 12207-15288 *(Clause 6)* *(Informative)*
E. Process Views *(Informative)*
 - Concepts, and Process View for Usability Example
F. Some Example Process Descriptions *(Informative)*
G. Relationship to other IEEE standards *(Informative)*
H. Bibliography *(Informative)*
I. List of {IEEE} participants *(Informative)*
Aligned 15288 and 12207 Set Provides

- Coordinated Terms and Definitions
- Integrated Process Structure
- Coordinated Process Sets
 - Backward compatible
 - Usable stand alone or jointly by systems and software teams
 - System Context processes are nearly identical or the 12207 processes provide software-appropriate specializations of, or contribute to the outcomes of, the corresponding 15288 processes
 - Especially on Agreement and Project Processes
- Common Conformance/Tailoring
- Common Life Cycle Model and Stage Concepts
- Free Guidance (Annexes and Plan for TR 24748-1)

Easier Joint Use – Improved Efficiency – Reduced Costs
Common Acquisition, Supply and Management Views
Towards Full LCP Integration

- WG7 Study Group on Harmonization Integration Strategy Report
 - SC7 Life Cycle Process Harmonization Advisory Group (LCPHAG)
 - Work with SWG5 across SC7 and externally for analyses and recommendations
 - Model SC7’s current LCPs and supporting standards
 - Study Process Repository and Electronic Publishing Concepts
 - Rigorous review of SC7 Vocabulary (WG22)
 - Start revision to 15289 (Documentation) to reflect aligned set.

- Some 15288-12207 Integration Considerations:
 - Common purpose and outcomes
 - Architecture of the standards
 - Level of prescription of activities and tasks
 - Life cycle treatments
 - Application to services and operations
 - Common verification and validation concepts
 - Common configuration management concepts
 - Alignment with other applicable standards
 - Rationalization of application guides

Source: WG 7 N1103 – Strategy for Integration Study Group Final Report, 22APR08
SC7’s Large Scale Harmonization Efforts

Study Groups, e.g.:
- Relationships
- Integration

LCPHAG:
- Modeling
- Architectural Analysis
- Process Repository

Overview of the SC 7 collection

- **Systems Engineering**
 - Life Cycle
 - Process Implementation and Assessment
 - Assessment and Certification

- **Life Cycle Management**
 - Very Small Enterprise

- **Software Engineering**
 - Requirements & Architecture
 - Testing
 - Software Maintenance
 - Project Management

- **Process Repository**
 - Very Small Enterprise

- **Governance**
 - Quality System
 - SWG1, SWG5

- **Tools, Methods**
 - 3635, 5806, 5807
 - 8631, 8790, 1141, 14579

- **Draft**
 - Version 14.2 – May 2008

Source: Adapted from ISO/IEC JTC1/SC7 SWG5 V14.2 briefing material, May 2008
Harmonization Across Collections

The State of Harmonization ... Today

<table>
<thead>
<tr>
<th>Topic</th>
<th>Status</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminology & Concepts</td>
<td>Yellow</td>
<td>Shared IS0: joint vocabulary, project, potential certification framework.</td>
</tr>
<tr>
<td>Quality management</td>
<td>Yellow</td>
<td>IEEE is adopting ISO/IEC 20000 approach.</td>
</tr>
<tr>
<td>Testing</td>
<td>Orange</td>
<td>Both IEEE and SC7 will harmonize with S/C7 processes.</td>
</tr>
<tr>
<td>Architecture description</td>
<td>Orange</td>
<td>SCT adopted; IEEE roadmap and will harmonize with processes.</td>
</tr>
<tr>
<td>Product quality</td>
<td>Yellow</td>
<td>ISO/IEC 12119 was revised as 25014; IEEE will update its standard.</td>
</tr>
<tr>
<td>Life cycle practices</td>
<td>Yellow</td>
<td></td>
</tr>
<tr>
<td>Systems engineering</td>
<td>Orange</td>
<td>Shared IEEE process standard; harmonization with other U.S. process underway.</td>
</tr>
<tr>
<td>SW maintenance</td>
<td>Yellow</td>
<td>Project to merge IEEE and ISO standards is completed.</td>
</tr>
<tr>
<td>Measurement</td>
<td>Yellow</td>
<td>IEEE will accept IS0293 after its current release. Some details remain.</td>
</tr>
<tr>
<td>Risk management</td>
<td>Yellow</td>
<td>SCT adopted IEEE standard and is now extending it to the systems level.</td>
</tr>
<tr>
<td>Project management</td>
<td>Yellow</td>
<td>Project is merging the incompatible standards.</td>
</tr>
<tr>
<td>Verification and validation</td>
<td>Yellow</td>
<td>Fundamentally different approaches; Good intentions, but no action yet.</td>
</tr>
<tr>
<td>Configuration management</td>
<td>Yellow</td>
<td>SCT wins out; standard systems issues remain; IEEE is asked to involve.</td>
</tr>
<tr>
<td>SW process assessment</td>
<td>Yellow</td>
<td>Harmonization with LC process standards is underway.</td>
</tr>
<tr>
<td>Requirements engineering</td>
<td>Orange</td>
<td>Joint project has been approved; makeup of relevant standards is being prepared.</td>
</tr>
<tr>
<td>SW life cycle data</td>
<td>Yellow</td>
<td>IEEE is adopting 15826 to replace 12207.1.</td>
</tr>
<tr>
<td>User documentation</td>
<td>Yellow</td>
<td>IEEE 1053 has been incorporated into 26514; IEEE will adopt it.</td>
</tr>
<tr>
<td>CASE tools</td>
<td>Yellow</td>
<td>Minor incompatibilities.</td>
</tr>
<tr>
<td>Notations</td>
<td>Yellow</td>
<td>District standards for distinct notations.</td>
</tr>
<tr>
<td>Internet</td>
<td>Yellow</td>
<td>Shared standard.</td>
</tr>
<tr>
<td>IT Services, Management, Security</td>
<td>Yellow</td>
<td>IEEE will accept 25040 standards.</td>
</tr>
<tr>
<td>Syntactic Engineering (Style, Security)</td>
<td>Orange</td>
<td>Standard appraoch will be outlined in part by coordination effort of AVS.</td>
</tr>
<tr>
<td>Others</td>
<td>Yellow</td>
<td>Many unresolved standards.</td>
</tr>
</tbody>
</table>

The State of Harmonization in 1995

<table>
<thead>
<tr>
<th>Topic</th>
<th>Status</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminology & Concepts</td>
<td>Orange</td>
<td>Different vocabulary standards.</td>
</tr>
<tr>
<td>Quality management</td>
<td>Orange</td>
<td>ISO: Driven down from ISO 9001; IEEE: traditional QA approach.</td>
</tr>
<tr>
<td>Testing</td>
<td>Orange</td>
<td>IEEE standards unrelated to S/C7 processes.</td>
</tr>
<tr>
<td>Architecture description</td>
<td>Yellow</td>
<td>Incompatible standards.</td>
</tr>
<tr>
<td>Product quality</td>
<td>Yellow</td>
<td>Unrelated standards.</td>
</tr>
<tr>
<td>Life cycle processes</td>
<td>Yellow</td>
<td>Incompatible standards.</td>
</tr>
<tr>
<td>Systems engineering</td>
<td>Yellow</td>
<td>Unrelated standards.</td>
</tr>
<tr>
<td>SW maintenance</td>
<td>Yellow</td>
<td>Incompatible standards.</td>
</tr>
<tr>
<td>Measurement</td>
<td>Yellow</td>
<td>Unrelated standards.</td>
</tr>
<tr>
<td>Risk management</td>
<td>Yellow</td>
<td>No standards at all.</td>
</tr>
<tr>
<td>Project management</td>
<td>Yellow</td>
<td>Incompatible standards.</td>
</tr>
<tr>
<td>Verification and validation</td>
<td>Yellow</td>
<td>Fundamentally different approaches; minor incompatibilities in details.</td>
</tr>
<tr>
<td>Configuration management</td>
<td>Yellow</td>
<td>Incompatible standards.</td>
</tr>
<tr>
<td>SW process assessment</td>
<td>Yellow</td>
<td>Nothing in IEEE; ISO process assessment incompatible with ISO TC.</td>
</tr>
<tr>
<td>Requirements engineering</td>
<td>Orange</td>
<td>IEEE standards unrelated to S/C7 processes.</td>
</tr>
<tr>
<td>SW life cycle data</td>
<td>Yellow</td>
<td>Incompatible standards.</td>
</tr>
<tr>
<td>User documentation</td>
<td>Yellow</td>
<td>Incompatible standards.</td>
</tr>
<tr>
<td>CASE tools</td>
<td>Yellow</td>
<td>Minor incompatibilities.</td>
</tr>
<tr>
<td>Notations</td>
<td>Yellow</td>
<td>Distinct standards for distinct notations.</td>
</tr>
<tr>
<td>Internet</td>
<td>Yellow</td>
<td>No standards.</td>
</tr>
<tr>
<td>IT Services, Management, Security</td>
<td>Yellow</td>
<td>Unrelated approaches.</td>
</tr>
<tr>
<td>Syntactic Engineering (Style, Security)</td>
<td>Orange</td>
<td>Many unresolved standards.</td>
</tr>
<tr>
<td>Others</td>
<td>Yellow</td>
<td>Many unresolved standards.</td>
</tr>
</tbody>
</table>
Harmonization Benefits Summary

Alignment
- Achieves short term objectives
- Maintains backward compatibility
- Starts disparate users towards goal

Integration
- Tackles the ‘religious’ issues
 - Technical and Political
- Achieves long term goals in a set

Large Scale Harmonization
- Solves big picture issues within and across SDOs

Each Level Brings You
- Easier process definition and implementation
- Better team communication and integration
- Improved performance at lower cost
- Increased benefit and usefulness of implementing these standards in your organization

Eases Your Integration, Management, and Acquisition Burden
Questions?
For More Information Contact

- Teresa ‘Terry’ Doran
 TECHSOFT
 31 West Garden Street, Suite 100
 Pensacola, FL 32502-5685
 Internet: www.techsoft.com

NY Office Tel: 1 631-266-2191
Email: tsdoran@techsoft.com

- ISO/IEC/IEEE 12207 Project Editor
- 15288-12207-24748 Editorial Team Member
- ISO/IEC JTC1/SC7 Life Cycle Process Advisory Group Chair
Abbreviations - 1

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>CMMI</td>
<td>Capability Maturity Model Integration</td>
</tr>
<tr>
<td>CMU</td>
<td>Carnegie Mellon University</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IEEE CS</td>
<td>IEEE Computer Society</td>
</tr>
<tr>
<td>INCOSE</td>
<td>International Council on Systems Engineering</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>JTC1</td>
<td>ISO/IEC Joint Technical Committee 1: Information Technology</td>
</tr>
<tr>
<td>LCP</td>
<td>life cycle process</td>
</tr>
<tr>
<td>NWIP</td>
<td>new work item proposal</td>
</tr>
<tr>
<td>OPA</td>
<td>organizational process assets</td>
</tr>
<tr>
<td>OPD</td>
<td>organizational process definition</td>
</tr>
<tr>
<td>SC</td>
<td>subcommittee</td>
</tr>
<tr>
<td>SG</td>
<td>study group</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SC7</td>
<td>ISO/IEC JTC1 SC 7: Software and Systems Engineering</td>
</tr>
<tr>
<td>SE</td>
<td>systems engineering</td>
</tr>
<tr>
<td>SEI</td>
<td>Software Engineering Institute (at CMU)</td>
</tr>
<tr>
<td>S2ESC</td>
<td>Software and Systems Engineering Standards Committee (IEEE CS)</td>
</tr>
<tr>
<td>SEP</td>
<td>SE process</td>
</tr>
<tr>
<td>SWE</td>
<td>software engineering</td>
</tr>
<tr>
<td>SWG</td>
<td>special WG</td>
</tr>
<tr>
<td>WG</td>
<td>working group</td>
</tr>
<tr>
<td>WG7</td>
<td>ISO/IEC JTC1 SC7 WG 7: Life Cycle Management</td>
</tr>
<tr>
<td>VSE</td>
<td>very small enterprise</td>
</tr>
</tbody>
</table>
For ISO and ISO/IEC Standards (Current and Withdrawn):

http://www.iso.org/iso/iso_catalogue.htm

1) ISO 9001:2005, Quality management systems — Requirements
2) ISO/IEC 12207:2008, Systems and software engineering — Software life cycle processes

For ISO/IEC documents and in-process standards and technical reports (TRs): http://www.jtc1-sc7.org/

For IEEE Standards:

http://www.ieee.org/web/standards/home/index.html

Or related information:

http://standards.computer.org/s2esc/

IEEE CS Software and Systems Engineering Standards Committee – for on-going SE/SW standards activities

http://pascal.computer.org/sev_display/index.action

SEVOCAB: An IEEE CS and ISO/IEC JTC 1/SC7 project, SEVOCAB includes definitions from international standards; This database is issued periodically as a formal, published International Standard (ISO/IEC 24765) reflecting a "snapshot" of the database.
Near-field RCS and Fuze Modeling: Assessment and Strategy

NDIA Systems Engineering Conference
Oct 22, 2008

David H. Hall, Dorothy L. Saitz, Dr. David L. Burdick
SURVICE Engineering Company
Ridgecrest, CA
Objectives

- In an encounter between an aircraft and a missile, fuze function is one of the most important endgame elements in determining the probability of kill (Pk).
- In recent years, proximity fuze modeling and the required near-field RCS modeling do not appear to have received adequate attention.
- This effort is investigating the state-of-the-art of proximity fuze modeling.
 - Our goal is to help determine the need for resurrecting and improving this capability.
 - We are actively seeking information on who’s doing what with which kinds of models.
 - We’re interested in all kinds of fuzes:
 - RF
 - Active Optical
 - IR
 - Guidance Integrated
Applications

• SYSTEM LETHALITY
 • U.S. Missile Systems
• SURVIVABILITY
 • Threat Missile Systems
Typical Surface-to-Air Missile Engagement
Endgame Models

What happens after the last missile guidance time-constant before intercept
- Everything is assumed to be a straight line
- Acceleration is assumed to have little or no effect during endgame
- Calculate events along the relative missile-target velocity vector (V_{mt})
 - Fuze Declaration Position
 - Warhead Burst Point
 - Impact with Target (if direct hit)
Fuze Determines Burst Point

Pt

Pr

Pt

Pr

Vmt

Vmt

TGT Declaration

Time delay

Warhead Burst Position

Position on Vmt (feet)

Point of Closest Approach

A

B

0

0
Fuze Model Within the Endgame

Inputs:
- Encounter Geometry

Fuze

Target Detection (on Vmt)

Warhead Burst Point (on Vmt)

Endgame Integration Model
- Warhead Model
- Target Vulnerability Model

No Target Detection

Pk
Fuze Model Elements

NEARFIELD TARGET RETURN

ANTENNAS

TRANSMIT

RECEIVE

TRANSMITTER

POWER SUPPLY

RECEIVER

LOGIC

FIRE PULSE

SIGNAL PROCESSING
Modeling a Proximity Fuze

- FUZE
 - TRANSMIT
 - RECEIVE
 - LOGIC

- TARGET MODEL

- MORE DIFFICULT
- LESS DIFFICULT
- MOST DIFFICULT

RELATIVE MODELING DIFFICULTY
Example Near Field Signature Methodology: Geometrical Theory of Diffraction (GTD)

TOTAL FIELD AT RECEIVER LOCATION \(E_T = E_1 + E_2 \)

- CONVERTED TO \(\frac{P_R}{P_T} \)
- \(\frac{P_R}{P_T} \) COMPARED TO THRESHOLD LEVEL
Missile Engagement Simulation Arena (MESA)

- Unique China Lake Facility for Evaluation of Missile Proximity Fuzes Against Full Scale Targets
- Effects of Near Field Signatures (Aircraft or Missile) on Threat Missile Fuze Performance

Realistic Encounter Simulations Provide:
- Fuze Performance (Pd)
- Warhead Burst Point
- Countermeasures Effects
- Overall Missile Performance
- Effectiveness Analysis Support
- M&S Validation Data
Example Measurements vs. GTD Model “Crayola” Target
What Drives Pk the Most?
How Good Does the Fuze Model Need to Be?

• Sensitivity Analysis Can Support the answers:
 • Determine Effect on Pk Caused by Errors in Inputs to the Endgame
 • Compare results to Pk accuracy requirements for specific applications
 • Example: Net Reduction in Lethality (NRL) for ECM

\[
NRL = 1 - \frac{Pk(\text{wet})}{Pk(\text{dry})}
\]
Endgame Parameters Affecting Pk

• Primary parameters
 • Intercept geometry parameters
 » Miss distance, direction
 » Vm, Vt
 » Approach angles
 » Angles of attack
 • Fuze declaration position [on Vmt]
 • Target Vulnerability

• Secondary parameters
 • Fuze parameters: detection thresholds, etc.
 • Warhead parameters: ejection angle, etc.
 • Fault trees: redundancies, etc.
Example $P(K)$ Sensitivity to Fuze Detection Position

Figure 1-2. $P(K)$ Profile Along Vmt

Figure 1-3. Interval in Which Fuzing Must Occur to Achieve a Specified $P(K)$ Accuracy

Figure 1-3A. Interval in Which Fuzing Must Occur (on Vmt) To Achieve a Specified $P(K)$ Accuracy
Sensitivity Analysis Results

Primary Drivers of Pk (in order):

1. Fuzing (Burst Position)
2. Miss Distance
3. Az
4. El
5. Yaw
6. Pitch

Relative importance depends on specific intercept conditions, type of missile and type of target

It Is Impossible to Know the Validity of Simulated Pk Without Knowing the Validity of the Fuze Model

- Errors in fuzing prediction can change the predicted Pk from zero to one or vice versa
Modeling Fuze Performance

• Models of proximity fuzes require simulation of near field signatures as well as fuze system (sensors, processing)
 • Some options include:
 » Simple geometric model (stick-cone model)
 » “Advanced Fuze Model” in models like ESAMS, SHAZAM
 » Near field signature models (GTD, PTD)

• Risk Areas:
 • Some elements of threat fuzes not well understood
 » Burst Control Logic
 » Detection algorithms
 • Stick-cone model does not well represent threat fuze characteristics
 • Models like ESAMS advanced fuze model have little or no usage history nor any documented V&V
 • GTD, PTD signature models require development for use with fuze models
Project Objectives

- ID current approaches to Proximity Fuze modeling
 - Government and Industry
 - Document the “State-of-the-Art”
- Determine/Examine needs for improvement
 - Methodology
 - Data
 - Verification and/or Validation
- Develop a strategy for improvement
 - Develop a plan for filling methodology, data & V&V gaps
 - ID potential funding sources

We are actively seeking information on the current status of fuze modeling in Government and Industry (and in other countries) Please let us know if you have any information!
Naval Open Architecture
NDIA 11th Annual
Systems Engineering Conference

October 23, 2008

Distribution Statement A: Approved for Public Release; distribution is unlimited

Mr. Mike Dettman
Associate Technical Director (Policy & Guidance)
PEO C4I
Agenda

- The Open Architecture Imperative
- Open Architecture Policy and Requirements
- Benefits of Open Architecture
- Open Architecture Business and Technical Practices
- Examples of Open Architecture Implementation across the Navy
- Importance of Acquiring and Exercising Intellectual Property Rights
- Conclusion
The Navy must build a fleet where our systems …

… are modular, interoperable, and affordable to upgrade
To accomplish this, ASN (RD&A) in 2003 commissioned a Red Team to assess the Navy’s plan to adopt Open Architecture

The Red Team Made 13 Recommendations to leadership:

1. Develop and promulgate a clear Navy policy
2. Develop a Navy-wide business strategy to support OA goals
3. Redirect the OA implementation by defining architectures for domains based on their unique needs
4. Assign one PEO to be accountable for managing OA in each domain
5. Investigate alternate strategies for budgeting and contracting for ships and their combat systems to maximize benefits of open architectures
6. Evaluate DDX, AEGIS, LCS, and CVN/large deck L-ships combat system requirements and analyze architecture/cost trades to exploit a common architecture for surface ship command and decision systems
7. Review all applicable programs to determine how OA is actually being implemented and what changes in the program of record are required
Red Team Recommendations (continued)

8. Reaffirm the role of PEO IWS in the Navy-wide OA Initiative
9. Modify and enforce the OA architecture definition and standards selection processes within and across communities
10. Implement and sustain a proactive education and information exchange program across the Industrial and Government communities
11. Modify testing and certification processes to exploit OA
12. Regarding JTM and its development by JSSEO:
 - Determine whether the technical approach and the transition strategy to Navy programs is appropriately risked
 - Determine whether the Navy programs have sufficient, coordinated off-ramps
13. Consider using the basic framework of these recommendations for Navy OA to address Joint interoperability and network centric warfare requirements

The Red Team included several technical recommendations
These recommendations acknowledge that many pieces of the acquisition puzzle are required to become “truly open”

Open Architecture

The confluence of business and technical practices yielding modular, interoperable systems that adhere to open standards with published interfaces.
So, leadership mandated Open Architecture implementation across the Naval Enterprise and provided some guidance.

1. Aug 2004 ASN RDA mandates open architecture

2. Dec 2005 OPNAV issues OA Requirements letter

OA CORE PRINCIPLES

- Modular design
- Design transparency

Reusable application software

Interoperable joint warfighting applications and secure information exchange

Life cycle affordability

Encouraging competition and collaboration

Naval OA Policy

Naval OA Requirements

Naval OA Policy & Requirements
From this guidance, the OA Enterprise Team (OAET) developed a Naval OA Strategy that includes goals, objectives, practices, and tools ...

OA STRATEGY

From this guidance, the OA Enterprise Team (OAET) developed a Naval OA Strategy that includes goals, objectives, practices, and tools...

OA GOALS

1. **Change the Naval processes and business practices to "utilize open systems architectures in order to rapidly field affordable, interoperable systems."**

2. **Provide OA Systems Engineering leadership to field common, interoperable capabilities more rapidly at reduced costs**

3. **Change the Naval and Marine Corps Cultures to Institutionalize OA Principles**

OA PRACTICES

- Disclose design artifacts
- Negotiate appropriate data rights
- Foster enterprise collaboration
- Reuse GOTS products
- Institute Peer Reviews
- Develop new business models
- Incorporate OA in contracts

- Publish interfaces
- Isolate proprietary components
- Use widely adopted standards
- Modularize systems

- DAU OA Training
- Outreach
- Government Symposia & Industry Days
- NPS Research

TOOLS TO ASSIST

- **OA Contract Guidebook**
- **OA Assessment Tool**
- **Reuse Licensing Agreement**
- **OA/FORCEnet Experiment**
- **SHARE Repository**
- **OA Training Module**
- **Industry Days**
- **OA Website**
... and found that implementing OA yields many benefits

<table>
<thead>
<tr>
<th>Benefits of Open Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in Time to Field</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Increased Performance</td>
</tr>
<tr>
<td>Improved Interoperability</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>More Competition</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cost Avoidance</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Therefore, the Navy is changing its business and technical practices to take advantage of OA’s benefits.

- Disclose design artifacts
- Negotiate appropriate data rights
- Increase enterprise collaboration
- Institute reviews of solutions
- Develop new business models
- Change contracts
- Increase competition
- Design for lifecycle affordability
- Modularize systems
- Publish interfaces
- Isolate proprietary components
- Use widely adopted standards
- Re-use software components
- Build interoperable applications
- Ensure secure data exchange
- Implement common solutions
For example, PEO IWS is building a modular, common combat system architecture …

Aligning platform combat systems …

… to one open, objective architecture …

“I expect us to compete whenever possible. Competition provides us with options to seek the best solution for the fleet and the taxpayer. … I also expect us to foster an environment in which competition can be sustained over time. Competition once does not serve our interests.”

—VADM Paul E. Sullivan

… to achieve commonality across multiple ship classes where the business case supports it

… to help increase competition
PEO C4I is developing new business models …

… to neck down and move towards common services
Another significant **cultural** change is that the Navy now understands the importance of exercising its intellectual property rights.

- A key aspect to implementing OA is for the Government to **exercise** the intellectual property (IP) rights it acquires.

- Under the Federal Acquisition Regulations (FAR) and Defense Federal Acquisition Regulation Supplement (DFARS):
 - The Government gets **Unlimited Rights** in both Technical Data (TD) and Computer Software (CS) for noncommercial items **developed exclusively at the Government’s expense**.
 - For noncommercial items developed with **mixed funding**, the Government gets **Government Purpose Rights (GPR)** in TD and CS.

- If a contractor asserts more restrictive rights over a system/component’s IP and the Government fails to challenge such an assertion by exercising its rights, the contractor obtains the asserted rights.

- It is imperative that the Government assert and exercise the IP rights it acquires because it may lose those rights after a period of time.
For example, acquiring, asserting, and exercising IP rights enables Naval programs to disclose designs to foster collaboration ...

- Design artifacts from AEGIS, LCS, DDG 1000, SSDS, SIAP, IABM are available to qualified vendors in IWS’s SHARE repository.

- Project artifacts from CLIP, XCOP, and NITES-Next are available to qualified vendors in the C4I NESI collaboration site.

... and improve interoperability.
In conclusion, over the four year span of this enterprise transformation, lessons learned have emerged.

OA Enterprise Transformation Requires…

- Clear vision and strategy
- Top leadership support & commitment
- Quick wins to get momentum
- Enterprise governance & ownership
- Identified Change Agents
- Consistent OA Communications
- Accountability at all levels
- Performance metrics
- Fleet driven requirements
- Industry / Academia Involvement
- Training / Research

- Operational Capability Roadmap
- Open / Scalable architectures
- Aligned architectures
- Access to design artifacts
- Published interfaces
- Enterprise collaboration
- Threat / data driven performance evaluation
- Tech refresh process

- Compliance checkpoints – six gate
- Consistent assessment approach
- Standardized contract language
- Knowledge of upcoming contracts
- Asset user licensing agreements
- Software asset repositories
- Changed acquisition bus model
- Viable sourcing alternatives
- Transparency -Third Party Reviews
- Streamlined acquisition processes
Domain Modeling

Roadmap to Convergence

Nathaniel Horner ↔ Steve Topper

22 October 2008

"You got to be careful if you don't know where you're going, because you might not get there."

- Yogi Berra
Overview

- Introduction

- Conceptual Modeling Process Overview

- Domain Modeling as the Foundation of the Conceptual Model

- Domain Modeling Application Across the Project
 - Analysis
 - M&S, Software Engineering
 - Systems Engineering / Architecting
 - Business Processes

- Domain Modeling “Goods and Others”
Why are we here?

- Initial activities on a modeling and simulation (M&S) project for a large, complex, integrated system attempted:
 - To develop generic DoDAF artifacts,
 - To link these artifacts more closely to developed models,
 - To provide a basis for new M&S development across a wide community of stakeholders.

- Issues
 - Legacy tool challenges for complex systems-of-systems analysis (configuration/preparation time, fidelity, and interoperability).
 - Lack of standardized foundation.
 - Traditional architectures often difficult to assess using M&S (lacked underlying referential structure).
 - Activities difficult to accurately plan and estimate.

How can we fix it?
Introduction

Problem Domain:
The real-world things and concepts related to the problem that the system is being designed to solve.

Domain Modeling:
The task of discovering “objects” (classes) representing things and concepts, and the relationships between them.

Problem Statement:
Develop efficient techniques to support complex system analysis

Given:
Complex systems, lots of components, subsystems, sophisticated behaviors, networks, information processing, collaboration
Organizations involved in design & development of these systems
Analysis, requirements, architecture, systems engineering, software engineering, testing, operations.

Approach:
Understand the problem Domain and progress from there...
Conceptual Modeling Process

- Based on standard software and systems engineering processes.*
- Translates informal, generalized information from disparate sources into formal system models.
- Maintains focus on understanding and standardizing the problem space before moving on to the solution.
- Allows iteration and feedback until it’s “right.”
- Produces documentation allowing traceability throughout the process.

* Though significantly changed, this conceptual modeling process is informed by ICONIX, a software engineering process falling between RUP and XP with respect to rigor and flexibility. ICONIX is documented in Rosenberg and Stephens [2007].
“Conceptual modeling is almost certainly the most important aspect of the simulation modeling process . . . A well-designed model significantly enhances the possibility that a simulation will meet its objectives within the required time-scale. What sets truly successful modelers apart is their effectiveness in conceptual modeling.”

[Robinson 2004]

The first, crucial step in conceptual modeling is *Domain Modeling*.
Domain Model

What it is: A “10,000-foot view,” a live “project glossary,” a simplified class diagram.

How to do it:
- Create list of candidate domain entities by extracting nouns from input documents.
- Review list, standardizing and defining terms.
- Deploy entities in a simplified class diagram (no attributes or operations) and draw important relationships (generalization, composition/aggregation).
- *Iterate as needed with all stakeholder groups and revisit throughout the project.*

What it is for:
- Answers the question, “What makes up the system and its environment?”
- Defines the scope of the project, standardizes terms.
- *Provides foundation for static structural model.*
Domain Model Input

What it is: Known information about the system and its environment.

How to do it:
- Informal requirements descriptions and mission descriptions.
 - *NOT* detailed, formal system requirements.
 - Generalized statements about system and what it does.
- CONOPS.
- Existing documentation.
- Stakeholder brainstorming sessions.

What it is for: Nouns extracted from these documents form a list of candidate domain entities.
Domain Model (Example)

- High Level Domain covers environment, mission and systems-of-systems representations
- Expands to increasingly detailed system representations
Why Use Domain Modeling?

- Standardize and define the problem space.
 - Use as a project glossary/naming convention.
 - Focus on real-world (problem domain) objects.
- Document domain structure.
 - Organize around key problem domain factors.
 - Encapsulate (sub) systems.
 - Simplify and/or standardize interfaces.
 - Identify systems and their interrelationships.
 - Enable analysis of the concepts.
- Provide critical foundation for follow-on conceptual modeling artifacts (e.g., use cases, activity models, state diagrams, M&S software design, etc.).

Complex systems-of-systems require a design approach that formalizes the mapping between behaviors and entities and remains flexible and resilient to change.
The domain model is critical to the conceptual modeling tasks, through which it has important application across analysis and development projects:

- Research, Development, and Analysis
- M&S, Software Engineering
- Systems Engineering, Architecture
- Business Processes, Project Management
Why It Matters: Research, Development & Analysis

- Establishes framework for factor identification and selection including:
 - **Structure**: defines systems and capabilities.
 - **Behavior**: defines functional processes.
- Defines the domain entities each group must focus on to achieve their objectives.
 - There will be overlap identified – requiring coordination.
- Provides the terminology and factors for development of:
 - Tests and experiments including specification of alternatives and trades, and scenario development requirements.
 - System functions which emerge from domain entities: methods, attributes, and interfaces.
- Supports analysis at different levels of abstraction/fidelity without changing the underlying model/architecture.
Analysis Example

- Analysis factors are selected using domain entities and derived artifacts.
- Selection is independent of simulation tool.

Simulation implementation is defined by the class structure based on the domain model.

Results provide assessment of the efficacy of the system alternatives and the sensitivity of the factors on one another.

<table>
<thead>
<tr>
<th>Targets Detected</th>
<th>Collection Capability</th>
<th>Comm Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>58</td>
<td>66</td>
</tr>
<tr>
<td>30</td>
<td>73</td>
<td>62</td>
</tr>
</tbody>
</table>

- Helps identify where M&S software should be developed.

- Represents the top level classes and associations for M&S design.
 - Forms a foundation for software design model (UML).
 - Models are derived, developed, or specified from the domain-level superclasses.

- Enables assessment of complex network-centric issues via reusability, extensibility, and re-configurability of models.

- Identifies M&S needs/requirements for potential assignment to available tools (including legacy simulations).
 - i.e., once a simulation need is identified, existing tools can be evaluated against it.
M&S Example

- Domain entity becomes class for model implementation.
- Model parameters used to compose system representation.
- Domain artifacts provide basis for evaluation of existing simulations.
Why It Matters: Systems Engineering

- Tracks overall system-of-systems development and interactions.
- Provides insight into the system/subsystem alternatives.
- Useful as a foundation for system architectures.
- Supports requirements development/refinement.
- Identifies redundant or superfluous systems/processes.
- Simplifies design.
- Identifies capability shortfalls.
- Identifies program risks:
 - Technical readiness,
 - Interoperability challenges,
 - Critical technologies.
- Stored in a database, which can be linked to other SE products.
Requirement: The system will engage advanced air-to-air and surface-to-air threats based on the rules of engagement.

Program Database: Requirements, domain model and other artifacts, MS&A information, project management info, etc.
Why It Matters: Business Processes

- Identifies:
 - Areas of responsibility for different stakeholders.
 - Maps to project Work Breakdown Structure.
 - Shortfalls in coverage/investments.
 - Return on investment and related tech maturity of individual systems.
 - Risks to the overall goals of the program.
- How is this done?
 - Each domain entity is related to activities supporting development of applications, data or products needed to accomplish objectives and goals.
 - Represents a unified simulation-based acquisition process with all components interconnected via the UML-based architecture.
Business Process Example

- Project’s WBS and activities based on domain entities and follow-on artifacts.
- Enables improved governance.
- Enhances task estimation and risk assessment.
Domain Modeling Assessment

Goods
- Replacement of legacy applications (incremental implementation)
- Gain understanding of current capabilities, analyze costs, compare with proposed replacement systems
- Make future programs more efficient
- Better risk management
- Potential for program-wide database or knowledge management system

Others
- Up-front costs
- Understanding new tools, language, processes
- Personnel and skillset availability

Pros
- Reuse across portfolio
- Common foundation/linkages for program tasks (S/W and system engineering, analysis, business processes)
 → CONVERGENCE
- Standardization
- Greater accessibility to stakeholders
- Lasting documentation (domain longevity)
- Tool/simulation/code agnostic

Cons
- Inertia of DoD acquisition practices
- Cultural resistance
Summary -- Domain Modeling:

- Is fundamental to conceptual model development, which itself is a crucial activity in large and complex projects.
- Is not a new idea, though it is (perhaps) under-utilized in the DoD community.
- Enables discovery of relationships between entities within the domain and analysis of technical problems.
- Results in a robust, relatively invariant model applicable across related domains.
- Facilitates linkage of diverse projects and processes into a unified portfolio.
- Increases efficiency of acquisition processes through flexibility and reusability.
- Provides a common foundation for M&S, architecture, analysis, and project management tasks . . .

→ Convergence
Sources

Questions?

Contact Info:

Nathaniel Horner
Nathaniel.Horner@jhuapl.edu
(240) 228-2908

Steve Topper
Steve.Topper@jhuapl.edu
(240) 228-2701

“It is far better to grasp the Universe as it really is than to persist in delusion, however satisfying and reassuring.”

- Carl Sagan
(1934-1996)
Backups
Use Cases

What it is: Descriptions of interactions between the system and its users.

How to do it:
- Identify
 - The actors – users of the system, including other systems.
 - The tasks facilitated by the system.
 - The actors’ participation in the tasks, including alternate courses of events.
- Use vocabulary previously defined in domain model.
- Go back and alter the domain model as errors are uncovered through use case exploration.

What it is for:
- Answers the question, “What are the user experiences with the system?”
- Helps define scope and provides general basis for more formal modeling.
- Provides foundation for the dynamic behavioral model.
Use Case (Example)

- Use cases are listed in a diagram showing the participating actors.

- Each use case is expanded into a document describing the flow of events involved, including:
 - Actors involved
 - Preconditions
 - Event sequences
 - Exceptions
 - Participants
 - Alternatives
 - Unresolved issues
Class Model

What it is: A more detailed static representation of the domain.

How to do it:

- Extend the domain model.
- Allocate behaviors to domain model entities based on use case descriptions.
- Add attributes and operations to domain model entities.
- Add classes to the solution space as necessary.
- Work iteratively, going back and forth between static model and behavioral model (e.g., activity, sequence diagrams).

What it is for: Begins to translate general descriptions into more formal system design.
Activity, State, other Behavioral Diagrams

What it is: A more detailed dynamic representation of the system.

How to do it:
- Create activity diagrams:
 - Break up use cases into component transactions or activities.
 - Sequence the activities.
 - Assign responsibility for each activity to a domain entity via swimlanes.
- Create state diagrams:
 - Define atomic states for each domain entity.
 - Sequence the states.
 - Define conditions and constraints governing state transitions.
- Use the use cases as a primary input.
- Work iteratively, going back and forth between the behavioral model and the static model (domain and class model), ensuring compatibility.

What it is for: Begins to formalize use cases into more detailed system behaviors and activities.
Behavioral Model (Example)

- State Diagram
- Activity Diagram
The Advance Man Portable Air Defense System (A-MANPADS) allows the Marines of Low Altitude Air Defense (LAAD) battalions to successfully meet their primary mission.

- Marine Corps LAAD units deploy in one of two primary missions; convoy support or local area defense. In both roles, LAAD units provide primary air defense.

- The A-MANPADS provides a means to safely and expeditiously transport 4 Stinger missiles in WRCs and ancillary equipment.

- The installation of the weapons station allows the Marines the option of mounting a crew served weapon such as the 7.62 machine gun, M240B, or the .50-caliber machine gun, M2 Heavy Barrel (HB). The crew served weapon could be utilized for self-protection against both air and ground threats within the inner launch boundary of the missile.
In the case of the A-MANPADS, the crew served weapon is flexible therefore the pintle needs to be flexible.

- The Mk 93 Universal Pintle provides the ability to switch between all crew served weapons in the Marine Corps’ arsenal with a minimum of effort.
- The Mk93 includes an adjustable safety stop for restricting the depression angle. This allows the pintle to not only adjust depending upon the weapon system, but also the vehicle load out.
• The Mk 93 pintle utilized with the HMMWV weapons station and a crew served weapon allows for a maximum declination angle of 27°. In the standard configuration with the M1025/M1043 slant-back HMMWV, this angle does not present an issue. The trajectory of the round would pass through the HMMWV outer shell in an area where no gear is stowed. However, the addition of the WRCs adds height to the rear dimension. If allowed to fire at maximum depression the round would impact the WRC as demonstrated by the figure.
• The methodology used to classify and rank mishap risks is based upon criteria and guidelines specified in MIL-STD-882
 – A combat loaded A-MANPADS is valued at less than $300k. With this in mind the dollar values were removed and system damage was evaluated with the MIL-STD-882C criteria.

• A group of independent system safety engineers determined that an impingement incident was both catastrophic and likely to occur several times during the life of the A-MANPADS.
 – The Hazard was assessed a Risk Level of High, IC. Thus requiring the Assistant Secretary of the Navy to accept the risk.

• The Program Manager requested an in-depth review of the Hazard.

<table>
<thead>
<tr>
<th>HAZARD RISK INDEX</th>
<th>RISK LEVEL</th>
<th>ACCEPTANCE AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>I A/B/C, II A/B, IIIA</td>
<td>High</td>
<td>Component Acquisition Executive (Assistant Secretary of the Navy for Research, Development and Acquisition)</td>
</tr>
<tr>
<td>I D, II C, III B</td>
<td>Serious</td>
<td>Program Executive Officer (Commanding General, Marine Corps Systems Command)</td>
</tr>
<tr>
<td>I E, II D/E, III C/D/E, IV A/B</td>
<td>Medium</td>
<td>Program Manager (Program Manager, Air Defense Weapon Systems)</td>
</tr>
<tr>
<td>IV C/D/E</td>
<td>Low</td>
<td>Program Manager (Program Manager, Air Defense Weapon Systems)</td>
</tr>
</tbody>
</table>

Risk Acceptance Levels as stated in MIL-STD-882C
• An accurate assessment of the severity of a round striking a Stinger missile can be garnered from a simple evaluation of the end results.
 – The Stinger Missile costs less than $100k
 – The missile is a mission critical component.
 • If the missile is rendered inoperable, the A-MANPADS becomes non-mission capable, temporarily resulting in a de facto combat loss.
• The Hazard is assessed a Severity of Category I, Catastrophic.

<table>
<thead>
<tr>
<th>SEVERITY</th>
<th>CATEGORY</th>
<th>RESULT CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catastrophic</td>
<td>I</td>
<td>Could result in death, permanent total disability, system loss, or irreversible severe environmental damage that violates law or regulation.</td>
</tr>
<tr>
<td>Critical</td>
<td>II</td>
<td>Could result in permanent partial disability, injuries or occupational illness that may result in hospitalization of at least three personnel, major system damage, or reversible environmental damage causing a violation of law or regulation.</td>
</tr>
<tr>
<td>Marginal</td>
<td>III</td>
<td>Could result in injury or occupational illness resulting in one or more lost workdays, minor system damage, or mitigable environmental damage without violation of law or regulation where restoration activities can be accomplished.</td>
</tr>
<tr>
<td>Negligible</td>
<td>IV</td>
<td>Could result in injury or illness not resulting in a lost workday, less than minor system damage, or minimal environmental damage not violating law or regulation.</td>
</tr>
</tbody>
</table>

Mishap Severity Categories as stated in MIL-STD-882C
probability level of C, Occasional, based on the following criteria:
- Properly setting the adjustable depression stop is a training issue.
- Training issues are a result of human error.
- Human error has a probability of 1×10^{-3}

<table>
<thead>
<tr>
<th>DESCRIPTIVE WORD</th>
<th>LEVEL</th>
<th>INDIVIDUAL ITEM</th>
<th>FLEET OR INVENTORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequent ($X > 10^4$)</td>
<td>A</td>
<td>Likely to occur frequently</td>
<td>Continuously experienced</td>
</tr>
<tr>
<td>Probable ($10^{-1} > X > 10^{-2}$)</td>
<td>B</td>
<td>Will occur several times in life of an item</td>
<td>Will occur frequently</td>
</tr>
<tr>
<td>Occasional ($10^{-2} > X > 10^{-3}$)</td>
<td>C</td>
<td>Likely to occur sometime in life of an item</td>
<td>Will occur several times across fleet</td>
</tr>
<tr>
<td>Remote ($10^{-3} > X > 10^{-6}$)</td>
<td>D</td>
<td>Unlikely, but possible to occur in the life of an item</td>
<td>Unlikely, but can reasonably be expected to occur</td>
</tr>
<tr>
<td>Improbable ($10^{-6} > X$)</td>
<td>E</td>
<td>So unlikely, it can be assumed occurrence may not be experienced</td>
<td>Unlikely to occur, but possible</td>
</tr>
</tbody>
</table>

Mishap Probability Levels as stated in MIL-STD-882C
• Weapon System Explosives Safety Review Board (WSESRB) has stated

“programs need to be utilizing one of the various methods (of human error prediction) and not use a blanket number \((1 \times 10^{-3})\)”

Human Error Quantification, WSESRB Executive Session, November 2005
Human Error

Hazard

Effect

Top Level Mishap

Hazard Causal Factors

HUMAN

SUBSYSTEM

INTERFACE

Death, Injury, Illness, Equipment Loss, Equipment Damage, Environmental Damage

The point at which the Inadvertent Release of Energy Occurred

A Condition that exists within the system that could lead to a TLSH

Element within the system design, implementation, or operation that leads to a hazard

Evaluate environment, task, timeframe, etc.

(e.g. person cutting their arm after coming in contact with the sharp edge)

(e.g. person coming in contact with the sharp edge)

(e.g. a sharp edge)
• The original assessment had only considered the final action that would lead to the mishap.

• Assessing a probability of failure for a situation starts by determining the series of actions that the operator undertakes for the particular situation. The methodology to determine the actions is known as a fault tree analysis (FTA).

• An FTA begins with the selection of an undesirable outcome, the root. Then, each situation that could cause that outcome is added to the tree. Further branches are added by assessing possible causes for each successive layer of contributing factors.
• The Human Factors Analysis and Classification System (HFACS) was selected for the A-MANPADS due to the inclusion of environmental, psychological, emotional, and physical influences on the operator, in addition to the active faults of the operator.

• HFACS was originally developed by the Federal Aviation Administration (FAA) and has been adopted by the US Navy for investigating the underlying reasons for human error in aviation accidents.

• HFACS was developed based on the “Swiss Cheese” model of human error described by James Reason (Reason, 1990). Most investigations only focus on the operator’s final error(s) that lead to the mishap. However, the “Swiss Cheese” model states that it is the alignment of many factors at many levels of the organization that align perfectly to allow or lead to the final error, much like the holes of many layers of Swiss cheese aligning to allow light through.
Not only were the actions of the Marine firing the weapon evaluated, but also the preexisting environmental conditions and the organizational doctrine required to initiate the chain of events.
Human Error Probability Techniques

• Human Error Assessment and Reduction Technique (HEART) Method
 – The HEART Method provides two tables to find the human error rate. A factor from the first table is multiplied by chosen factors from the second table.
 – Based on expert opinion – cannot be validated
 – There is the difficulty in dealing with the many variables which contribute to the probability of error occurrence at any point in time.

• SPAR-H Method
 – Provides a simple worksheet with multipliers for stress, complexity, experience, etc.
 – Computationally intensive

• Operator HEP Estimate
 – The Reactor Safety Study lists Operator Human Error Probability (HEP) Estimates for each scenario description
 – Has a limited number of scenarios. Expert judgment must be used in selecting a scenario that can be used as a substitute.

• Human Reliability Table
 – Lists Operator HEP Estimates for each general scenario description.
 – Generalized scenarios limit fidelity. Expert judgment must be used in selecting a scenario that can be used as a substitute.

• WSES RB Guidebook Worksheets
 – Supply complex tables of factors that take into account fatigue, stress, training, complexity, etc. These factors are used in a series of binomial equations which derive a final error rate.
 – Computationally intensive
The Standardized Plant Analysis Risk Human Reliability Analysis (SPAR-H) developed by the US Nuclear Regulatory Commission (NRC) takes into account performance shaping factors (PSFs). SPAR-H makes allowance for the following factors:
- Available Time
- Stress and Stressors
- Experience and Training
- Complexity
- Ergonomics
- Procedures
- Fitness for Duty
- Work Processes

Not only does SPAR-H account for a greater number of influences, but it also takes into account positive benefits derived from some PSFs.

SPAR-H makes a distinction between diagnosis (i.e., the processing of information) and action (i.e., the response).

It assigns a base value to the HEP for basic processes. A multiplier for each of the eight PSFs is then factored into determining the overall HEP.

SPAR-H allows for the occasion where the diagnosis, and the action are so interrelated that they can not be separated. Likewise, SPAR-H includes a correction factor for cases where the influence of PSFs is so great that an inaccurate HEP is produced.
SPAR-H Multipliers

- **Available Time:** Available time refers to the time the operator has to make a diagnosis and act upon the diagnosis. When time is short an operator tends to analyze fewer possible alternatives.

- **Stress/Stressors:** Stress is broadly defined as motivating forces that have both positive and negative effects on human performance. Small amounts of stress can lead to increased work performance, however, as the level of stress increases the ability to successfully complete tasks decreases.
 - The previous work that SPAR-H derived from allowed a multiplier of 25 when the operator believed himself to be in a life-threatening situation. When in combat the operator knows that he is in a life-threatening situation. Therefore a multiplier of 25 will be utilized for combat situations.

- **Complexity:** Complexity incorporates both the difficulty and the ambiguity of a task. If the task is mentally or physically difficult to perform the likelihood of failure increases noticeably.

- **Experience/Training:** Formal schooling, on the job training, years of experience with the system, and previous exposure to similar events are all factors taken into consideration when determining the value of this PSF.

<table>
<thead>
<tr>
<th>Category</th>
<th>SPAR-H Value</th>
<th>Combat Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inadequate</td>
<td>Failure</td>
<td></td>
</tr>
<tr>
<td>Time Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>= Time Required</td>
<td>10</td>
<td>N/A</td>
</tr>
<tr>
<td>Nominal Time</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Time Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 5x Time Required</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Time Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 50x Time Required</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Stress/Stressors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extreme</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>High</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Nominal</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Complexity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly Complex</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Moderately Complex</td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td>Nominal</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Experience/Training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Nominal</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

Harnessing the Power of Technology for the Warfighter
Procedures: This PSF accounts for the existence and usage of formalized procedures.

Ergonomics: Ergonomics considers the ease of interaction between the human and the machine. Such factors include, availability of instrumentation, positioning of instrumentation, ease of understanding the information presented, and the layout of the controls.

Fitness for Duty: This PSF considers the physical and mental capacity of the operator to properly perform the task. Considerations include drug usage, illness, fatigue, distractions, and personal problems.

- While combatants are generally physically fit, the conditions surrounding combat not only equalize this advantage but often degrade the fitness of the operator beyond that of a fever or some cough syrup. To account for this a multiplier of 10 is utilized for combat situations.

Work Process: Work Process captures the company culture and “way of doing business”. It considers how the work is planned and communicated, how management supports or enforces policies, and how the company as a whole values safety, quality, and the individual worker.

<table>
<thead>
<tr>
<th>Category</th>
<th>SPAR-H Value</th>
<th>Combat Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Available</td>
<td>50</td>
<td>N/A</td>
</tr>
<tr>
<td>Incomplete</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Available but Poor</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Nominal</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ergonomics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing/ Misleading</td>
<td>50</td>
<td>N/A</td>
</tr>
<tr>
<td>Poor</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Nominal</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Fitness for Duty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unfit</td>
<td>Failure</td>
<td>10</td>
</tr>
<tr>
<td>Degraded Fitness</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Nominal</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Work Process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Nominal</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>Good</td>
<td>0.8 – 0.5</td>
<td></td>
</tr>
</tbody>
</table>
SPAR-H Calculations

The multipliers are utilized by multiplying the base HEP for action or diagnosis by the 8 PSF multipliers.

The Base Multipliers are:
- 0.01 for diagnosis
 - The user is required to decide what the correct action should be based on external stimuli.
- 0.001 for action
 - The user implements the action as stated in a procedure or that they have chosen based on their diagnosis.

If the PSFs are significantly negative, the HEP can become inordinately large. To help adjust the HEP in the event of overwhelming negative influences a simple mathematical formula is provided below:

\[
HEP_{Adjusted} = \frac{HEP_{No\ min\ al} \cdot PSF_{Composite}}{HEP_{No\ min\ al} \cdot (PSF_{Composite} - 1) + 1}
\]
• Conservative assumptions made.
 – All armored A-MANPADS and only armored A-MANPADS
 – Used a quarter of their life cycle in combat
 – Loaded with live missiles half of the time.
 – Under attack every time they went to combat

\[
P_{\text{Combat}} = \frac{\text{AMANPADS}_{\text{Armored}}}{\text{AMANPADS}_{\text{Total}}} \cdot P_{\text{Life}} \cdot P_{\text{Missiles}} \cdot P_{\text{Attack}}
\]

\[
0.0266 = \frac{40}{188} \cdot 0.25 \cdot 0.5 \cdot 1
\]

2.66% chance of an A-MANPADS transporting missiles while being attacked
Probability of Shooting into the Danger Zone

- Just because the Marine returns fire does not guarantee the rounds are traveling towards the missiles.
- In lieu of data representing the number of attacks to the rear of vehicles, the percentage of the area on the vehicle considered to be the danger zone will be calculated.
 - The assumption is made that the operator never fires the machine gun elevated.

\[
P_{DZ} = \frac{DZ_{AZ}}{360°} \times \frac{DZ_{EL}}{22°}
\]

\[
0.0621 = \frac{41°}{360°} \times \frac{12°}{22°}
\]

6.21% chance of being attacked from the rear
• When the armorer receives a new pintle, a new mission role with a load out that requires a depression angle change, or a misaligned pintle is returned, the armorer sets the depression angle.

• A 0.005% chance that the armorer will fail to complete the adjustment is reasonable.
 – It is a required step of a procedure, ample time is supplied to complete the process, a follow on procedure performed by an independent person checks for the completion of this task, and the steps are well documented and simple.

<table>
<thead>
<tr>
<th>Category</th>
<th>Level</th>
<th>Value</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base HEP</td>
<td>Action</td>
<td>0.001</td>
<td>Action only</td>
</tr>
<tr>
<td>Available Time</td>
<td>5x Req</td>
<td>0.1</td>
<td>Armorer completes the task offline with more than ample time.</td>
</tr>
<tr>
<td>Stress/ Stressors</td>
<td>Nominal</td>
<td>1</td>
<td>With ample time to complete and no dependency on outcome, armorer is not stressed.</td>
</tr>
<tr>
<td>Complexity</td>
<td>Nominal</td>
<td>1</td>
<td>Steps are straight forward and easy to follow</td>
</tr>
<tr>
<td>Experience/ Training</td>
<td>Nominal</td>
<td>1</td>
<td>The job is simple but the armorer only does it.</td>
</tr>
<tr>
<td>Procedures</td>
<td>Nominal</td>
<td>1</td>
<td>The procedure is well documented and clearly written.</td>
</tr>
<tr>
<td>Ergonomics</td>
<td>Nominal</td>
<td>1</td>
<td>Ergonomics neither impede nor help</td>
</tr>
<tr>
<td>Fitness for Duty</td>
<td>Nominal</td>
<td>1</td>
<td>The armorer is more than fit enough.</td>
</tr>
<tr>
<td>Work Process</td>
<td>Good</td>
<td>0.5</td>
<td>The expectations are well defined and communicated clearly.</td>
</tr>
<tr>
<td>Nominal HEP</td>
<td></td>
<td>0.00005</td>
<td></td>
</tr>
</tbody>
</table>
• As the Marine is installing the pintle and the machine gun, the procedures instruct the Marine to check the depression angle using available components and tools.
 – The Marine is instructed to alert the armorer if the pintle is misaligned.
 – Before leaving on the mission, the senior Marine in the vehicle ensures that preoperational checks were performed.

• A 0.05% chance that the operator will fail at the check is reasonable.
 – It is a required step of a procedure completed often, a person in a supervisory role checks for completion, and the steps are well documented and simple.

<table>
<thead>
<tr>
<th>Category</th>
<th>Level</th>
<th>Value</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base HEP</td>
<td>Action</td>
<td>0.001</td>
<td>Action only</td>
</tr>
<tr>
<td>Available Time</td>
<td>Nominal</td>
<td>1</td>
<td>Part of the installation of the weapon and sufficient time is provided</td>
</tr>
<tr>
<td>Stress/ Stressors</td>
<td>High</td>
<td>2</td>
<td>Operator is preparing for combat, anticipation and fear begin to increase stress</td>
</tr>
<tr>
<td>Complexity</td>
<td>Nominal</td>
<td>1</td>
<td>Steps are straight forward and easy to follow</td>
</tr>
<tr>
<td>Experience/ Training</td>
<td>High</td>
<td>0.5</td>
<td>The same procedure is followed every time the weapon is installed</td>
</tr>
<tr>
<td>Procedures</td>
<td>Nominal</td>
<td>1</td>
<td>The procedure is well documented and clearly written.</td>
</tr>
<tr>
<td>Ergonomics</td>
<td>Nominal</td>
<td>1</td>
<td>Ergonomics neither impede nor help</td>
</tr>
<tr>
<td>Fitness for Duty</td>
<td>Nominal</td>
<td>1</td>
<td>The operator may be uncomfortable but their fitness is not degraded.</td>
</tr>
<tr>
<td>Work Process</td>
<td>Good</td>
<td>0.5</td>
<td>The expectations are well defined. Additionally the supervisor ensures that the process is completed.</td>
</tr>
<tr>
<td>Nominal HEP</td>
<td></td>
<td>0.0005</td>
<td></td>
</tr>
</tbody>
</table>
When the Marine identifies a threat and begins firing, there is a probability that he will continue to fire even if the rounds are going to impact the WRC.

An adjusted value of **47.39%** is a reasonable percentage to expect.

- When in combat and under attack, operators are likely to experience tunnel vision and fixate on the threat until it is eliminated.
- The adjustment equation was utilized to correct for the overwhelming multipliers.

<table>
<thead>
<tr>
<th>Category</th>
<th>Level</th>
<th>Value</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base HEP</td>
<td>Action</td>
<td>0.001</td>
<td>Action only</td>
</tr>
<tr>
<td>Available Time</td>
<td>Avail = Req</td>
<td>10</td>
<td>In combat Oper. Always has just enough time</td>
</tr>
<tr>
<td>Stress/ Stressors</td>
<td>Combat</td>
<td>25</td>
<td>Life threatening situation</td>
</tr>
<tr>
<td>Complexity</td>
<td>Nominal</td>
<td>1</td>
<td>Firing the weapon is relatively easy</td>
</tr>
<tr>
<td>Experience/ Training</td>
<td>Above Avg</td>
<td>0.6</td>
<td>Even the newest member of the squad trains on the system rigorously. However, rear attacks and shooting around the WRC are not well rehearsed.</td>
</tr>
<tr>
<td>Procedures</td>
<td>Nominal</td>
<td>1</td>
<td>Procedures are well established and followed explicitly.</td>
</tr>
<tr>
<td>Ergonomics</td>
<td>Nominal</td>
<td>1</td>
<td>Ergonomics neither impede or help</td>
</tr>
<tr>
<td>Fitness for Duty</td>
<td>Combat</td>
<td>10</td>
<td>Even the most physically fit personnel suffers from degradation of fitness in combat</td>
</tr>
<tr>
<td>Work Process</td>
<td>Above Avg</td>
<td>0.6</td>
<td>While fog of war impedes the process; expectations are clear, concise, well communicated, and strictly enforced.</td>
</tr>
</tbody>
</table>

| Nominal HEP | 0.9 | Due to the large number of negative multipliers the adjustment was used. |
| Adjusted HEP | 0.47393365 | |

Harnessing the Power of Technology for the Warfighter
• WRC Shot When No Depression Stop is Present:
 – The A-MANPADS is in combat
 – The weapon enters the “danger zone”
 – The Marine fires the weapon while in or around the “danger zone”.

\[
P_{\text{NoStop}} = P_{\text{Combat}} \cdot P_{\text{DZ}} \cdot HEP_{\text{Shoot}}
\]

\[
7.8301 \times 10^{-4} = 2.6596 \times 10^{-2} \cdot 6.2121 \times 10^{-2} \cdot 4.7393 \times 10^{-1}
\]

With no stop present and conservative representations of the likelihood of the A-MANPADS being in combat with a live missile and attacked from behind, the probability of shooting the WRC is \(7.8301 \times 10^{-4}\) or 7.83 chances in one thousand.
The Depression Stop is Misaligned by the Marine:
- The A-MANPADS is in combat
- The weapon enters the “danger zone”
- The Marine fires the weapon while in or around the “danger zone”.
- The operator misaligns the pintle

\[
P_{\text{Check}} = P_{\text{NoStop}} \cdot HEP_{\text{Check}}
\]

\[
3.9151 \times 10^{-7} = 7.8301 \times 10^{-4} \cdot 5 \times 10^{-4}
\]

With the addition of a depression stop the probability of shooting the WRC is \(3.9151 \times 10^{-7}\) or approximately one in 250,000.
• The Depression Stop is Misaligned by the Armorer:
 – The A-MANPADS is in combat
 – The weapon enters the “danger zone”
 – The Marine fires the weapon while in or around the “danger zone”.
 – The armorer misaligns the pintle or fails to align the pintle at all
 – The operator does not find the misalignment.

\[
P_{\text{Misalign}} = P_{\text{Check}} \cdot HEP_{\text{Misalign}}
\]

\[
1.9575 \times 10^{-11} = 3.9151 \times 10^{-7} \cdot 5 \times 10^{-5}
\]

By making the armorer responsible for the adjustment of the safety stop, the probability of shooting the WRC becomes \(1.9575 \times 10^{-11}\) or approximately one in 50 Billion.
The risk associated with the A-MANPADS operating with the adjustable stop provided with the Mk 93 pintle is of a level acceptable by the Program Manager. Based upon:

- The condition that all controls and procedures are complied with
- The A-MANPADS will be operated within stated parameters
Conclusion

• After the study was conducted, the Program Manager was able to accept the risk associated with the hazard, the Program received a full rate production decision, and all systems were fielded on schedule.
• The use of a fault treat analysis such as HFACS for Safety Assessment Probability Levels is crucial to capturing a true picture of all the factors leading to a hazard.
• While the use of SPAR-H requires computational effort, I have demonstrated that the math is uncomplicated and relatively concise.
• SPAR-H includes the flexibility to be utilized for any Program. It does not depend upon predetermined scenarios, but rather considers 8 performance shaping factors that are crucial to success in any action or diagnosis.
• With the comparative ease of applying SPAR-H, there is no need for a program to arbitrarily apply a blanket number (1 x 10^-3) to their Safety Assessment Probability Levels.
Questions?
Modeling and Simulation
Resource Reuse
Business Model

Dennis P. Shea
Outline

- Problem statement
 - Inefficient use of M&S resources
 - Barriers to reuse
 - Multiple perspectives on reuse
- Study approach
- Review federal laws, DoD regulations and policies on intra-government business transactions
- M&S may contain intellectual property
- Proprietary M&S and reuse
- Lessons learned from successful M&S reuse
- Framework for a business model
- Business model actions to spur reuse
The Problem: Inefficient Use of M&S Resources

Few M&S resources are reused – either during a single program’s lifecycle or across acquisition programs.

Absence of incentives for Gov’t M&S managers and industry developers
Reuse doesn't mean necking down to a single model or database

Variables in a terrain database

- Spectrum (Visual, IR)
- Latency (Real-time, NRT)
- Accuracy (+/- deg, pixels)
- Format (DTED, Open Flight)
- Data Source (commercial)
- Classification (U, S, TS)
- Dimensionality (2D, 3D)
- Area (NM, sq. blocks)
- Display (Height/width scene)
- Resolution (pixels, degrees)
Barriers to M&S Resource Reuse

- Users lack awareness of reusable resources
- Insufficient details about reusable resources
- Hard to assess the true capabilities and limitations of existing resources
- Resources not in a form suitable for reuse
- Users lack trust in resources developed by others/ NIH
- Model is available but not the data
- M&S components don’t work well together
- Repositories are incomplete and not current
- Little insight into how resources have been used in the past, including successfully and failures
- Difficult to access the actual resource
- Difficult to adapt existing resources to new problems
- No mechanism to compensate developer for resource investment and guidance on use
- No mechanism to protect developer from mischievous uses
Multiple perspectives on M&S reuse

Program Manager

- Deadlines
- Budget pressures
- Short time horizon
- Specific requirements

Warfighting Capabilities

- Innovation
- Reduced risk, cost and time

Efficient investments

- Longer time horizon
- Promote competition
- Uncertain threats/scenarios

Industry

- Promote COTS
- Shortening product lifecycles
- Compete for business
- Profit
- Protect IP

DoD (writ large)

Reduced risk, cost and time

Shortening product lifecycles

Compete for business

Profit

Protect IP
Objective

- Develop an economic business model that will make the reuse of M&S resources an attractive option for both consumers and providers of resources
 - Puts the best M&S resources in the hands of users
 - Fosters collaboration and sharing
 - Leads to cost efficiency and minimal duplication of effort
 - Protects IP rights of industry
 - Ensures profitability of M&S industry
M&S Reuse Puzzle

- Protection of IP
- Open Business Models
- Contracting Practices
- Standards
- IP Intermediary
- Repositories
- Full Resource Registration
- COTS
- Open Source
- Strong Scientific Practices
Approach

- Reviewed existing policy documents, DoD instructions, guidance, interagency agreements, FAR, DFARS, prior reports, ...
- Prepared case studies
 - SIMDIS, Linux, EADSIM, ICT, NIH/OTT, ...
- Used a variety of survey instruments, interviews, e-mail dialogue with industry and government
 - Where is reuse occurring today?
 - What “business factors” help to motivate reuse?
 - What are the challenges to reuse and how might these be overcome?
Who we have spoken to:

<table>
<thead>
<tr>
<th>Company/Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northrop Grumman</td>
</tr>
<tr>
<td>Aegis Technology</td>
</tr>
<tr>
<td>MAK Technologies</td>
</tr>
<tr>
<td>PM FCS AD M&S</td>
</tr>
<tr>
<td>NGA</td>
</tr>
<tr>
<td>NAVAIR Portable Source Initiative</td>
</tr>
<tr>
<td>OSD-JDS</td>
</tr>
<tr>
<td>BreakAway, LTD</td>
</tr>
<tr>
<td>MSIC, DIA TMAP</td>
</tr>
<tr>
<td>USJFCOM J9</td>
</tr>
<tr>
<td>USAF Common Data Set</td>
</tr>
<tr>
<td>M&S EA (Ocean, Air&Space, Terrain)</td>
</tr>
<tr>
<td>IWS General Council (SEA00)</td>
</tr>
<tr>
<td>Pitch Technologies</td>
</tr>
<tr>
<td>MMA M&S</td>
</tr>
<tr>
<td>Boeing</td>
</tr>
<tr>
<td>Soar Technology</td>
</tr>
<tr>
<td>Lockheed Martin</td>
</tr>
<tr>
<td>MOVES/NPS</td>
</tr>
<tr>
<td>Metron</td>
</tr>
<tr>
<td>NAVMSMOMO</td>
</tr>
<tr>
<td>JSF M&S</td>
</tr>
<tr>
<td>IWS M&S</td>
</tr>
<tr>
<td>USN IWS SHARE</td>
</tr>
<tr>
<td>SAF/XC</td>
</tr>
<tr>
<td>OPNAV N814</td>
</tr>
<tr>
<td>NRL</td>
</tr>
<tr>
<td>JASP</td>
</tr>
<tr>
<td>MSIAC</td>
</tr>
</tbody>
</table>
Key issue for a business model

Under what conditions can a DoD program manager or other government official invest in M&S today
 – to satisfy both current and future requirements,
 – including perhaps requirements of another yet unknown government user,
 – Including additional investment to make the M&S resource reusable,
 – and be compensated in a future intra-government business exchange?
Federal laws and DoD regulations affecting intra-government business transactions

- Can’t use current year funds for future anticipated, but unrealized requirements
- Can’t use appropriations for costs to be reimbursed through business transactions
- Can’t charge for costs built into budget
- Reimbursement only for marginal costs
- May charge only to recover cost of dissemination
- May transfer asset to a working capital fund and subsequently charge fully loaded costs
Interagency Acquisition of M&S

<table>
<thead>
<tr>
<th>Servicing agency</th>
<th>Requesting agency</th>
</tr>
</thead>
</table>
| (1) Existing GOTS or COTS with Gov’t Purpose Rights | (1) No compensation allowed
- Congress has appropriated funds to servicing agency
- No increase in support supplier’s costs |
| (2) Same as (1) + Gov personnel or contract support | (2) Fund incremental cost of labor |
| (3) Same as (1) + model enhancements | (3) Fund model enhancements |
| (4) COTS M&S with license requirements | (4) Fund incremental license fees |
| (5) New M&S with joint requirements | (5) Jointly fund new M&S |
M&S resources often contain valuable intellectual property

- Intellectual property refers to *creations of the mind*: inventions, literary and artistic works, and symbols, names, and images used in commerce.
 - In M&S the IP is often encapsulated in the source code and data sets
- DOD’s access to M&S IP developed under contract is governed by both copyright law, patent law, and the procurement regulations contained in the DFARS
 - These laws affect the Government’s ability to use, reproduce, modify, and release the resource to one or more potential users
- Control of IP is determined, in part, by who funded development
 - Government, Industry, or Mixed
 - But formal title is generally retained by the contractor-developer regardless of funding source
 - DoD acquisitions that involve a mix of government and IRAD funded technologies pose a challenge in determining control “rights”
Proprietary M&S and reuse

- COTS provides DoD with access to leading-edge M&S that otherwise would not be available
- COTS supports a broader market than DoD and thus capabilities should continue to improve over time
 - But a challenge to maintain legacy systems
- COTS enables “agile” M&S investment decisions by eliminating long-term O&M
- Developer may earn a short-term monopoly
 - Until the next wave of innovation
- Decouple the M&S from the original developer?
 - Yes-- a source license and/or tech data rights will promote 3rd party competition and encourage DoD to develop in-house talent to extend the M&S
- DoD may also require source license simply to “look under the hood”
- Enterprise license may reduce overall DoD costs of COTS
- Decision on negotiating for source or enterprise license depends on reuse potential (and willingness of developer)
Lessons learned from successful M&S reuse

Keep within a small, well-informed community
- V&V guides use
- MOU if needed

Avoid misuse

Discover

Keep within a small, well-informed community

Assess

Rely on standards
- V&V
- database formats (OpenFlight, Shape, GeoTIFF)

Access

Government Purpose Rights

Compensate

User/Provider relationship

MIPR to cover
Additional costs:
- Personnel
- Model enhancements
- incremental license fee

Employ

Assume knowledgeable user
- User funds integration

GPR license and proper Sys Eng to reduce costs
M&S Resource Reuse Business Model

M&S Suppliers & Support Infrastructure
- Core capabilities
 - H/W & S/W
 - System information
 - Org & Op Knowledge
 - Conceptual models

Partner network
- Gov’t agencies
- Labs
- Industry
- International

Value activities
- Develop
- Test
- Validate
- Prototype

Value Proposition
- Savings (time/$$)
- Authoritative
- Joint context
- Interoperability

Compensation
- Licensing
- Royalties
- Support $$
- Purchase options

Customer
- Target Mkt
 - PEOs, PMs
 - Dir Training
 - Hd Analysis
 - Service/Component

- Customer Relationships
 - Discovery tools
 - Trust/ MOUs

Distribution channel
- Access control
- IP Intermediaries
- MOUs
Business model actions to spur M&S reuse

Government

- Broadly Used Tools
 - Centrally fund
 - Life Cycle Manage
- License Rights
 - Track development history
 - Assess reuse potential early
 - Manage licenses
- Open Business Models
 - M&S intermediary
 - Negotiate licenses
 - Registry w/user wiki

Industry

- IP
 - Provide volume license
 - NDA to provide visibility
- Contracting
 - Specify reuse as objective
 - Fund full development cost
 - Specify deliverables
 - Transfer resource to WCF
 - Best practices
- Open Standards
 - Interoperability
 - Network effects
- Open Source
 - Field initial version, then OSS
 - Rapid test

Best practices
Backup
Business model actions that will spur M&S reuse (1 of 7)

- Improved contracting practices
 - Specify software, tech data, documentation as a deliverable
 - Price contract to include full cost of making M&S reusable (licenses, documentation, V&V, interfaces, ...)
 - Include expectations for software reuse in solicitations (and incentives for achieving reuse)
 - Implement stronger oversight of M&S development process
 - When was it developed and who paid for it?
 - Is contractor entitled to restricted or limited rights?
 - Standard contract language requiring GPR on all datasets
 - Require registration of all M&S resources (with metadata)
Business model actions that will spur M&S reuse (2 of 7)

- Implement improved training for contract officers and program managers

Contract Officers
-- Goals and strategies for M&S reuse
-- Form and function of alternative deliverables:
 - Computer programs, source code, object code, algorithms, flow charts, computer databases, documentation, etc.

Program managers / DoD decision makers
-- Goals and strategies for M&S reuse
-- Software licenses and tech data rights:
 - Unlimited, limited, restricted, government purpose, commercial license, nonstandard rights
-- Negotiating strategies

- Develop a “Best Practices Guide” for contracting M&S resources
Business model actions that will spur M&S reuse (3 of 7)

- For broadly used GOTS M&S, use central funding to make the resource reusable and to manage Life Cycle Costs
 - No single organization can be responsible
- Similar approach for common databases
 - Environment, threat models, scenarios, current and future forces (Blue, Red, White)
- Negotiate volume or enterprise license for proprietary M&S
Emerging tenets for an M&S business model (4 of 7)

M&S intermediary to create a secondary market

- Patterned after IP intermediary (Innovation Xchange, InnoCentive)
- Functions as an honest broker
 - Helps PMs locate suitable M&S resources
 - Helps developers find a market for established M&S resources
 - Independent of developers and users – Free to sign NDAs
- Documents legal status of each M&S resource within DoD
- Facilitates license agreements
- Manages tiers of licenses across DoD
- Builds and maintains the knowledge base
 - How resources have been used in the past
 - V&V histories
- Handles MOUs to guide appropriate use and avoid liability

Virtual collaboration through electronic registries alone will be insufficient to achieve desired levels of reuse
Business model actions that will spur M&S reuse (5 of 7)

• Establish enablers for open business model transactions for both government and industry
 – Register reusable M&S assets (Gov’t and industry)
 – Include license rights
 – Include info on previous applications
 – Allow user-wiki comments on experiences with the M&S
Business model actions that will spur M&S reuse (6 of 7)

• Explore the transfer of reusable M&S resources to a working capital fund (e.g., major test range)
 – Compensate M&S provider with test range services

• Develop methods to assess downstream and cross-program reuse potential

• Adopt strong scientific practices to ensure credibility of M&S products
Business model actions that will spur M&S reuse (7 of 7)

- Promote the use of open source software
- Grant industry access to approved government models and databases
- Add reuse as performance objective for Gov’t stewards of M&S funds
 - Examine registry/repository first
 - Fund to make new M&S reusable for others
- Pursue balanced acquisition strategy
 - M&S COTS with tier-based licenses, GOTS, GPR, and proprietary non-commercial where needed
- Publicize DoD M&S reuse objectives and strategy
 - Use keynote address at conferences/ articles in trade journals and professional societies
Integrating Architecting and Systems Engineering

NDIA SE Conference
22 October 2008
Organizations are developing major systems that need to interface and interact

Differences in content and formats inhibit comparison of architectures

Disparate and unrelatable architecture products lead to non-integrated, non-interoperable, and non-cost effective capabilities in the field

Motivations for DoDAF

- Architectures required by law (Clinger-Cohen, etc.)
- Structured, repeatable *method* for investments and investment alternatives
- Influence and guide organizational change
- Create New Systems (*i.e.*, define System Requirements)
- Deploy (plan for) new technologies
 - *Ex.*, Net-Centric Warfare
Typical DoDAAF Taxonomy

Operational Concept
- OV-1 High-level Operational Concept Graphic
- OV-2 Operational Node Connectivity Description
- OV-3 Operational Information Exchange Matrix
- OV-4 Command Relationships Chart
- OV-5 Activity Model
- OV-6C Operational Event/Trace Description

SV-1 System Interface Description
SV-2 Systems Communication Description
SV-3 Systems Matrix
SV-4 System Functionality Description
SV-5 Operational Activity to System Function Traceability Matrix
SV-6 System Information Exchange Matrix
SV-7 System Performance Parameters Matrix
SV-8 System Evolution Description
SV-9 System Technology Forecast
SV-10 System Activity Sequence & Timing
TV-1 Technical Architecture Profile
TV-2 Standards Technology Forecast

1st Order Analysis: Functionality
- SV-3 System Interface Description
- SV-4 Systems Communication Description
- SV-5 Systems Matrix

2nd Order Analysis: Static Interoperability
- OV-2 Operational Node Connectivity Description
- SV-1 Systems Communication Description
- TV-1 Technical Architecture Profile
- OV-3 Operational Information Exchange Matrix
- SV-2 Systems Matrix
- SV-6 System Information Exchange Matrix
- OV-6C Operational Event/Trace Description
- SV-10 System Activity Sequence & Timing
- SV-7 System Performance Parameters Matrix

Architectures Provide the Framework for FoS/SoS Systems Engineering & Acquisition

FoS/SoS Evolution
- SV-8 System Evolution Description
- SV-9 System Technology Forecast

3rd Order Analysis: Dynamic Interoperability
- SV-10 System Activity Sequence & Timing

Note: There are dependencies between the Architecture products that are not shown in the System Engineering flow. Many of the products are developed concurrently.

Ref: “Naval Collaborative Environment”, Dr. Harry Crisp, 2002

DRM: Design Reference Mission
OpSit: Operational Situation
TTP: Tactics, Techniques, Procedures
FoS: Family of Systems
SoS: System of Systems

Executable Model
DRM: Design Reference Mission
OpSits: Operational Situations
TTP: Tactics, Techniques, Procedures

Architectures Provide the Framework for FoS/SoS Systems Engineering & Acquisition

Ref: “Naval Collaborative Environment”, Dr. Harry Crisp, 2002
Integrated Architectures – Defined

• Architecture data elements uniquely defined and consistently used

• Accomplished through the mapping of standardized terms, definitions, and relations
 – Objects used in more than one view are identical
 – Objects linked between views are linked within an underlying data base.

• *Common points of reference* linking different views of the architecture

• Examples
No Requirements
Need for integration with other SE related activities – (Test Planning)
Representations of Traceability lacking
Review of MBSE

• Model-driven approach to capture and integrate:
 – Requirements Development
 – Logical Analysis
 – Design Solution
 – Implementation
 – Integration
 – Verification
 – Validation

• System Specification is the model, Model is the System Specification
Example MBSE taxonomy (cont.)

Primary Concurrent Engineering Activities At Each Layer

<table>
<thead>
<tr>
<th>Source Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-level Reqts.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 1 (Draft 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Requirements for this layer are embodied in the model passed from the prior layer</td>
</tr>
<tr>
<td>Behavior Analysis</td>
</tr>
<tr>
<td>Synthesis/Architecture</td>
</tr>
<tr>
<td>Design V & V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Design Repository</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification & Report Generation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iterate as required</th>
</tr>
</thead>
<tbody>
<tr>
<td>When layer completed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 2 (Draft 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Requirements for this layer are embodied in the model passed from the prior layer</td>
</tr>
<tr>
<td>Behavior Analysis</td>
</tr>
<tr>
<td>Synthesis/Architecture</td>
</tr>
<tr>
<td>Design V & V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Design Repository</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification & Report Generation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iterate as required</th>
</tr>
</thead>
<tbody>
<tr>
<td>When layer completed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer n (Final Specs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Requirements for this layer are embodied in the model passed from the prior layer</td>
</tr>
<tr>
<td>Behavior Analysis</td>
</tr>
<tr>
<td>Synthesis/Architecture</td>
</tr>
<tr>
<td>Design V & V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Design Repository</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification & Report Generation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iterate as required</th>
</tr>
</thead>
<tbody>
<tr>
<td>When layer completed</td>
</tr>
</tbody>
</table>

- Must complete a layer before moving to the next layer (completeness)
- Cannot iterate back more than one layer (convergence)
MBSE and Integrated Architecture Common Traits
DoDAF Integrated Data Layer

Architecture Framework Structure

Presentation Layer
Products
Views

Data Layer
Architecture Data Elements
Operational Nodes
Operational Activities
Data
Information
System Functions
Systems Nodes
Performance
Standards
Integrated, Consistent Analysis: Complete Specifications, Project Documentation, Queries & Models
Integrated DoDAF Data Model

Operational Architecture Domain

- Operational Node
 - built from
 - performs
 - exhibits
 - decomposed by
 - achieves
- NeedLine
 - exhibits
 - transfers
 - decomposed by
 - performs
- Operational Information
 - input / outputs / triggered by
 - captures / consumes / produces
- Operational Activity
 - decomposed by
 - achieves
- Operational Task
 - includes
- Operational Activity
 - includes
- Mission
 - includes
 - Organization
 - includes

System Architecture Domain

- Component
 - built from
 - performs
 - exhibits
 - decomposed by
 - achieves
- Interface
 - exhibits
 - transfers
 - decomposed by
 - performs
- Item
 - input / outputs / triggered by
 - captures / consumes / produces
- Function
 - decomposed by
 - includes
 - Color Code
 - Physical Element
 - Interface Element
 - Functional Element
 - Requirement Element

Guidance

- includes
- guides

Selected Classes

- includes
Systems Engineering Data Model (partial)

Source Documents
- **Requirement (Performance)**
- **Requirement (Functional)**
- **Requirement (Constraint)**

System Behavior
- **System/Components**

C.1 Universe Component
- **C.2 Customers Component**
- **C.3 Collectors Component**

SYS.1 Collection Management System
- **S.1.1 Analyst/Workstation Component**
- **S.1.2 Analyst/Command Center Component**

User System System User
- AND
- 50.1 Make Collection Request
- 50.2 S1. Accept & Format Request
- 50.3 S1. Check Product Inventory
- 50.4 S1. Get Product From Inventory
- 50.5 S1. Provide Products
- 50.6 S1. Accept Products
DoDAF and MBSE System Model Overlap - Examples
Description: The Tactical Image Management Architecture is composed of both an operational element and an image management system which supports the architecture. The tactical scenario models an army platoon which is advancing over a hill and requires information about the tactical environment on the other side of the hill. The platoon makes an image information request which is transferred back to joint task force. The joint task force has access to an image management system which checks to see if the information required is already available in its inventory. If the information is not in the inventory, a tactical UAV, in this case a Predator, is tasked to collect an image of the other side of the hill, send it back to the image management system, and then the requested tactical information is communicated to the platoon.
Architectures

Architecture

- composed of
 - Operational Architecture
 - Systems Architecture
The Tactical Image Management Architecture is composed of both an operational element and an image management system which supports the architecture.

The tactical scenario models an army platoon which is advancing over a hill and requires information about

The purpose of this architecture model is to serve as a sample application of the CORE DoDAF v1.5 schema.

This architecture demonstrates two specific ideas:

1) How to express capabilities within the operational architecture
2) How to express services in a system architecture

Component: S. Image Management System with Services
OperationalNode: IM TACIM Op Scenario Participants
Architecture Traced to Guidance Documents
JV.3.5.2 Emerging Importance of Information Superiority

Description:
We must have information superiority: the capability to collect, process, and disseminate an uninterrupted flow of information while exploiting or denying an adversary’s ability to do the same.

Type:
Strategy

Source Document(s):
Joint Vision 2010

Included In Higher Level Guidance:
JV.3.5 Implications of Technological Advances

Guides:
Architecture: Mod Tactical Image Management

JV.4 Conduct of Joint Operations

Description:
Pages 17 through 31 of JV 2010.

Source Document(s):
Joint Vision 2010

Includes Subordinate Guidance:
JV.4.1 New Operational Concepts
Architectures - Example

- Architecture
 - Operative Architecture
 - Systems Architecture

```
Architecture

Mod
Tactical Image Management v2
Architecture

composed of

IM
TACIM Op Scenario Particip...
OperationalNode

S.1
Image Management Sy...
Component
```
Capability – Support External Users
Support External Users as an OV-5

Support external uses of IMS inventory products
Operational Activity Model (OV-5)

C.2 Support external uses of IMS inventory products IDEF0 Diagram
Architectures & Domains

Operational Architecture Domain
- Operational Context
 - External Nodes
 - Operational Architecture

Systems Architecture Domain
- Systems Context
 - Systems Architecture
 - External Systems

Architecture
- built from Operational Context
- built from External Nodes
- built from Operational Architecture
- built from Systems Context
- built from Systems Architecture
- built from External Systems
Hierarchy of Operational Nodes
I/O of Operational Activities

- c2. User authorization request
 - C.2.1 Validate Authorized User
 - C.2.2 Decontinue
 - C.2.3 Accept Search Request
 - C.2.4 Provide search results to external user
 - C.2.5 External Inventory Searches

- c2. Search request

Date: Thursday, July 26, 2007
Author: Vitech Corporation
Number: C.2
Name: Support external uses of IMS inventory products
... And From Our Integrated Architecture ...
Tactical Image Management

Operational Information Exchange Matrix (OV-3)

<table>
<thead>
<tr>
<th>PART I</th>
<th>Needline</th>
<th>Information Exchange</th>
<th>Operational Information Element</th>
<th>Information Source</th>
<th>Information Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brigade-JTF Communications</td>
<td>Brigade - JTF Exchange Characteristic</td>
<td>c1. Collected Information</td>
<td>JTF Level (Land)</td>
<td>Brigade Level</td>
<td>Translate Information into Verbal Commands (Az-Ia)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Description: Package of imaging information and augmenting material returned to the customer.</td>
<td>Transmit Collected Information (Az-Ia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accuracy: Medium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IM Cell-JTF Communications</td>
<td>c1. Formatted RFI</td>
<td>Brigade Level</td>
<td>JTF Level (Land)</td>
<td>Receive Formatted RFI (Az-Ia)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Description: Formatted Request for Information requesting intelligence on a target at a specified location.</td>
<td>Request Latest Information for Location (Az-Ia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accuracy: High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IM Cell-TUAV Communications</td>
<td>c1. Target Imaging</td>
<td>TUAV</td>
<td>Image Management Cell</td>
<td>Accept Tasking for Tactical Operations (Az-Ia)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Description: Tasking request to acquire imaging intelligence for tactical commanders.</td>
<td>TUAV Ops (Az-Ia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accuracy: High</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 1995-2006 Vitech Corporation. All rights reserved.
Architectures & Requirements

Operational Architecture Domain

Operational "need"
[read: Capability]

Translation process

Requirements

Translation process

Systems Architecture Domain

Design

© 1995-2006 Vitech Corporation. All rights reserved.
Capability to Requirement Traceability

Support external uses of IMS inventory products

Allow authorized external [outside the boundary of existing TUAV] customers to query for existing image products.

Requirement MR.3 Provide Inventory Search Capability
Requirement to Function Traceability

The system shall provide the capability for non-tactical customers to search existing product inventory and retrieve existing products.
Op Activities implemented by System Functions
SV-5a Operational Activity to Systems Function Traceability Matrix

<table>
<thead>
<tr>
<th>Function</th>
<th>Operational Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept Search Request</td>
<td></td>
</tr>
<tr>
<td>Authorize User</td>
<td></td>
</tr>
<tr>
<td>Check Product Inventory</td>
<td></td>
</tr>
<tr>
<td>Check Subscriber Requests</td>
<td></td>
</tr>
<tr>
<td>Determine Sensor Mix</td>
<td></td>
</tr>
<tr>
<td>Distribute New Product</td>
<td></td>
</tr>
<tr>
<td>Existing Subscriptions?</td>
<td></td>
</tr>
<tr>
<td>Fly to Surveillance Position</td>
<td></td>
</tr>
<tr>
<td>Get Product From Inventory</td>
<td></td>
</tr>
<tr>
<td>Get Search Parameters</td>
<td></td>
</tr>
<tr>
<td>Get Subscription Parameters</td>
<td></td>
</tr>
<tr>
<td>New Product Received</td>
<td></td>
</tr>
<tr>
<td>Not Authorized</td>
<td></td>
</tr>
<tr>
<td>Perform Inventory Search</td>
<td></td>
</tr>
<tr>
<td>Perform Predator Surveillance</td>
<td></td>
</tr>
<tr>
<td>Prioritize Request</td>
<td></td>
</tr>
</tbody>
</table>

Support external uses of IMS inventory products to Operational Activity to Systems Function Traceability Matrix (SV-5)

- X indicates traceability.

© 1995-2006 Vitech Corporation. All rights reserved.
3.2.1.16.7 Send User Access Rights
This function responds with the user's access rights.

3.2.1.16.8 Send Unknown User
This function notifies the interfacing service that the user is unknown.

3.2.1.17 Authorize User
Supplied credentials indicate the user is authorized access, so acknowledge the access.

3.2.1.18 Get Subscription Parameters
This function receives user inputs for a subscription to new products.
N2 Diagram Provides a Snapshot of System I/O

- user authorization
- authorized user
- subscription details

IMS.16: Validate User
IMS.17: Authorize User
IMS.18: Get Subscription Parameters
IMS.19: Register Subscription Information
IMS.20: Return Subscription Status

Date: Monday, June 25, 2007
Author: Vitech Corporation
Number: IS.3
Name: Subscription Service Root
Table 3: IMS / Subscription Service Link Item Definitions

<table>
<thead>
<tr>
<th>Name and Description</th>
<th>Source / Destination</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>authorized user</td>
<td>Source: Subscription Service Destination: Command Center</td>
<td>Accuracy: High</td>
</tr>
<tr>
<td>User authorized status.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>not authorized</td>
<td>Source: Subscription Service Destination: Command Center</td>
<td></td>
</tr>
<tr>
<td>User is not authorized.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subscription confirmation</td>
<td>Source: Subscription Service Destination: Command Center</td>
<td></td>
</tr>
<tr>
<td>Subscription details returned for verification.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subscription details</td>
<td>Source:</td>
<td>Destination:</td>
</tr>
<tr>
<td>Subscription request details provided.</td>
<td>Destination:</td>
<td></td>
</tr>
<tr>
<td>user authorization</td>
<td>Source:</td>
<td>Destination:</td>
</tr>
<tr>
<td>User authorization status.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analysts</td>
<td>Command Center</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>Analysts</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Command Center</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ground Control Station (GCS)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Predator Crew</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predator Vehicle</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Work Stations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tactical Customers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2.1 Accept Request Test

a) SCHEDULE:

<table>
<thead>
<tr>
<th>Estimated Duration</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
</table>

b) TEST CONFIGURATION:

The Accept Request configuration consists of one or more tactical customers connecting and entering new product requests.

Test Equipment: Description
System Context: A reference component used to incorporate and a system under one physical representation

c) TEST TEAM:

d) TEST PROCEDURES:

1. TP.Accept Request Test steps are documented here:
 1. View active job log
 a. Document existing IMS jobs in progress
2. Enter new product request
3. Ensure product request is entered into IMS
 3.1 View active job log
 3.2 Document new IMS job has been entered into active list
System behavior diagram defines architecture of simulation model which allows us to analyze Behavior, Timelines, Resources, Queues, and Flows.
Integrated Model Benefits

- Synchronization between DoDAF views and systems Engineering products
- Traceability of Operational Doctrine to System-level Functional Requirements
 - Can be establish through Operational Scenarios
 - Supports Operational Testing
• Implications for CADM (?)
• DoDAF Views lend themselves to analysis, not system development
• Migration from C4ISR to DoDAF
 – Typical modeling techniques limited to computer stuff
 – Much discovery work goes straight to software
 – Traced from TOGAF?
Things to Mention

- TOGAF – The Open Group Architecture Framework
 - TOGAF ADM – Architecture Development Method, limited to amorphous, distributed computer gunk
- SE principles applicable to all levels of analysis
- Why is the DoD “Chief Information Officer” dictating methods and tools by which we develop systems?
- “Interoperability” issues not limited to “purple”
 - Including “disadvantaged” or “tactical edge” users (the real war fighters)
Systems Engineering for Systems of Systems

NDIA
SE Conference
October 2008

Dr. Judith Dahmann
The MITRE Corporation
SoS SE Challenge

- US DoD builds and fields large systems employed to support Joint and Coalition operations
 - Conceived and developed independent by Military Services
 - Acquisition (and SE) on a system by system basis
- Focus of DoD investment shifting to broad user capabilities implemented in a networked environment
 - Mix of material and non-material assets which must work together to meet capability objectives
 - Individual systems are no longer considered as individual bounded entities and are evolved based on extant capabilities
 - Components in larger, more variable, ensembles of interdependent systems which interact based on end-to-end business processes and networked information exchange
- Increasingly SoS of various types proliferate despite continued focus on individual systems

What are the implications for SE?
DoD System of Systems SE Guide

- Effort led by the Office of the Secretary of Defense
- Collaborative Approach with DoD, Industry, Academia
- Purpose
 - 6 month effort addressing areas of agreement across the community
 - Focus on technical aspects of SE applicable across SoS management constructs
 - Vehicle to capture and debate current SoS experience
- Audience
 - SoS and Program Managers and Lead/Chief Engineers

- Develop ‘Boots on the Ground’ basis for Version 1.0
 - Structured reviews with practitioners
 - Refine early draft guide content, identify areas for future study
- Update findings and release Version 1.0
 - Draft released for comment December 2007
 - ~600 comments received in February 2008 (Industry, FFRDCs, Gov’t)
 - Revision reviewed by Senior SE leadership in July 2008
 - Final release in August 2008
What does SoS Look Like in the DoD Today?

- Typically an **overlay to ensemble of individual systems** brought together to satisfy user capability needs
- **Are not new acquisitions per se**
 - Cases like FCS are extremely rare and, in practice, still must integrate with legacy systems
- **SoS ‘manager’ does not control the requirements or funding for the individual systems**
 - May be in a role of **influencing** rather than directing, impacts SE approach
- **Focus of SoS is on evolution of capability over time**
- **A functioning SoS takes start-up time but, in steady state, seems well-suited to routine incremental updates**

Most military systems are part of an SoS operationally
Only by exception do we manage and engineer at SoS level
Definitions

SoS: A set or arrangement of systems that results when independent and useful systems are integrated into a larger system that delivers unique capabilities [DoD, 2004(1)].

Accepted Taxonomy of SoS [Maier, M. 1998]

- **Directed**
 - SoS objectives, management, funding and authority; systems are subordinated to SoS

- **Collaborative**
 - No objectives, management, authority, responsibility, or funding at the SoS level; Systems voluntarily work together to address shared or common interest

- **Virtual**
 - Like collaborative, but systems don’t know about each other

US DoD Pilots identify a new SoS type:

- **Acknowledged**
 - SoS objectives, management, funding and authority; however systems retain their own management, funding and authority in parallel with the SoS

SoS SE Guidebook focuses on ‘Acknowledged’ SoS
Characteristics of Acknowledged SoS

- **Top-down direction** for an SoS capability concurrent with independent direction and autonomy in system operation and development
 - Multiple levels of objectives
 - Multiple management authorities with independent priorities, funding and development plans
 - Multiple technical authorities

- Much of SoS functionality is in **extant capabilities** of the systems

- SoS manager and SE **do not have control** over all the parts of the SoS
 - In fact, they may **not be aware** of all the systems which may impact their objectives and both the systems and the objectives may change over time.
Management of Acknowledged SoS

- Independent, concurrent management and funding authority pose management issues
- In defense, a solid governance & management approach is seen as key for SoS
 - Independent authorities are unlikely to accept direction from a systems engineer they do not control
 - Argue to make ‘acknowledged’ into ‘directed’ made difficult by ‘multi-mission’ systems which are important to multiple SoS
- Beyond defense ‘acknowledged’ SoS exist and evolve without top down management
 - Systems or services are designed to be broadly useful and have as their business objective to support numerous user applications
 - They naturally retain authority over decisions regarding their development and are not likely to agree to limit themselves to one specific customer

Management issues have technical implications for SE
A Comparison

<table>
<thead>
<tr>
<th>System</th>
<th>System of Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management & Oversight</td>
<td></td>
</tr>
<tr>
<td>Stakeholder Involvement</td>
<td>Clearer set of stakeholders</td>
</tr>
<tr>
<td>Governance</td>
<td>Aligned PM and funding</td>
</tr>
<tr>
<td>Operational Environment</td>
<td></td>
</tr>
<tr>
<td>Operational Focus</td>
<td>Designed and developed to meet operational objectives</td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
</tr>
<tr>
<td>Acquisition</td>
<td>Aligned to established acquisition processes</td>
</tr>
<tr>
<td>Test & Evaluation</td>
<td>Test and evaluation the system is possible</td>
</tr>
<tr>
<td>Engineering & Design Considerations</td>
<td></td>
</tr>
<tr>
<td>Boundaries & Interfaces</td>
<td>Focuses on boundaries and interfaces</td>
</tr>
<tr>
<td>Performance & Behavior</td>
<td>Performance of the system to meet performance objectives</td>
</tr>
</tbody>
</table>
SE Model for SoS Based on 7 Core Elements of SoS SE

- New SoS SE role
- Persistent SoS overlay framework
- SoS upgrade process
- External influences

1. Translating capability objectives
 - Understanding systems & relationships
 - Addressing requirements & solution options
 - Monitoring & assessing changes

2. Orchestrating upgrades to SoS
3. Assessing performance to capability objectives
4. Developing & evolving SoS architecture

External Environment
SE Processes Support Core Elements

- DoD Defense Acquisition Guide presents 16 basic SE processes
- In an SoS, SE team adapts these processes to execute core SE elements
- Focus for SoS SE is on technical management since implementation is in systems

SoS SE Core Elements

<table>
<thead>
<tr>
<th>Technical Processes</th>
<th>Technical Management Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rqts Devel</td>
<td>Reqts Mgt</td>
</tr>
<tr>
<td>Logical Analysis</td>
<td>Risk Mgt</td>
</tr>
<tr>
<td>Design Solution</td>
<td>Config Mgt</td>
</tr>
<tr>
<td>Implemen</td>
<td>Data Mgt</td>
</tr>
<tr>
<td>Integrates</td>
<td>Interface Mgt</td>
</tr>
<tr>
<td>Verify</td>
<td>Rqts Mgt</td>
</tr>
<tr>
<td>Validate</td>
<td>Risk Mgt</td>
</tr>
<tr>
<td>Transition</td>
<td>Config Mgt</td>
</tr>
<tr>
<td>Decision Analysis</td>
<td>Data Mgt</td>
</tr>
<tr>
<td>Tech Planning</td>
<td>Interface Mgt</td>
</tr>
<tr>
<td>Tech Assess</td>
<td>Interface Mgt</td>
</tr>
</tbody>
</table>

1. Translating capability objectives
2. Understanding systems & relationships
3. Assessing performance to capability objectives
4. Developing & evolving SoS architecture
5. Monitoring & assessing changes
6. Addressing requirements and solution options
7. Orchestrating upgrades to SoS
Core Elements of SoS SE (1 of 3)

1. Translating SoS capability objectives into high level requirements over time
 - SoS objectives based on broad capability objectives
 - SE team plays strong role in establishing requirements and understanding dynamics of the environment

2. Identifying and understanding the systems that impact SoS objectives
 - Focus on components and dynamics vs boundaries
 - Extends beyond technical to broader context of management, organizational, development plans, funding, etc.

3. Anticipating and assessing impacts of potential changes on SoS performance
 - Given scope of SoS authority, key to SoS SE is identifying and addressing changes in systems and other areas (e.g. threat) which may impact the SoS
• Developing and evolving SoS architecture
 • This includes
 • Concept of operations
 • Systems, functions and relationships and dependencies, both internal and external
 • End-to-end functionality, data flow and communications within the SoS.
 • Provides the technical framework for assessing options and implications for meeting requirements over time
 • Persistence, tolerance for change

• An architecture is the structure of components, their relationships, and the principles and guidelines governing their design evolution over time (IEEE Std 610.12 and DoDAF).

• The architecture of an SoS is a persistent technical framework for governing the evolution of an SoS over time.
Core Elements of SoS SE (3 of 3)

- **SoS requirements and solution options**
 - Requirements addressed at both SoS & systems
 - Recommend SoS requirements based on both priority and practicality
 - SoS and system SE teams identify and assess options
 - Result is plan for development for next increment

- **Orchestrating SoS Upgrades**
 - Upgrades implemented by systems under system SE teams
 - SoS SE team plans, facilitates, integrates and tests upgrades to the SoS
 - Development based on incremental approaches (bus stop, wave) which accommodate asynchronous system developments

- **Assessing SoS Performance**
 - Based on measures of SoS user results applied in different settings (test, exercises, M&S, operations)
 - Opportunity to identify changes and emergent behavior
For each increment:

- Recommend reqts for this increment
- Identify candidate systems to support functions
- Assess options
- Negotiate with systems
- Develop plan

Addressing requirements & solution options

Orchestrating upgrades to SoS

Coordinate, monitor and facilitate systems’ development, test and evaluation

SoS

Systems

Assessing performance to capability objectives

Assess SoS capabilities and limitations

Validate sets of systems

Verify sets of systems

Integrate sets of systems
View of SoS Upgrade (2 of 2)

- Translating Capability Objectives
- Monitoring & Assessing Changes
- Understanding Systems & relationships
- Developing & Evolving SoS Architecture
- Assessing SoS Performance
- Addressing requirements & solution options
- Orchestrating upgrades to SoS

Multiple, possibly concurrent increments
Guide Extract Relationships Among the Core Elements

- **Understanding systems & relationships**
 - **Input:** Changes which impact systems and relationships
 - **Output:** Status of systems, relationships, and functionality

- **Monitoring & assessing changes**

- **Translating capability objectives**
 - **Input:** First order SoS objectives and expectations
 - **Output:** Status of systems, relationships, and functionality

- **Developing & evolving SoS architecture**
 - **Input:** Updated architecture information
 - **Output:** Status of systems, relationships, and functionality

- **Addressing requirements & options**
 - **Input:** Upgrades which impact systems and relationships
 - **Output:** Status of systems, relationships, and functionality

- **Orchestrating upgrades to SoS**

<table>
<thead>
<tr>
<th>Technical or Technical Management Process</th>
<th>Relationship to SoS SE Core Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical Analysis is the process of obtaining sets of logical solutions to improve understanding of the defined requirements and the relationships among the requirements (e.g., functional, behavioral, temporal).</td>
<td>Logical Analysis is a key part of Understanding Systems and Relationships. Basic to engineering an SoS is understanding how systems support SoS functionality. In developing a new system, the systems engineer allocates functionality to system components based on a set of technical considerations. In an SoS, the systems engineer develops an understanding of the functionality extant in the systems and how that functionality supports SoS objectives, as a starting point for SoS architecture and evolution. ...</td>
</tr>
<tr>
<td>Risk Management ... helps ensure program cost, schedule, and performance objectives are achieved at every stage in the life cycle and to communicate to all stakeholders the process for uncovering, determining the scope of, and managing program uncertainties.</td>
<td>Risk management is a core function of SE at all levels. In Understanding Systems and Relationships, the systems engineer assesses the current distribution of functionality across the systems and identifies risks associated with either retaining the status quo or identifying areas where changes may need to be considered. The systems engineer also considers approaches to monitor, mitigate, or address risks. Such risks might include ...</td>
</tr>
<tr>
<td>Configuration Management is the application of sound business practices to establish and maintain consistency of a product's attributes with its requirements and product configuration information.</td>
<td>Understanding Systems and Relationships is where the CM process for the “as is” SoS resides and is maintained as the SoS product baseline. In a system the CM process addresses all of the ‘product’s’ features where the system itself is the product. In an SoS, the ensemble of systems and their functionality is the product; the SoS CM depends on the CM of the systems to maintain much of the product information, since the system owner, PM, and system systems engineer normally retain responsibility for their systems. The SoS CM focuses on the linkage to the system CM and crosscutting attributes which pertain to the SoS not addressed by the CM of the systems....</td>
</tr>
</tbody>
</table>
What is Working?
SoS SE Principles

- Address **organizational** as well as technical perspectives
 - Factor in broader set of consideration into trade space and technical planning

- Focus on **areas critical to the SoS**
 - Leave the rest to the systems engineers of the systems

- Technical management approach reflects need for **transparency and trust** with focused active participation

- SoS designs are best when **open and loosely coupled**
 - Impinge on the existing systems as little as possible
 - Are extensible, flexible, and persistent overtime

- **Continuous** (‘up front’) analysis which anticipates change
 - Design strategy and trades performed upfront and throughout
 - Based on robust understanding of internal and external sources of change
Way Ahead

• Guide is out and in use, offers a **first step**
 - Highlights the issues of SoS in DoD today
 - Provides some support for SE teams operating in SoS today
 - Plan for outreach and educational materials
 - Assess added guidance for areas such as Systems Engineering Plans

• Efforts are underway to support **update** to the guide
 - A follow-up data collection to get an understanding of ‘how to’ level of information from ongoing SoS SE efforts
 - Cooperative effort with NDIA M&S Committee to examine promise and experience with M&S to support SoS SE
 - Series of industry exchanges on SoS topics of common interest
 - International cooperative efforts are being initiated
 - Expansion into broader areas
 • SE for Capability Portfolio Management
 • Net Centric Enterprise Systems/Services
Backup
Active SoS SE Practitioners

<table>
<thead>
<tr>
<th>Name</th>
<th>Acronym</th>
<th>Owner</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Army Battle Command System</td>
<td>ABCS</td>
<td>Army</td>
<td>Acquisition Program</td>
</tr>
<tr>
<td>Air Operations Center</td>
<td>AOC</td>
<td>Air Force</td>
<td>Acquisition Program</td>
</tr>
<tr>
<td>Ballistic Missile Defense System</td>
<td>BMDS</td>
<td>Joint</td>
<td>Acquisition Program</td>
</tr>
<tr>
<td>USCG Command & Control Convergence</td>
<td>C2</td>
<td>Coast Guard</td>
<td>Strategy</td>
</tr>
<tr>
<td>Common Aviation Command & Control System</td>
<td>CAC2S</td>
<td>Marine Corps</td>
<td>Acquisition Program</td>
</tr>
<tr>
<td>Distributed Common Ground Station</td>
<td>DCGS-AF</td>
<td>Air Force</td>
<td>Program Office</td>
</tr>
<tr>
<td>DoD Intelligence Information System</td>
<td>DoDIIS</td>
<td>Intel</td>
<td>DIA CIO Initiative</td>
</tr>
<tr>
<td>Future Combat Systems</td>
<td>FCS</td>
<td>Army</td>
<td>Program Office</td>
</tr>
<tr>
<td>Ground Combat Systems</td>
<td>GCS</td>
<td>Army</td>
<td>Program Executive Office PEO</td>
</tr>
<tr>
<td>Military Satellite Communications</td>
<td>MILSATCOM</td>
<td>Joint</td>
<td>AF Wing</td>
</tr>
<tr>
<td>Naval Integrated Fire Control – Counter Air</td>
<td>NIFC-CA</td>
<td>Navy</td>
<td>SE Integrator in PEO</td>
</tr>
<tr>
<td>National Security Agency</td>
<td>NSA</td>
<td>Intel</td>
<td>Agency</td>
</tr>
<tr>
<td>Naval Surface Warfare Center Dahlgren</td>
<td>NSWC</td>
<td>Navy</td>
<td>Warfare Center</td>
</tr>
<tr>
<td>Single Integrated Air Picture</td>
<td>SIAP</td>
<td>Joint</td>
<td>Acquisition Program</td>
</tr>
<tr>
<td>Space and Missile Systems Center</td>
<td>SMC</td>
<td>Air Force</td>
<td>SE Authority</td>
</tr>
<tr>
<td>Space Radar</td>
<td>SR</td>
<td>Joint</td>
<td>Acquisition Program</td>
</tr>
<tr>
<td>Theater Joint Tactical Networks</td>
<td>TJTN</td>
<td>Joint</td>
<td>PEO</td>
</tr>
<tr>
<td>Theater Medical Information Systems – Joint</td>
<td>TMIP</td>
<td>Joint</td>
<td>Acquisition Program</td>
</tr>
</tbody>
</table>

Provided a basis for understanding SoS in DoD Today
Systems Engineering to Ensure Aircraft Airworthiness

21 Oct 08

Jim Miller
Director of Engineering
727 ASW/EN
Phone: (405) 736-4101
james.c.miller@tinker.af.mil
Sustainment Environment

727th Aircraft Sustainment Wing

Col. Paul Waugh
Commander

Mr. Bob Valdez
Deputy Director

Mr. James Miller
Director of Engineering

PROVIDING EFFECTIVE & EFFICIENT WEAPON SYSTEM SUPPORT
327th Aircraft Sustainment Wing

Col Paul Waugh, 736-5865
Bob Valdez, 736-5865
Jim Miller, 736-4101
327th ASW Responsibilities

- **1503 Aircraft Mgd** (357 Inactive)
- **28,000+ Engines Mgd**
- **51 types**
- **2,000+**
- **212 USAF Bases**
- **41 FMS Nations**

- **FY07: 153 Program Depot Maintenance Completed**
- **FY07: $3.3B Obligation Authority**
- **$14.8B Contracts Managed In FY07**
- **62 Weapon Systems**
- **33 ATCALS**
- **1382 Air Traffic Control & Landing Sys Mgd**
- **327 ASW**
- **24 Commands**

327th ASW Responsibilities details:

- 1503 Aircraft Mgd (357 Inactive)
- 28,000+ Engines Mgd
- 51 types
- 2,000+
- 212 USAF Bases
- 41 FMS Nations

FY07:
- 153 Program Depot Maintenance Completed
- $3.3B Obligation Authority
- $14.8B Contracts Managed In FY07

62 Weapon Systems
- 33 ATCALS

327th ASW

24 Commands
So What is the Airworthiness Problem?

- Airworthiness is a requirement for all aircraft, whether FAA or DoD.
- Tinker AFB manages 20-plus different types of CDA.
 - Aircraft use a mixture of FAA and Air Force criteria and methods of compliance to verify airworthiness when modifying the aircraft.
- Modifying a CDA by a process that combines both FAA Certification and Air Force Certification could result in a hybrid safety standard.
 - Such a standard is unproven by either the FAA or the DoD, and could therefore put the aircraft and crew at risk.
- No planning and implementation process to ensure comprehensive and complete airworthiness of all designs and parts.
- No tracking the organization’s progress regarding airworthiness for upper management in a fleet of over 400 aircraft throughout the entire lifecycle of the CDA.
Airworthiness Project Overview

• Problem Statement
 – Current practices do not ensure 100% of CDA modification design/parts are correctly certified for airworthiness.

• Project Definition and Scope
 – 727 ACSG aircraft (CDA) sustained by Boeing
 – Airworthiness certification to cover various (FAA & Military) compliance methods
 – Review and “Walk” the entire process in both orgs
 – Define Responsibility Accountability Authority (RAA) for any process decision pts
 – Ensure certification means supports lifecycle sustainment
 – Must include metrics for upper management visibility
Airworthiness certification requirements and RAA’s not well defined by FAA, Government or Contractor

No comprehensive airworthiness certification plan

No control mechanisms in place to measure airworthiness
GAPS

- Government does not clearly state airworthiness requirement to contractors
- Responsibility, Accountability and Authority (RAA) not well defined by FAA, Government or Contractor
- No comprehensive airworthiness certification plan
 - Plan not done early in modification process
 - Plan not coordinated between Government, FAA and Contractor
- No control mechanisms in place to measure airworthiness
Gap #1: Requirements Not Clear

- Airworthiness very briefly mentioned
- Rarely states what type airworthiness certification required
- Rarely addresses parts
- Rarely addresses life cycle cost/sustainment aspects
- Does not address who/when airworthiness decisions will be made
- Examples….
Airworthiness SOW Language Examples

- “The contractor shall obtain FAA approval for this modification…”
- “Any equipment installed as part of this modification not covered with full FAA certification must be…”
- “Obtain FAA approval for engineering drawings…”
- “This SOW directs the contractor to provide an FAA approved modification…”
- “Contractor shall obtain FAA approval where applicable…”
- “Contractor shall obtain FAA where practical…”
Gap #2: RAA Not Well Defined

- Responsibility, Accountability and Authority (RAA) not well defined by FAA, Government or Contractor
- Neither Gov’t nor Contractor have policy in place defining who makes airworthiness decisions throughout process
 - Design: Not clear who decides which of design cert will be followed
 - Parts: Decisions made at various levels, part “pedigree” often assumed, or not given consideration to life cycle cost
GAP #3: No Certification Plan

• MIL-HDBK-516B describes criteria, but not implementation and planning
• Currently no certification plan required for modification
• No plan provided up-front regarding all designs and all parts
• Government usually does not find out until end what the certification is
GAP #4: No Control Measures

- How much FAA certified and how much Military certified?
- Which design certification methods used?
- What are the pedigrees of all the parts?
- Does the actual delivered modification match the planned?
- How can you keep your SPM and Chief Engineer informed of this important topic before the signing of the DD Form 250?
So What Are Doing About It?

- Instigated a step-by-step Operating Instruction to implement air worthiness management throughout the organization
- Implemented tangible approach that is:
 - Aimed at the working level
 - Applies to both contractor and Air Force
 - Applicable throughout entire organization
 - Accounts for status/progress through metrics
 - Always starts with requirements
4 Solution Recommendations

- Improve SOW wording (Requirements)
- Complete airworthiness approach/certification plan for both design and parts early
- Clearly define decision making authority for each airworthiness condition
- Establish control measures to verify 100% certification of designs and parts and keep upper management informed
Sol’n #1: Improved SOW Words

- OI contains decision tree which will drive appropriate level of airworthiness requirements
- Airworthiness certification requirements expanded and clarified to contractor
- OI contains “cut-and-paste” template SOW language for modification contracts
- Templates available for:
 - FAA Airworthiness Certification
 - Non-FAA Airworthiness Certification
 - Airworthiness Sustainment Requirements (Parts)
 - Airworthiness Documentation
Sol’n #2: Airworthiness Cert. Plan

• The Airworthiness Certification Plan Must:
 – Be delivered NLT System Requirements Review
 – Cover 100% of planned design
 – Cover 100% of planned parts
 • Instructions for Continued Airworthiness (ICA)
 • Sustainment plan to ensure availability of airworthy parts throughout life cycle
 – For all non-FAA parts or design, must have SPM or Chief Engineer approval
 – Account for life cycle maintenance
 – Deliver applicable airworthiness certification documentation
 – Include specific control measures (metrics) to track health
Sol’n #3: Decisions at Right Level

• Clearly define decision making authority for each airworthiness condition
 • OI contains detailed matrix for each certification method, part certification and documentation requirement
 • OI clearly defines for each condition what level has approval authority
 – Chief Engineer or Single Manager
 – Engineering Flight Director
 – Lead engineer or program manager
• Boeing make similar changes to their internal processes
Sol’n Gap #4: Developed Metrics

- Establish control measures to track the following:
 - Design/part certification method
 - Design certification breakout
 - Part certification breakout
- Start tracking at beginning and continue through delivery
 - Brief to Upper Management Quarterly
 - Metrics must have ability to roll-up
 - For a collection of modifications
 - For entire aircraft
 - For entire organization
Design/Part Certification Method

DESIGN
- FAA: 40%
- Military: 60%

PARTS
- FAA: 15%
- Military: 85%

NOTIONAL DATA
- FAA represents fully commercial compliant
- Military is anything but fully commercial compliant
Design Certification Breakout

NOTIONAL DATA
Part Certification Breakout

NOTIONAL DATA

- FAA Appr Part
- Repaired by MRO
- TCSTC Part
- FAA Distributor
- A/C Unique Part
- M&Q Qual Part
- COC
- TBD for SRR

Total Parts
New Process to Ensure Airworthiness

Fixed Gaps

Service Literature
Obsolescence/Parts Sub Request

Modification Requirements
(SOW/EST)

Provider GFE Qual Data

Develop Certification Approach

Control Mechanisms

Define Affected T.O.’s

Generate Design Data

Assy Completion, Inspection & Test

A/C Instl, Inspection & Test

A/C Testing, T.O. Validation, Inspection

Final Data Submittals

Field or Depot Maintenance

Approve 8130-31

Cert Plan 8130-31

Type Design MDL Reports

T.O. Updates

Approve Type Design Change

Update STC

STIR, STC

8110-12

8100-9

8120-10

8130-3

8100-1

STC

337

Notify Contractor

SOW EST

8130-31 Acceptance

Contractor

SOW/Contract

FAA and/or DAS

Type Design Report
MDL

STC

8130-31

Return to Service

Return to Service

STC

337

Repair Station
(Contractor)

STC

8130-31

New Process to Ensure Airworthiness

Strengthened SOW language, defined intent and established clear RAA

Ensured cert approach in place before SRR

Implemented control measures (metrics) to verify both designs and parts
Summary

- Focuses on airworthiness certification planning and implementation rather than establishment of airworthiness certification criteria.
- Provides a standardized proactive airworthiness certification management process consistent with Air Force policy.
- Provides a process to ensure airworthiness certification requirements are an integral part of program management—contractor and DoD.
- Ensures “the right” airworthiness certification requirements, for both design and parts, are identified, implemented, monitored, controlled, and reported.
Questions ?
<table>
<thead>
<tr>
<th>Gap</th>
<th>727 ACSG</th>
<th>Boeing</th>
<th>ASC/FAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G1) MACC's not being prepared for each modification</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G1a) Cert plans that are generated by contractor are not coordinated with Government</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G2) No approach in 727 ACSG for military certification path</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G2a) Contractor processes do not support military certification path or have firm understanding of military airworthiness requirements (i.e. AFPD 62-6, AFPD 62-4, AFPD 62-5, MIL-HDBK 516B)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G3) User and contractual requirements provide insufficient details to ensure airworthiness certification for 100% of designs/parts</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G3a) Definitive definition of correct level of certification has not been provided by FAA</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G3b) Definitive definition of correct level of certification has not been provided by ASC/EN</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G3c) Contractor processes do not support different methods of airworthiness certification or incorporate FAA order 8110</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G4) Responsibility, Accountability, Authority (RAA) is not defined or documented on Government or contractor side resulting in Program Managers, Equipment Specialists making airworthiness decisions on designs/parts</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G4a) Contractor does not have defined and documented RAA's for airworthiness decisions</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G4b) FAA has not defined and documented RAA's for airworthiness decisions</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G4c) ASC/EN has not defined and documented RAA's for what airworthiness decisions should be made at what level for the different methods of certification</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(G5) Airworthiness certification for entire provisions only installation not attained</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G6) Methods of maintaining continued airworthiness not fully understood</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G6a) Sustainment and modification teams on contractor team not integrated</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G7) Contract requirements impact on existing airworthiness decisions not understood</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G8) Sustainment (parts or services procurement and repair) not necessarily in accord with design/certification basis</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G8a) Contractor sustainment teams are not involved with new mod development</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G9) FAA certification of COTS do not play well together</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G9a) Air Force customer mission requirements and airworthiness requirements do not support each other</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RCM Template

<table>
<thead>
<tr>
<th>Event</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Effort kickoff or major review/change</td>
<td>• Identify scope of modification, including functions/ capabilities affected/incorporated, major hardware elements and LRUs, areas of a/c affected, and system or systems involved.</td>
</tr>
</tbody>
</table>
| 1 Overall Certification | • R1 – Prepare an integrated airworthiness certification plan to accomplish comprehensive design certification.
• R2 – Provide Instructions for Continued Airworthiness to permit aircraft sustainment in accordance with certified design
• R22 – Provide control measures (metrics) to track design/part certification method, part certification breakout and design certification breakout on or before SRR with updates to metrics throughout modification program
• R23 – Provide delivery dates for metrics and supporting data in program integrated master schedule |
| 2 Are there portions of the modification which can/should be fully FAA certified? That is elements (A) which are:
• Similar/identical to widespread commercial requirements
• Similar to private initiatives in effects on airworthiness, flight characteristics, operational characteristics, or pilot technique
• Are similar to private initiatives in aircraft usage or implementation of mission or interior accommodations
• Can meet all applicable FAA regulations and the same requirements for a commercial modification | • R3 – Obtain FAA approval/certification for (A) equipment/ capability implementation in accordance with requirements applicable to aircraft operating under FAR Part (91, 121, etc. as applicable). |
| 3 Are there adaptations or alterations of commercial aviation equipment required to suit military or mission requirements? | • R4 – Modify (E) to provide capabilities (Z)
• R5 – Obtain FAA certification for (E), as modified |
| 3 Will existing STCs (S) be partially changed as a result of this modification? | • R18 – Obtain FAA approval of changes to (S)
Gov’t note: Military a/c primarily don’t maintain the airworthiness certificate (from the strict FAA stance). Recommend that a technical risk. |
RCM Template

<table>
<thead>
<tr>
<th>Event</th>
<th>Requirement</th>
</tr>
</thead>
</table>
| 5 | Are there elements of the modification which cannot be approved for carriage by the FAA (B)? Examples include:
 - Hazardous materials or equipment
 - Equipment which cannot be demonstrated to be safe even when not operating |
| | • R6 – Obtain Provisions Only FAA approval/certification of interfaces/provisions for (B).
 -step 6
 |
| 6 | Will military qualified equipment (C) be needed/used in the modification? |
| | • R7 – Obtain FAA installation certification/approval for (C) using military qualification and operational data.
 | • R8 – Perform necessary analysis to support FAA certification/approval for (C)
 | • R9 – Perform additional testing required to support FAA certification/approval for (C)
 -step 7
 |
| 7 | Will the modification use/apply non-aviation commercial- or consumer-grade equipment |
| | • R10 – Perform safety analyses covering use and operation of (L)
 | • R11 – Obtain FAA certification/approval for (J)
 | • R12 – Identify any equipment in (L) which is unsafe or hazardous when applied to this modification (H)
 -step 8
 |
| 8 | Is there hazardous commercial/consumer equipment? |
| | • R13 – Design enclosures and/or accommodations to control hazards posed by (H)
 | • R14 – Obtain FAA certification/approval for enclosures and/or accommodations for (H)
 -step 9
 |
| 9 | Is there doubt that sustainment parts and repairs can be readily obtained for FAA certified design, throughout the life of the modification? |
| | • R15 – Develop a sustainment plan to ensure availability of FAA parts repair capability throughout the life of the modification
 | • R16 – Develop a sustainment plan to ensure availability of FAA replacement parts throughout the life of the modification
 Gov’t note: Requires a Logistics Support Analysis to determine right path FAA or not – don’t assume pure FAA is the right approach.
 -step 10
 |
Event | Requirement
--- | ---
10 | Are there elements (M) that will not be FAA certified?

- **R17** – Develop a comprehensive plan to certify (M) in accordance with military airworthiness certification requirements (MIL-HDBK-516)

| Step 11 | Stop |

11 | Are there elements B?

- **R18** – Conduct analyses, tests, and demonstrations to qualify (B)
- **R19** – Prepare and submit data to support certification of (B) for airworthiness, including operation in-flight

| Step 12 | Step 12 |

12 | Are there elements K?

- **R20** – Conduct analyses, tests, and demonstrations to demonstrate/develop safe installation and use of (K)
- **R21** – Prepare and submit data to support certification or approval of (K) for installation and use

| Step 13 | Step 13 |

13 | Military Certification

- **R21** - Conduct necessary analyses, test, and demonstrations to support airworthiness and operations approval for (M)
RCM Template Key

- **A** Elements of modification which may receive full FAA certification/approval
- **B** Military only elements of the modification – those which cannot be approved for installation by FAA and require provisions only approval
- **C** Military qualified equipment for which FAA certification may be obtained
- **E** Commercial aviation equipment which must be altered or adapted to meet military requirements (subset of A)
- **H** Non aviation commercial or consumer equipment which is unsafe or poses hazards which cannot be mitigated (subset of L)
- **J** Non aviation commercial or consumer equipment which may be FAA certified (subset of L)
- **K** Non aviation commercial or consumer equipment which cannot be FAA certified or for which accommodations cannot be designed to permit certification (subset of L and possibly H)
- **L** Non aviation commercial or consumer equipment needed/used as part of modification
- **M** Elements requiring military airworthiness certification (Includes B and K)
- **S** Existing STCs modified in the course of the current modification
- **Z** Capabilities or features for military purposes which must be incorporated into commercial aviation equipment
Basic Systems Engineering Process

INPUTS
- Requirements Analysis
- Functional Analysis/Allocation
- Design Synthesis

Requirements Loop
- Analysis & Control

Verification Loop
- Design Loop

OUTPUTS
Major Modification Programs

<table>
<thead>
<tr>
<th>Program Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-10 AMP – ASC Lead (ACAT II)</td>
<td>$1.03B</td>
</tr>
<tr>
<td>KC-10 Dual 406 MHz ELT Upgrade (ACAT III)*</td>
<td>$2.4M</td>
</tr>
<tr>
<td>KC-10 Iridium Phone (ACAT III)*</td>
<td>$2.7M</td>
</tr>
<tr>
<td>KC-10 UHF SATCOM Antenna (ACAT III)*</td>
<td>$2.6M</td>
</tr>
<tr>
<td>VC-25 Forward Lower Lobe (FLL) Cooling (ACAT III)</td>
<td>$14.4M</td>
</tr>
<tr>
<td>VC-25 Presidential Data System (PDS) (ACAT III)*</td>
<td>$223.3M</td>
</tr>
<tr>
<td>VC-25 CNS/ATM (ACAT III)*</td>
<td>$41.8M</td>
</tr>
<tr>
<td>C-20 Gulfstream Test Vehicle (GTV) (ACAT III)*</td>
<td>$8.7M</td>
</tr>
<tr>
<td>E-9 Telemetry Sys Upgrade (ACAT III)*</td>
<td>$5.9M</td>
</tr>
<tr>
<td>E-4B Mod Block I (ACAT II) *</td>
<td>$421.4M</td>
</tr>
<tr>
<td>E-4B 256 Kbps High Speed Data via INMARSAT (ACAT III)*</td>
<td>$8.4M</td>
</tr>
<tr>
<td>C-12 EFIS (ACAT III)</td>
<td>$77.7M</td>
</tr>
<tr>
<td>HFGCS Network Control Station – West (ACAT III)*</td>
<td>$23.2M</td>
</tr>
<tr>
<td>HFGCS AFSPC Test Range HF Modernization (ACAT III)*</td>
<td>$3.9M</td>
</tr>
<tr>
<td>HFGCS Network Optimization – Spiral II (ACAT III)*</td>
<td>$7.1M</td>
</tr>
<tr>
<td>HFGCS Navy Consolidation (ACAT III)*</td>
<td>$6.4M</td>
</tr>
<tr>
<td>HFGCS Audit Log Upgrade (ACAT III)*</td>
<td>$189K</td>
</tr>
</tbody>
</table>

*Program is fully funded
327th Aircraft Sustainment Wing
Col Paul Waugh, 736-5865
Bob Valdez, 736-5865
Jim Miller, 736-4101
327th ASW Responsibilities

- 1503 Aircraft Mgd (357 Inactive)
- 1382 Air Traffic Control & Landing Sys Mgd
- 28,000+ Engines Mgd 51 types
- 62 Weapon Systems 33 ATCALS
- FY07 153 Program Depot Maintenance Completed
- FY07 $3.3B Obligation Authority
- $14.8B Contracts Managed In FY07
- 24 Commands
- 212 USAF Bases 41 FMS Nations
- 1503 Aircraft Mgd (357 Inactive)
So What is System Engineering?

...Everything Can Be System Engineering

SYSTEMS ENGINEERING

- Modeling and Simulation
- Configuration Management
- Risk
- Requirements Management
- Cost
- ASIP or Service Life
- Tech Data
- Test

- Safety/Mishaps
- Airworthiness
- Performance
- Schedule
Renewed emphasis on systems engineering
Implementation of SE Plans

Requires PEO chief engineer
Conduct of technical reviews
• Policy Memo 03A-005, 9 Apr 03
 – Subj: Incentivizing contractors for Better Systems Engineering
 – “An immediate transformation imperative for all our programs is to focus more attention on the application of Systems Engineering principles…”
 – Directing the following:
 • A. Assess ability to incentivize contractors to perform robust SE
 • B. Develop SE performance incentives
 • C. Include SE processes/practices during all program reviews

• Policy Memo 04A-001, 7 Jan 04
 – Subj: Revitalizing Air Force and Industry Systems Engineering (SE) – Increment 2
 – “…intended to institionalize key attributes of an acceptable SE approach and outcome…”
 – “…must focus on an end state…”
• All programs, regardless of ACAT shall:
 – Apply an SE approach
 – Develop a Systems Engineering Plan (SEP)
 • Describe technical approach, including processes, resources, and metrics
 • Detail timing and conduct of SE technical reviews

• Director, DS tasked to provide SEP guidance for DoDI 5000.2
 – Recommend changes in Defense SE
 – Establish a senior-level SE forum
 – Assess SEP and program readiness to proceed before each DAB and other USD(AT&L)-led acquisition reviews
So What is the Problem?

• High-level policy is there, But …
 – How do you know if you are doing it?
 – How do you measure so you drive the behavior?

• Sys Eng scope can be huge, So …
 – What tenets should be measured?
 – What are the key characteristics?
 – How can it apply across different programs and organizations?

• Sys Eng is important, Yet …
 – No accepted, standard metrics
 – No measure of sys eng current status
 – No metrics for both PM and upper management
Why Measure Systems Engineering?

• When performance is measured … performance improves
• When performance is measured and reported … the rate of performance improves
• When performance is measured, reported, and compared … the rate of performance continues to improve
Sys Eng Metrics Key Characteristics

• Must Measure Major Components of Sys Eng
• Must Be Few in Number
• Must Avoid Extensive Data Collection Efforts
• Must Describe Current Status, Not Lagging
• Must Be Targeted for Management
• Must Allow For Comparison Between Programs, Organizations, and Time
• Must Be Cumulative (Ability to Roll-Up)
What Was Our Approach?

• Defined first 5 Sys Eng Tenets
• Step-by-step implemented systems engineering throughout the organization
• Is a tangible approach that is:
 – Aimed at the working level
 – Affects all phases of a program’s lifecycle
 – Applicable throughout entire organization
 – Accounts for organization’s progress through metrics
• Documented clearly in Operating Instructions (OIs)
What Each OI Has

- Brief and to the point
- Pictorially defined process flow
- Specific instructions for each process step aimed at working level
- Clearly outlines approval levels
- Defines specific metrics
- States when/where show to upper management
Tenets of Sys Eng

• Our first-cut tenet selection of Systems Engineering:
 – Requirements Management
 – Risk Management
 – Test Management
 – Airworthiness
 – Training
Tenets of Sys Eng

- Our first-cut tenet selection of Systems Engineering:
 - Requirements Management
 - Risk Management
 - Test Management
 - Airworthiness
 - Training
Requirements Mngt Process Flowchart

Receive Approved And Funded Requirements Document → Build Integrated Requirements Team (IRT) → Identify and Extract New Requirements → Fill out Requirements Correlation Matrix (RCM) → Build Metrics → Identify Operation Scenarios → Identify and Extract Derived Requirements

Yes

Unbiased Review

No

Rqmt Changes?

Pass RCM to Risk Team → Pass RCM to Test Team

Maintain and Track RCM

Report Metrics

Document Lessons Learned

Update RCM

Define/Clarify/Quantify Requirements

IRT

Project Engineer

Program

Manager

Chief Engineer

IRT
Total Requirements = Stated Requirements + Derived Requirements
Requirements Growth Metric

- Requirements Added
- Requirements Derived
- Baseline Requirements

<table>
<thead>
<tr>
<th>Project Start</th>
<th>Date 1</th>
<th>Date 2</th>
<th>Date 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AIR FORCE MAT...
Tenets of Sys Eng

• Our first-cut tenet selection of Systems Engineering:
 – Requirements Management
 – Risk Management
 – Test Management
 – Airworthiness
 – Training
Risk Management Process Flowchart

Figure 1. Flowchart for Risk Management Process
Risk #1 Assessment Matrix

Impact

<table>
<thead>
<tr>
<th>Negligible</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>X</td>
</tr>
<tr>
<td>0%</td>
<td>X</td>
</tr>
</tbody>
</table>

Mitigation Plan:

- Contractor is currently Capabilities Maturity Model Integration (CMMI) software level 3 certified and has plan to reach level 5 by contract award.
- Government will ensure contractor will work with ground agencies to ensure software is interoperable.
- Government will follow disciplined requirement matrix process outlined in 727 ACSG Operating Instruction (O.I.) to prevent unplanned requirements/complexity increases & track via established metrics.

Technical Risk: If software complexity increases on MCS then failure of modifications could result.

Risk Workshop Completed – 14 Mar 07
<table>
<thead>
<tr>
<th>Risk Title</th>
<th>Risk Tracking Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>Risk Color Code</td>
</tr>
<tr>
<td>Description of problem</td>
<td></td>
</tr>
<tr>
<td>• Item 1</td>
<td>• Item 1</td>
</tr>
<tr>
<td>• Item 2</td>
<td>• Item 2</td>
</tr>
<tr>
<td>• Item 3</td>
<td>• Item 3</td>
</tr>
<tr>
<td>Risk Mitigation Plan</td>
<td></td>
</tr>
<tr>
<td>• Proposed solution for implementation and risk mitigation.</td>
<td></td>
</tr>
<tr>
<td>Future Action</td>
<td></td>
</tr>
<tr>
<td>Proj.Date</td>
<td></td>
</tr>
<tr>
<td>Contract Award for implementation</td>
<td>Date 1</td>
</tr>
<tr>
<td>Mitigation Plan Completion (or any significant milestones)</td>
<td>Date 2</td>
</tr>
<tr>
<td>Etc…</td>
<td></td>
</tr>
<tr>
<td>Actions to Date</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>Established Risk Assessment</td>
<td>Date 1</td>
</tr>
<tr>
<td>Completed Mitigation Plan</td>
<td>Date 2</td>
</tr>
<tr>
<td>Completed details of mitigation incorporation with contractor</td>
<td>Date 3</td>
</tr>
<tr>
<td>Received effort impact (cost and schedule)</td>
<td>Date 4</td>
</tr>
</tbody>
</table>
Technical Risk Summary

OVERALL TECHNICAL RISK IS LOW

Risk Workshop Completed – 14 Mar 07
Tenets of Sys Eng

- Our first-cut tenet selection of Systems Engineering:
 - Requirements Management
 - Risk Management
 - Test Management
 - Airworthiness
 - Training
Test Management Process Flowchart

2.2 Planning Phase

- **Create Integrated Test Team (ITT)** § 2.2.1
- **Review Lessons Learned Database** § 2.2.2
- **Nominate Responsible Test Organization** § 2.2.3

Define Test Requirements
(See Checklist) § 2.2.4

- **Rqmt Quantifiable?** § 2.2.4.2
- **Rqmt Verifiable?** § 2.2.4.3
- **Determine Verification Method** § 2.2.4.4

Development
- **Develop Test Metrics** § 2.2.5

2.3 Design Phase

- **Technical Reviews** § 2.3.1
 - Each Review
 - **Brief Metrics** § 2.2.5.8
- **Refine Test Requirements** § 2.3.2
- **Update TES or TEMP** § 2.3.3

2.3 Execution Phase

- **Test Readiness Review** § 2.4.1
- **Test Execution** § 2.4.2
- **Review Test Metrics** § 2.4.3

Deficiencies Found?
- **Yes**
 - **Deficiency Review** § 2.4.4
- **No**
 - **Review Test Report**
 - **Input Lessons Learned**

Deficiency Correction
- **Deficiency Correction** § 2.4.5

Note: Project Engineer will schedule periodic meetings as necessary. See § 2.2.1.1

If T-2 mod, review AFMCI 21-126 and Prepare AFMC forms 243 and 244

- **Integrated Requirements Team**
- **RCM**
- **Update RCM**
- **Integrated Requirements Team**
Test Requirements Metric

Management Emphasis

- Total # of Requirements
- Quantified
- # Verifiable
- Resource Assigned
Test Risks Management Metric

![Bar Chart: Test Risks Management Metric]

- **Date 1**, **Date 2**, **Date 3**, **Date 4**, **TRR**
- **Low**, **Med**, **High**, **Closed / Mitigated**
Tenets of Sys Eng

- Our first-cut tenet selection of Systems Engineering:
 - Requirements Management
 - Risk Management
 - Test Management
 - Airworthiness
 - Training
New Process to Ensure Airworthiness

Fixed Gaps

- US Air Force (USAF) Service Literature
- Modification Requirements (SOW/EST)
- GFE Qual Data
- Control Mechanisms
- Develop Certification Approach
- Generate Design Data
- Assc Completion, Inspection & Test
- A/C Instl, Inspection & Test
- A/C Testing, T.O. Validation, Inspection
- Final Data Submittals
- Approve 8110-31
- Notification Contractor
- FAA Type Design Change
- Approve STC
- FAA and/or DAS
- Type Design MDL Reports
- ICA (T.O.'s)
- SOW/Contract
- Contractor
- SOW/Contract
- STIR, STC
- FAA
- 8110-12
- 8100-9
- 8210-10
- 8130-3
- 8100-1
- Return to Service

- Strengthened SOW language, defined intent and established clear RAA
- Ensured cert approach in place before SRR
- Implemented control measures (metrics) to verify both designs and parts
Design/Part Certification Method

NOTIONAL DATA

- FAA represents fully commercial compliant
- Military is anything but fully commercial compliant
Design Certification Breakout

Total Mods

NOTIONAL DATA
Part Certification Breakout

NOTIONAL DATA
Tenets of Sys Eng

Our first-cut tenet selection of Systems Engineering:
- Requirements Management
- Risk Management
- Test Management
- Airworthiness
- Training
Workforce Training Metric

Org A Training Progress (45 People)

Percentage Complete

100
90
80
70
60
50
40
30
20
10
0

SYS 182
SYS 155
SYS 028
SYS 165
SYS 172

1st Qtr Goal
2nd Qtr Goal
3rd Qtr Goal
4th Qtr Goal
What’s Next

• Aircraft Structural Integrity Program (ASIP)
• Configuration Control
• Service Life
• Mishaps
• Obsolescence
• Safety
• Incentivizing contractors
Summary

- Measuring systems engineering can be a daunting task
- 327th ASW developed a means to do this:
 - Broke up sys eng into its components
 - Devised metrics for each component
 - Institutionalized by codifying in OIs
 - Regularly brief to upper management
- Driving behavior, but takes time
- Have plans to do more…

Performance measures are being implemented, driving behavior AND making a difference
Incentivizing Contractors Metric

Goal

% of Contracts with Sys Eng Incentives
Risk Handling Plan - “Waterfall”

Risk Rating
- High
- Medium
- Low

Time

EVENT EVENT EVENT
RISK ASSESSMENT

- **HIGH**: Unacceptable. Major disruption likely. Different approach required. Priority management attention required.
- **MODERATE**: Some disruption. Different approach may be required. Additional management attention may be needed.
- **LOW**: Minimum impact. Minimum oversight needed to ensure risk remains low.

ASSESSMENT GUIDE

| LIKELIHOOD: What Is The Likelihood The Risk Will Happen? |
|-----------------|-----------------|
| Level a | Remote |
| Level b | Unlikely |
| Level c | Likely |
| Level d | Highly Likely |
| Level e | Near Certainty |

CONSEQUENCE: Given The Risk Event is Realized, What is the Magnitude of the Impact?

<table>
<thead>
<tr>
<th>Level</th>
<th>Technical Performance</th>
<th>Schedule</th>
<th>Cost</th>
<th>Impact on Other Teams</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minimal or no impact</td>
<td>Minimal or no impact</td>
<td>Minimal or no impact</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>Acceptable with some reduction in margin</td>
<td>Additional resources required; able to meet need dates</td>
<td>< 5%</td>
<td>Some impact</td>
</tr>
<tr>
<td>3</td>
<td>Acceptable with significant reduction in margin</td>
<td>Minor slip in key milestone; not able to meet need dates</td>
<td>5 - 7%</td>
<td>Moderate impact</td>
</tr>
<tr>
<td>4</td>
<td>Acceptable, no remaining margin</td>
<td>Major slip in key milestone or critical path impacted</td>
<td>> 7 - 10%</td>
<td>Major impact</td>
</tr>
<tr>
<td>5</td>
<td>Unacceptable</td>
<td>Can’t achieve key team or major program milestone</td>
<td>> 10%</td>
<td>Unacceptable</td>
</tr>
</tbody>
</table>
Major Modification Programs

17 Current Programs

<table>
<thead>
<tr>
<th>Program Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-10 AMP – ASC Lead (ACAT II)</td>
<td>$1.03B</td>
</tr>
<tr>
<td>KC-10 Dual 406 MHz ELT Upgrade (ACAT III)*</td>
<td>$2.4M</td>
</tr>
<tr>
<td>KC-10 Iridium Phone (ACAT III)*</td>
<td>$2.7M</td>
</tr>
<tr>
<td>KC-10 UHF SATCOM Antenna (ACAT III)*</td>
<td>$2.6M</td>
</tr>
<tr>
<td>VC-25 Forward Lower Lobe (FLL) Cooling (ACAT III)</td>
<td>$14.4M</td>
</tr>
<tr>
<td>VC-25 Presidential Data System (PDS) (ACAT III)*</td>
<td>$223.3M</td>
</tr>
<tr>
<td>VC-25 CNS/ATM (ACAT III)*</td>
<td>$41.8M</td>
</tr>
<tr>
<td>C-20 Gulfstream Test Vehicle (GTV) (ACAT III)*</td>
<td>$8.7M</td>
</tr>
<tr>
<td>E-9 Telemetry Sys Upgrade (ACAT III)*</td>
<td>$5.9M</td>
</tr>
<tr>
<td>E-4B Mod Block I (ACAT II) *</td>
<td>$421.4M</td>
</tr>
<tr>
<td>E-4B 256 Kbps High Speed Data via INMARSAT (ACAT III)*</td>
<td>$8.4M</td>
</tr>
<tr>
<td>C-12 EFIS (ACAT III)</td>
<td>$77.7M</td>
</tr>
<tr>
<td>HFGCS Network Control Station – West (ACAT III)*</td>
<td>$23.2M</td>
</tr>
<tr>
<td>HFGCS AFSPC Test Range HF Modernization (ACAT III)*</td>
<td>$3.9M</td>
</tr>
<tr>
<td>HFGCS Network Optimization – Spiral II (ACAT III)*</td>
<td>$7.1M</td>
</tr>
<tr>
<td>HFGCS Navy Consolidation (ACAT III)*</td>
<td>$6.4M</td>
</tr>
<tr>
<td>HFGCS Audit Log Upgrade (ACAT III)*</td>
<td>$189K</td>
</tr>
</tbody>
</table>

Program is fully funded
Development and Validation of a Systems Engineering Competency Model

Don Gelosh, Ph.D., CSEP-Acq
Senior Systems Engineer
Systems Engineering Support Office
Enterprise Development/Systems and Software Engineering
Office of the Deputy Under Secretary of Defense (A&T)

23 October 2008
Overview

• Why Competency Management?
• Senior Leadership Support
• Competency Management Process
• Proposed Next Steps
• Summary
Why Competency Management for AT&L and Systems Engineering?

Competencies are observable, measurable patterns of knowledge, skills, abilities, behaviors and other characteristics that an individual needs to perform work roles or occupational functions successfully.

Competency management helps:

- **Assess** and **refine** the requisite competencies within the current workforce
- Develop appropriate **strategies** to shape the skill sets and capabilities needed by the future workforce
- Identify overall **capabilities** we need to execute the acquisition mission
- Evaluate which competencies are **mission critical** and **highest priority**
- Develop solutions that will help us **mitigate risk** and **respond** to the challenges
Competency Model Applications

Agile Mission Support
- Enables tactical, agile targeting of resources to achieve desired capability
- Enables improved organizational refinements to align the skills with mission needs

Improved Learning/Training
- Improved alignment of training to “successful performance” needs
- Improved training investment
- Enables 21st Century Training Framework (Core Plus)

Succession Planning
- Identify expected critical vacancies
- Identify employees & candidate gaps

High(er)-Performing Workforce
- Improved engagement of workforce to “successful performance” support resources (that make a difference)
- Better migration of Best Practices

Improved Gap Assessment ROI
- Assess proficiency AND
- Assess Mission Criticality, Frequency, and Difficulty
- Migrate best practices & tools for successful performance

Strategic Workforce Planning
- Strategic planning enabler for leaders
- Enhanced Management of Mission Critical Competencies
- Deliberate, earlier “change management”
- Information for tactical resource decisions

Recruiting & Selection
- Improve identification of key behaviors contributing to successful performance
- Improve the “Benefits Package” story – “World-class tools for your development and success”

Development & Career Planning
- Enhance Individual Development
- Enhance Organization Development

Human Resources System
- Learning Management System
- Competency Models
- Performance Management System
- Learning Content System
Senior Leadership Support is Critical!!!

Align with Senior Leadership

DoD Alignment
“The department must have a vision that conveys to the public a commitment to attract & develop the best mix of people, both military & civilian. This vision must be supported by an effective human capital strategy that is actively measured against well defined goals.”

Robert Gates - SECDEF
Gordon England - DEPSECDEF

National Security Strategy

National Defense Strategy

National Military Strategy

Quadrennial Defense Review

DoD Civilian Human Capital Strategic Plan

AT&L Competency Management Initiative … Enabling Successful Acquisition Outcomes
AT&L Competency Management Process

Phase I - Convene an expert panel (EP)
- Develop a competency framework & input model
- EP identifies Subject Matter Experts (SMEs)
- EP communicates competency effort to the SMEs
- Develop communications package

Goal:
- Establish baseline of existing competency model.
- Communicate effort

Products:
- FA provides list of targeted high-performing SMEs
- Obtains expert panel concurrence on baseline competency framework
- Obtain approval from Dir, HCI and FA on competency model input

Phase II – Develop the model
- SMEs review the competency framework and provide essential job data through structured interviews and online data collection tools.
- SMEs engaged to identify key “work” situations and competencies contributing to successful performance
- Analyze results and develop competency model content

Goal:
- Model development and identification of key behaviors

Products:
- Deliver Proposed Model Report to Dir, HCI and FA for review

Phase III – Perform a beta test & refine model
- Collect and synthesize feedback from proposed model report
- Pre-assessment communications to workforce
- Identify stratified workforce sample

Goal:
- Further refine model to include input from functional leads
- Obtain FA and Dir, HCI approval for validation assessment

Products:
- Obtain concurrence from FIPT on competency model
- Obtain approval from Dir, HCI and FA on competency model

Phase IV – Validate and Assess
- Launch competency assessment tool
- Analyze results to evaluate model validity and generalizability to the workforce

Goal:
- Identify competencies required for superior performance
- Evaluate proficiency gaps for validated competencies
- Plan for continual updates and use of competency model

Products:
- Deliver proven (validated) competency model in HR XML format
- Provide competency validation and assessment report.

Approved Input Competency Model
Proposed Competency Model Report
Approved Initial Competency Model V 0.5
V 1.0 Competency Model
Competency Validation & Assessment Report
Phase I: Expert Panel and Competency Model Framework Development

AT&L Systems Engineering Learning Outcomes (199)

Professional Competencies

Competency Model Framework (40 Technical 10 Professional)
Competency Model Example

Unit of Competence

Riding a Bicycle

Competency 1
Mount the Bicycle
- Element 1 – Position the Peddle
- Element 2 – Swing leg/Take seat
- Element 3 – Transition to Motion

Competency 2
Dismount the Bicycle
- Element 1 – Slow Down
- Element 2 – Support at Stop
- Element 3 – Swing Leg to Ground

Competency 3
Pedal the Bicycle
- Element 1 – Maintain Balance
- Element 2 – Peddle Fast
- Element 3 – Peddle Slow

Competency 4
Maintain the Bicycle
- Element 1 – Tire Pressure
- Element 2 – Brake Operation
- Element 3 – Wheel Balance
SE Competency Model Framework

Technical Competencies

<table>
<thead>
<tr>
<th>Analytical</th>
<th>Technical Management</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE Tools & Techniques Design Considerations</td>
<td>Technical Management Processes</td>
<td>Total Systems View</td>
</tr>
<tr>
<td>7. Modeling and Simulation</td>
<td>27. Technical Data Management</td>
<td></td>
</tr>
<tr>
<td>10. Safety Analysis</td>
<td>30. Specifications</td>
<td></td>
</tr>
<tr>
<td>11. SE Design Considerations</td>
<td>31. Earned Value Management</td>
<td></td>
</tr>
<tr>
<td>12. Requirements Development</td>
<td>32. IMP/IMS</td>
<td></td>
</tr>
<tr>
<td>13. Logical Analysis</td>
<td>33. Technical Reviews</td>
<td></td>
</tr>
<tr>
<td>14. Design Solution</td>
<td>34. Software Engineering</td>
<td></td>
</tr>
<tr>
<td>15. Implementation</td>
<td>35. Systems Engineering by Phases</td>
<td></td>
</tr>
<tr>
<td>16. Integration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Verification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Validation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Transition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. System Assurance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Professional Competencies

<p>| 41. Communication | 42. Analytical Skills |
| 43. Decision Making | 44. Problem Solving |
| 45. Technology Management | 46. Team Building |
| 47. Influencing and Negotiating | 48. Interpersonal Skills |
| 49. Strategic Thinking | 50. Understanding Attributes of Evidence and Rational Decisions |</p>
<table>
<thead>
<tr>
<th>Unit of Competence</th>
<th>Competency</th>
<th>Elements</th>
<th>Knowledge Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 Analytical</td>
<td>Technical Basis for Cost</td>
<td>Apply knowledge of cost drivers to develop cost estimates and program budgets that reflect program phase requirements and best practices.</td>
<td>Knowledge of cost drivers and cost estimating techniques and best practices</td>
</tr>
<tr>
<td></td>
<td>Systems Engineering Plans</td>
<td>Identify the proper points within a program's lifecycle to generate a Systems Engineering Plan (SEP) that describes the program's SE processes, resources, metrics, and technical review process.</td>
<td>Knowledge of SEP preparation guidance</td>
</tr>
<tr>
<td></td>
<td>Requirements Development</td>
<td>Apply the Requirements Development process to translate inputs from relevant stakeholders into technical requirements.</td>
<td>Knowledge of requirements management tools</td>
</tr>
<tr>
<td></td>
<td>Verification</td>
<td>Apply the Verification process to confirm that the system element meets the design specifications as defined in the functional, allocated, and product baselines and to answer the question: 'Did you build it right?'.</td>
<td>Knowledge of verification (test and evaluation) techniques</td>
</tr>
<tr>
<td></td>
<td>Validation</td>
<td>Apply the Validation process to test the performance of systems within their intended operational environment and to answer the question 'Did you build the right thing?'.</td>
<td>Knowledge of validation (operational test and evaluation) techniques</td>
</tr>
</tbody>
</table>
Phase II: Subject Matter Expert (SME) Validation

- SMEs review the competency model framework and provide essential job data through an online data collection tool.

- SMEs can add/delete competencies and associated elements and knowledge items.

- SMEs must identify at least two key “work” situations and associated competencies that contribute to successful performance.

- Results are analyzed and used to develop a complete competency model.
SMEs review each competency element and provide information on:

- Frequency
- Importance
- Level First Used

SME Competency Review

Unit of Competence #1 Analytical

Includes the analytical and technical processes of systems engineering with a full understanding of tools and techniques and all design considerations.

<table>
<thead>
<tr>
<th>Competency Element</th>
<th>Frequency</th>
<th>Importance</th>
<th>Level First Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Basis for Cost - Element 1: Apply knowledge of cost drivers to develop cost estimates and program budgets that reflect program phase requirements and best practices.</td>
<td>1 Never</td>
<td>1 Not Important</td>
<td>1 Entry Level</td>
</tr>
<tr>
<td></td>
<td>2 Sometimes</td>
<td>2 Less Important</td>
<td>2 Mid-Level</td>
</tr>
<tr>
<td></td>
<td>3 Often</td>
<td>3 Moderately Important</td>
<td>3 Expert/Senior Level</td>
</tr>
<tr>
<td></td>
<td>4 Frequently</td>
<td>4 Important</td>
<td>4 N/A</td>
</tr>
<tr>
<td></td>
<td>5 Very Frequently</td>
<td>5 Very Important</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Systems Engineering Plans - Element 1 of 3: Identify the proper points within a program’s lifecycle to generate a Systems Engineering Plan (SEP) that describes the program’s SE processes, resources, metrics, and technical review process.	1 Never	1 Not Important	1 Entry Level
	2 Sometimes	2 Less Important	2 Mid-Level
	3 Often	3 Moderately Important	3 Expert/Senior Level
	4 Frequently	4 Important	4 N/A
	5 Very Frequently	5 Very Important	N/A
	N/A		

Systems Engineering Plans - Element 2 of 3: Develop the critical contents of a SEP including government and contractor SE processes, the technical baseline approach, program control tools, and the role of SE to guide all technical aspects of an acquisition program.	1 Never	1 Not Important	1 Entry Level
	2 Sometimes	2 Less Important	2 Mid-Level
	3 Often	3 Moderately Important	3 Expert/Senior Level
	4 Frequently	4 Important	4 N/A
	5 Very Frequently	5 Very Important	N/A
	N/A		

Systems Engineering Plans - Element 3 of 3: Determine what enterprise, system, and software architectures are needed to reason about the system, to inform recommendations and decisions regarding software implementations in the context of the system being acquired and to allow effective communication across the stakeholders throughout the system lifecycle.	1 Never	1 Not Important	1 Entry Level
	2 Sometimes	2 Less Important	2 Mid-Level
	3 Often	3 Moderately Important	3 Expert/Senior Level
	4 Frequently	4 Important	4 N/A
	5 Very Frequently	5 Very Important	N/A
	N/A		

Work Breakdown Structure - Element 5: Translate the system design (including all products and services) into a Work Breakdown Structure (WBS) to ensure that all of the appropriate SE activities are implemented.	1 Never	1 Not Important	1 Entry Level
	2 Sometimes	2 Less Important	2 Mid-Level
	3 Often	3 Moderately Important	3 Expert/Senior Level
	4 Frequently	4 Important	4 N/A
	5 Very Frequently	5 Very Important	N/A
	N/A		
Key Situation Interviews

- **Key Situations**: a method of data collection from subject matter experts regarding “**what it takes**” to perform effectively on your job.

- Using the STARR Method of Description

<table>
<thead>
<tr>
<th>Situation/Task</th>
<th>Action</th>
<th>Reasoning</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>What was the situation or context? What were you doing? What task were you working on?</td>
<td>What did you do? What were the steps you took to get to that effective outcome?</td>
<td>What was the reasoning/rationale that led to the action?</td>
<td>What was the result/outcome of the key situation?</td>
</tr>
</tbody>
</table>
Additional SME Questions

1. Do you identify yourself to others as a systems engineer?
2. Do you have the appropriate resources to do your job?
3. Are you allowed to apply new skills acquired through recent education and training to perform your job?
4. Does your organizational culture encourage the application of new skills?
5. Do you believe additional advanced or senior level training in systems engineering is needed?
6. Have you received training associated with integrating software into warfare related systems?
7. If you answered yes to Question 6, has this training provided you with an adequate understanding of potential issues associated with integrating software into warfare related systems?
8. What do you see as the primary community wide SPRDE workforce capability challenge?
Phase III: Test and Refine the Model

- Collect and synthesize feedback, refine the model.
- Further refine model to include input from Expert Panel and functional leads.
- Send pre-assessment communications to workforce.
- Identify stratified workforce sample.
Phase IV: Workforce Assessment

- Launch competency assessment tool.
- Analyze results to evaluate model validity and general applicability to the workforce.
- Identify competencies required for superior performance.
- Evaluate proficiency gaps for validated competencies.
- Plan for continual updates and use of competency model.
Proposed Next Steps

Improve the Competency Model:
- Compare and contrast with other competency models – leverage best of the best
- Incorporate results from SE education and research efforts
- Develop a sub-set of “Core SE Competencies” that define the true Systems Engineers

Apply the Competency Model:
- Use the Core Competency sub-set to help identify the true SEs in the SPRDE career field
- Use the model to develop criteria for hiring Entry-level, Journeyman-level, and Highly Qualified Experts
- Use the model to drive SE education, training, and experience opportunities – a guide to where you should apply resources
Summary

To successfully develop and implement a competency management program, you should:

1. Develop a competency management plan.
2. Solicit and obtain senior leadership support.
3. Develop a competency assessment model framework.
4. Validate the model with high-performing subject matter experts.
5. Test and refine the model with input from the functional leaders.
6. Assess the target workforce against the competency model to identify competencies required for superior performance and to evaluate proficiency gaps.
7. Update the plan and apply the competency model as needed.
8. Provide reports.
Questions?

Don Gelosh, Ph.D., CSEP-Acq
Senior Systems Engineer
OSD (AT&L) SSE/ED

1851 SOUTH BELL STREET
CRYSTAL MALL 3 SUITE 102
ARLINGTON, VA 22202

OFFICE: 703-602-0851 EXT 194
FAX: 703-602-3560
Backup Slides
INCOSE UK SE Competencies

INCOSE UK Advisory Board
Systems Engineering Competencies Framework

Systems Thinking
- Systems concepts
- Super-system capability issues
- Enterprise and technology environment

Systems Engineering Management
- Concurrent engineering
- Enterprise Integration
- Integration of specialisms
- Lifecycle process definition
- Planning, monitoring and controlling

Holistic Lifecycle view
- Determine and manage stakeholder requirements
- System Design:
 - Architectural design
 - Concept generation
 - Design for ...
 - Functional analysis
 - Interface Management
 - Maintaining Design Integrity
 - Modeling and Simulation
 - Select Preferred Solution
 - System Robustness
 - Integration & Verification
 - Validation
 - Transition to Operation
Figure 1-1 System Life Cycle Processes Overview per ISO/IEC 15288
Evaluating Complex System Development Maturity

The Creation and Implementation of a System Readiness Level for Defense Acquisition Programs

NDIA Systems Engineering Conference
22 October 2008

Kenneth Michaud
NAVSEA PEO LMW / PMS 420

Eric Forbes
Northrop Grumman Corporation

Brian Sauser, Ph.D.
Stevens Institute of Technology

Peter Gentile
Northrop Grumman Corporation
Overview

• Defining the Need

• SRL Methodology

• Refinement, Verification and Validation

• Implementation / Application

• Next Steps
The Complex System Development Problem

- A 2006 Government Accountability Office study of DOD technology development practices concluded:
 - A lack of insight into the technical maturity of complex systems during development has contributed to an environment of:
 - Significant cost overruns
 - Schedule slips leading to program delays
 - Canceled acquisition efforts
 - Reduced system performance at fielding
 - These symptoms will only grow worse as demands for rapid development and quick delivery increase
 - DOD needs to strengthen its technology development monitoring and gate review processes

"Over the next 5 years, many of the programs in our assessment plan to hold design reviews or make a production decisions without demonstrating the level of technology maturity that should have been there before the start of development."

Defining Program Office Needs

- PEO LMW / PMS 420 is responsible for the development and integration of a series of Mission Modules to be used on the Littoral Combat Ship

- Modules leverage considerable amounts of technology from existing programs of record while also conducting new development

- Keys aspects of the project include not only monitoring the status of technology development, but also the maturity of the numerous integrations between those technologies

- This has resulted in a very complex and diverse system of systems engineering activity with a need to obtain quick and accurate snapshots of program status, risks, and issues
Methodology
TRL Shortcomings

- Application of TRL to systems of technologies is not sufficient to give a holistic picture of complex system of systems readiness
 - TRL is only a measure of an individual technology

- Assessments of several technologies rapidly becomes very complex without a systematic method of comparison

- Multiple TRLs do not provide insight into integrations between technologies nor the maturity of the resulting system
 - Yet most complex systems fail at the integration points

Individual Technology

System of Technologies

Can TRL be applied?

Yes

Can TRL be applied?

NO
Methodology Development Overview

GOAL: Institute a robust, repeatable, and agile method to monitor / report system development and integration status

Create a **System Readiness Level (SRL)** that utilizes SME / developer input on technology and integration maturity to provide an objective indication of complex system development maturity

APPROACH

- Provides a **system-level** view of development maturity with opportunities to drill down to element-level contributions
- Allows managers to evaluate system development in real-time and take **proactive** measures
- Highly **adaptive** to use on a wide array of system engineering development efforts
- Can be applied as a **predictive** tool for technology insertion trade studies and analysis
SRL Methodology and Analysis Flow

Step 1: Identify hardware and software components
Include all technologies that make-up the overall system

Step 2: Define network diagram for systems
Emphasis is on the proper depiction of hardware and software integration between the components

Step 3: Define system operational strings (If applicable)
String analysis allows for the option of weighting the most important components and evaluation of alternate operational states

Step 4: Apply detailed TRL and IRL evaluation criteria to components and integrations

- Checklist style evaluation allows for the ability to “take-credit” for steps that have taken place beyond the current readiness level

Step 5: Calculate individual and composite SRLs
Input TRL and IRL evaluations into algorithm to compute an assessment of overall system status via SRLs

Step 6: Document status via roll-up charts
Populate reporting chart templates with evaluation and calculation outcomes to highlight both current status and performance over time

Iterative SME Evaluation Throughout Development Cycle
SRL Calculation

- The SRL is not user defined, but is instead based on the outcomes of the documented TRL and IRL evaluations.

- Through mathematically combining these two separate readiness levels, a better picture of overall complex system readiness is obtained by examining all technologies in concert with all of their required integrations.

\[
\text{SRL} = \text{IRL} \times \text{TRL}
\]

\[
\begin{pmatrix}
\text{SRL}_1 \\
\text{SRL}_2 \\
\text{SRL}_3
\end{pmatrix} =
\begin{pmatrix}
\text{IRL}_{11} & \text{IRL}_{12} & \text{IRL}_{13} \\
\text{IRL}_{12} & \text{IRL}_{22} & \text{IRL}_{23} \\
\text{IRL}_{13} & \text{IRL}_{23} & \text{IRL}_{33}
\end{pmatrix} \times
\begin{pmatrix}
\text{TRL}_1 \\
\text{TRL}_2 \\
\text{TRL}_3
\end{pmatrix}
\]

Composite SRL = \(1/n \left[\text{SRL}_1/n + \text{SRL}_2/n + \text{SRL}_3/n \right] \)

= \(1/n^2 \left[\text{SRL}_1 + \text{SRL}_2 + \text{SRL}_3 \right] \)

- These values serve as a decision-making tool as they provide a prioritization guide of the system’s technologies and integrations and point out deficiencies in the maturation process.
SRL Calculation Example

Technology 1
TRL1 = 9
IRL1,2 = 1

Technology 2
TRL2 = 6
IRL2,3 = 7

Technology 3
TRL3 = 6

TRL Matrix

<table>
<thead>
<tr>
<th>TRL1</th>
<th>TRL2</th>
<th>TRL3</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

IRL Matrix

<table>
<thead>
<tr>
<th>IRL1</th>
<th>IRL12</th>
<th>IRL13</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>IRL12</td>
<td>IRL2</td>
<td>IRL23</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>IRL13</td>
<td>IRL23</td>
<td>IRL3</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

SRL = IRL x TRL
(Normalized)

Component SRL = [SRL1, SRL2, SRL3] = [0.54, 0.43, 0.59]
Component SRLx represents Technology “X” and its IRLs considered

Composite SRL = 1/3 (0.54 + 0.43 + 0.59) = 0.52
The Composite SRL provides an overall assessment of the system readiness

For complex systems, the amount of information obtained from the SRL evaluation can be overwhelming.

To maximize applicability SRL outputs are tied to key, program-specific development milestones.

Progress against these milestones provide key insight to the user regarding current program status, risk and progress.
Refinement, Verification and Validation
“String” Analysis Incorporated

Complex systems often offer numerous options for conducting operations

- Operational strings were created that identified the components required to utilize a single function of the system.
- Assessment of the SRL for each of these options allows for a better understanding of the maturity of each operating configuration.
- Understanding the true status of the system on an operational string level allows for the opportunity to field initial capability earlier and then add to it as other strings mature.
SRL Calculators Developed

- Calculators are developed and defined for the system being evaluated
- Allows for real-time updates to TRL and IRL inputs and the resulting SRL evaluation providing decision-makers with instant feedback on “what if” scenarios
- Intuitive interface removes the need for the user to manipulate and deal with the mathematics of the SRL calculation
Verification and Validation Activities

IRL Criteria

- Created expanded list of IRL criteria for each readiness level
- Goal was to capture the key elements of the integration maturation process
- Presented to 30 integration SMEs from across government, academia, and industry
- Asked to assess importance of each criterion
- Results show solid buy-in among SMEs that identified criteria are key factors in successful integration

SRL Evaluation Process

- Conducted a “blind trial” of SRL methodology and evaluation process
- User’s Guide and evaluation criteria were sent to key system SMEs
- From just these resources SMEs were asked to conduct the evaluation and report on the results
- Compiled results and iterated on lessons learned to improve the process
Implementation / Application
Trading Off Technology Options

Trade Between Advanced Capability or Increased Maturity

Legend:
- MP Technology
- Sea Frame System
- Current Mission Package SRL Status
- Previous Mission Package SRL Status
- Current Mission System SRL Status
- Technology Readiness Level
- Integration Maturity Level
- System Readiness Level Demarcation
- Scheduled Position
- Risk to Cost and/or Schedule
 - Low
 - Medium
 - High

Risk to Cost and/or Schedule

<table>
<thead>
<tr>
<th>MP SRL</th>
<th>MP SRL w/ Sea Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP 1</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>0.57</td>
</tr>
</tbody>
</table>

Technology Readiness Level

Current Mission System SRL Status

Previous Mission Package SRL Status

Current Mission Package SRL Status

Integration Maturity Level

Technology Readiness Level Demarcation

Scheduled Position

Risk to Cost and/or Schedule

Low Medium High
Taking Action to Mitigate Risk

System Maturity is Enhanced
Planning for the Unexpected

Legend:
- MP Technology
- Sea Frame System
- Current Mission Package SRL Status
- Previous Mission Package SRL Status
- Current Mission System SRL Status
- Technology Readiness Level
- Integration Maturity Level
- System Readiness Level Demarcation

Risk to Cost and/or Schedule:
- Low
- Medium
- High

Mission Planning v2.0
UTAS / MSOBS Cntrl & Proc
CM/DF v2.0
MPS
USV Controller
Sea Frame MVCS
UTAS / MSOBS Cntrl & Proc
Sea Frame CMS

Risk to SRL:
- Low: 0.39
- Medium: 0.35
- High: 0.7
Effectively Channeling Resources

6 months later...

LEGEND
- MP Technology
- Sea Frame System
- Current Mission Package SRL Status
- Previous Mission Package SRL Status
- Current Mission System SRL Status
- Technology Readiness Level
- Integration Maturity Level
- System Readiness Level Demarcation
- Scheduled Position
- Risk to Cost and/or Schedule
 - Low
 - Medium
 - High

<table>
<thead>
<tr>
<th>MP SRL</th>
<th>MP SRL w/o Sea Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP SW</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>0.45</td>
</tr>
</tbody>
</table>

SRL...
Lessons Learned

- Methodology is highly adaptable and can be quickly applied to a wide variety of development efforts
- Programs tend to minimize the importance of system and subsystem integration and thus overestimate the maturity of their development
- Widespread familiarity with TRL makes acceptance and utilization of TRL and IRL easier
- Formulating the system architecture early in development is a key step and leads to an enhancement of the overall systems engineering effort
- System architecture formulation also provides the opportunity to bring together SMEs from both the physical and logical realms and necessitates insightful discussions across the team
- The decision maker is afforded the ability to assess program status from a system of systems perspective

The SRL methodology delivers a holistic evaluation of complex system readiness that is robust, repeatable, and agile
Next Steps
Future Work and Applications

SRL methodology can be used not only to assess current program performance against plan, but also to roadmap and assess future development options.

Future work will focus on the creation of an interactive technology insertion options tradeoff and decision environment.

Key Aspects:

- Development of a tool to assess technology options and architectures
- Incorporation of a semi-automated tradeoff capability that considers SRL, cost, risk, schedule, and performance impact
- Gathering of data from potential suppliers detailing how they fit into the defined architecture and the maturity of their product

Applications:

- Future technology, obsolescence, and upgrade planning
QUESTIONS?
Back-up
Abstract

A 2006 Government Accountability Office study of Department of Defense (DoD) technology transition processes concluded that a lack of insight into the technical maturity of complex systems during development has lead to an environment of program cost overruns, schedule slips, and reduced performance. A key aspect of current development practices is the reliance on the Technology Readiness Level (TRL) as a core provider of maturity assessments. While the TRL has been well proven for its effectiveness in gauging individual technology maturity in research and development applications, its extrapolation to the complex systems of systems integration dictated by emerging DoD requirements brings about a host of issues. Principally, by looking only at the status of individual component technical maturity, TRL fails to account for the complexities involved in the integration of these components into a functional system and creates the opportunity for performance gaps to remain hidden until late in the development cycle.

To address this lack of a true system-level maturity analysis process, the Northrop Grumman Corporation, the Stevens Institute of Technology, and NAVSEA have collaborated to create and implement a methodology known as the System Readiness Level (SRL). The SRL is a composite rating system relying on input from the traditional TRL scale as well as a new readiness gauge known as the Integration Maturity Level (IRL). These two scales are combined analytically to provide a systems readiness indicator that yields a holistic assessment of both the maturity of individual technologies within a system as well as the status of their corresponding integrations and interdependencies. This presentation will detail the application and value of this methodology to complex DoD integration efforts as well as the theory behind the SRL concept and the steps taken to minimize ambiguity and subjectivity in the evaluation process. Through this it will be shown that the SRL is an effective tool for system maturity and risk monitoring and contributes greatly to enhancing development program performance for complex systems.
Detailed SRL Calculation Example

Matrix Setup

- The computation of the SRL is a function of two matrices:
 - The TRL Matrix provides a blueprint of the state of the system with respect to the readiness of its technologies. That is, TRL is defined as a vector with \(n \) entries for which the \(i \)th entry defines the TRL of the \(i \)th technology.
 - The IRL Matrix illustrates how the different technologies are integrated with each other from a system perspective. IRL is defined as an \(n \times n \) matrix for which the element \(IRL_{ij} \) represents the maturity of integration between the \(i \)th and \(j \)th technologies.

- Populate these matrices with the appropriate values from the previously documented TRL and IRL component evaluations and then normalize to a \((0,1)\) scale by dividing through by 9

- For an integration of a technology to itself (e.g. \(IRL_{nn} \)) a value of “9” should be placed in the matrix

- For an instance of no integration between technologies a value of “0” should be placed in the matrix

\[
[TRL]_{1 \times n} = \begin{bmatrix}
TRL_1 \\
TRL_2 \\
... \\
TRL_n
\end{bmatrix} \quad [IML]_{n \times n} = \begin{bmatrix}
IML_{11} & IML_{12} & ... & IML_{1n} \\
IML_{21} & IML_{22} & ... & IML_{2n} \\
... & ... & ... & ... \\
IML_{n1} & IML_{n2} & ... & IML_{nn}
\end{bmatrix}
\]
Detailed SRL Calculation Example

Calculation

- Obtain an SRL matrix by finding the product of the TRL and IRL matrices

\[
[SRL]_{n \times 1} = [IML]_{n \times n} \times [TRL]_{n \times 1}
\]

- The SRL matrix consists of one element for each of the constituent technologies and, from an integration perspective, quantifies the readiness level of a specific technology with respect to every other technology in the system while also accounting for the development state of each technology through TRL. Mathematically, for a system with \(n \) technologies, \([SRL]\) is:

\[
[SRL] = \begin{bmatrix}
SRL_1 \\
SRL_2 \\
... \\
SRL_n
\end{bmatrix} = \begin{bmatrix}
IML_{11} TRL_1 + IML_{12} TRL_2 + ... + IML_{1n} TRL_n \\
IML_{21} TRL_1 + IML_{22} TRL_2 + ... + IML_{2n} TRL_n \\
... \\
IML_{n1} TRL_1 + IML_{n2} TRL_2 + ... + IML_{nn} TRL_n
\end{bmatrix}
\]
Detailed SRL Calculation Example

Analysis

- Each of the SRL values obtained from the previous calculation would fall within the interval \((0, \# \text{ of Integrations for that Row})\). For consistency, these values of SRL should be divided by the number of integrations for that row of the matrix to obtain the normalized value between \((0,1)\). (e.g. if there are four non-zero numbers in the IRL matrix for that row, divide by four)

- This number should then be multiplied by 9 to return to the familiar \((1,9)\) scale

- For Example:

\[
\begin{pmatrix}
I_{RL_1} & I_{RL_12} & I_{RL_13} \\
I_{RL_12} & I_{RL_2} & I_{RL_23} \\
I_{RL_13} & I_{RL_23} & I_{RL_3}
\end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 7 \\ 0 & 7 & 0 \end{pmatrix}
\]

- **1 Integration** (Divide SRL for that Row by 1 and multiply by 9)

- **2 Integrations** (Divide SRL for that Row by 2 and multiply by 9)

- **1 Integration** (Divide SRL for that Row by 1 and multiply by 9)
Detailed SRL Calculation Example

Analysis

\[SRL = \left[\begin{array}{ccc} SRL_1 & SRL_2 & SRL_3 \end{array} \right] \]

- These individual values serve as a decision-making tool as they provide a prioritization guide of the system’s technologies and integrations and point out deficiencies in the maturation process.

- The composite SRL for the complete system is the average of all normalized SRL values. (Note that weights can be incorporated here if desired.)

\[
SRL_{Composite} = \left(\frac{SRL_1}{n} + \frac{SRL_2}{n} + \ldots + \frac{SRL_n}{n} \right) \]

- A standard deviation can also be calculated to indicate the variation in the system maturity.
SRL Calculation Example

Normalizing the TRLs and IRLs

<table>
<thead>
<tr>
<th>IRL<sub>1</sub></th>
<th>IRL<sub>12</sub></th>
<th>IRL<sub>13</sub></th>
<th>TRL<sub>1</sub></th>
<th>TRL<sub>2</sub></th>
<th>TRL<sub>3</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-Normalized [(1,9) scale]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normalized [(0,1) scale]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1.0</th>
<th>0.11</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>1.0</td>
<td>.78</td>
</tr>
<tr>
<td>0</td>
<td>.78</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Remember... a technology integrated with itself receives an IRL value of 9 (e.g. IRL₁₁), while technologies for which there is no connection between them receive a value of 0 (e.g. IRL₁₃).

SRL for System Alpha
Calculating the SRL and Composite Matrix

\[SRL = IRL \times TRL \]

Component SRL

\[
\begin{pmatrix}
SRL_1 & SRL_2 & SRL_3 \\
\end{pmatrix}
= \begin{pmatrix}
1.07 & 1.30 & 1.19 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
SRL_1 & SRL_2 & SRL_3 \\
\end{pmatrix}
= \begin{pmatrix}
0.54 & 0.43 & 0.59 \\
\end{pmatrix}
\]

Where “n” is equal to the number of integrations for that technology

Component SRL\(_X\) represents Technology “X” and its IRLs considered

Composite SRL

\[
\text{Composite SRL} = \frac{1}{3} \left(0.54 + 0.43 + 0.59 \right)
\]

\[= 0.52 \]

The Composite SRL provides an overall assessment of the system readiness

Both individual and composite scores provide key insights into the actual maturity of the system as well as where risk may lie and attention directed for greatest benefit

System Detailed Status

NOTE: ALL DATA IN THIS TEMPLATE IS NOTIONAL

<table>
<thead>
<tr>
<th>SRL</th>
<th>Composite Actual</th>
<th>Planned</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRL</td>
<td>5.7</td>
<td>5.0</td>
</tr>
<tr>
<td>SRL w/o</td>
<td>5.3</td>
<td>5.0</td>
</tr>
<tr>
<td>Platform 1 Integrations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEGEND
- Platform 1 System
- Platform 2 System
- Current Composite SRL Status
- Previous Composite SRL Status
- Individual technology SRL Status
- Technology Readiness Level
- Integration Maturity Level
- System Readiness Level Demarcation
- Scheduled Position

Low Risk to Cost and/or Schedule
Moderate Risk to Cost and/or Schedule
High Risk to Cost and/or Schedule

Data Collection Period: XX/XX/XX – XX/XX/XX
Previous Report Date: XX/XX/XX
Schedule Updated: XX/XX/XX
NOTE: ALL DATA IN THIS TEMPLATE IS NOTIONAL

Program Status Roll-up

<table>
<thead>
<tr>
<th>FYXX</th>
<th>FYXX</th>
<th>FYXX</th>
<th>FYXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
</tr>
</tbody>
</table>

Data Collection Period: XX/XX/XX – X/XX/XX

Previous Report Date: XX/XX/XX

Schedule Updated: XX/XX/XX

LEGEND
- Current Reporting Period Status
- Previous Reporting Period Status
- Scheduled Position
- System Readiness Level

Notional

Sys 1
PDR
CDR
DRR
TBD

Sys 2
PDR
CDR
DRR
TBD

Sys 3
PDR
CDR
DRR
TBD

Assessment
SW Cert.
OA
DT
IOC

Assessment
SW Cert.
OA
DT
IOC

Assessment
SW Cert.
OA
DT
IOC

SW Cert.
AO
DT
IOC

SW Cert.
OA
DT
IOC
What is an IRL?

A systematic measurement reflecting the status of an integration connecting two particular technologies

<table>
<thead>
<tr>
<th>IRL</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Integration is Mission Proven through successful mission operations.</td>
</tr>
<tr>
<td>8</td>
<td>Actual integration completed and Mission Qualified through test and demonstration, in the system environment.</td>
</tr>
<tr>
<td>7</td>
<td>The integration of technologies has been Verified and Validated with sufficient detail to be actionable.</td>
</tr>
<tr>
<td>6</td>
<td>The integrating technologies can Accept, Translate, and Structure Information for its intended application.</td>
</tr>
<tr>
<td>5</td>
<td>There is sufficient Control between technologies necessary to establish, manage, and terminate the integration.</td>
</tr>
<tr>
<td>4</td>
<td>There is sufficient detail in the Quality and Assurance of the integration between technologies.</td>
</tr>
<tr>
<td>3</td>
<td>There is Compatibility (i.e. common language) between technologies to orderly and efficiently integrate and interact.</td>
</tr>
<tr>
<td>2</td>
<td>There is some level of specificity to characterize the Interaction (i.e. ability to influence) between technologies through their interface.</td>
</tr>
<tr>
<td>1</td>
<td>An Interface between technologies has been identified with sufficient detail to allow characterization of the relationship.</td>
</tr>
</tbody>
</table>

• Observed that the SRL algorithm did not take into account the varying levels of “importance” between technologies

• Examined the sensitivity of the algorithms to changes in the TRL and IRL ratings of systems with varying levels of importance

• Modified the methodology to automatically include weightings for those technologies that are most important by looking at operational “strings” or mission threads
SRL Response Analysis

IML = 1
Indicates unreasonable combination

Components to be integrated are selected and interfaces identified

<table>
<thead>
<tr>
<th>TRL</th>
<th>Composite SRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.06</td>
</tr>
<tr>
<td>3</td>
<td>0.17</td>
</tr>
<tr>
<td>5</td>
<td>0.28</td>
</tr>
<tr>
<td>7</td>
<td>0.39</td>
</tr>
<tr>
<td>9</td>
<td>0.51*</td>
</tr>
</tbody>
</table>

IML = 4

Integration and data requirements are defined; low fidelity experimentation

<table>
<thead>
<tr>
<th>TRL</th>
<th>Composite SRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>3</td>
<td>0.23</td>
</tr>
<tr>
<td>5</td>
<td>0.38</td>
</tr>
<tr>
<td>7</td>
<td>0.54</td>
</tr>
<tr>
<td>9</td>
<td>0.69*</td>
</tr>
</tbody>
</table>

IML = 7

End-to-end system integration accomplished; prototype demonstrated

<table>
<thead>
<tr>
<th>TRL</th>
<th>Composite SRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10*</td>
</tr>
<tr>
<td>3</td>
<td>0.29*</td>
</tr>
<tr>
<td>5</td>
<td>0.49</td>
</tr>
<tr>
<td>7</td>
<td>0.68</td>
</tr>
<tr>
<td>9</td>
<td>0.88</td>
</tr>
</tbody>
</table>

IML = 9

System installed and deployed with mission proven operation

<table>
<thead>
<tr>
<th>TRL</th>
<th>Composite SRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.11*</td>
</tr>
<tr>
<td>3</td>
<td>0.33*</td>
</tr>
<tr>
<td>5</td>
<td>0.56*</td>
</tr>
<tr>
<td>7</td>
<td>0.78</td>
</tr>
<tr>
<td>9</td>
<td>1.00</td>
</tr>
</tbody>
</table>
TRL Variation Analysis

All TRLs in the system are set to 9 with the exception of the one corresponding to the system in each row, which was set to 1.

<table>
<thead>
<tr>
<th>System</th>
<th>Connections</th>
<th>Used by</th>
<th>Standard Methodology</th>
<th>Non-connected, Self IRLs = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPCE</td>
<td>6</td>
<td>all</td>
<td>8.6</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radar</td>
<td>1</td>
<td>all</td>
<td>8.6</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH-60S</td>
<td>7</td>
<td>5</td>
<td>8.6</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COBRA</td>
<td>1</td>
<td>1</td>
<td>8.6</td>
<td>8.9</td>
</tr>
</tbody>
</table>

NOTE: There are 9 total threads

IRL Variation Analysis

All IRLs in the system are set to 9 with the exception of the one corresponding to the link in each row, which was set to 1

<table>
<thead>
<tr>
<th>System</th>
<th>Connections</th>
<th>Used by</th>
<th>Standard Methodology</th>
<th>Non-connected, Self IRLs = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPCE</td>
<td></td>
<td>all</td>
<td>9.0</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radar</td>
<td></td>
<td>all</td>
<td>9.0</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH-60S</td>
<td></td>
<td>5</td>
<td>9.0</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COBRA</td>
<td></td>
<td>1</td>
<td>9.0</td>
<td>9.0</td>
</tr>
</tbody>
</table>

NOTE: There are 9 total threads

Comparative Sensitivity

A look at how the algorithms penalized the SRL rating relative to one another (1 is most severe)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Standard Methodology</th>
<th>Non-connected, Self IRLs = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPCE</td>
<td>1,4</td>
<td>1,2</td>
</tr>
<tr>
<td>MH-60S</td>
<td>1,4</td>
<td>3</td>
</tr>
<tr>
<td>Radar</td>
<td>1,4</td>
<td>1,2</td>
</tr>
<tr>
<td>COBRA</td>
<td>1,4</td>
<td>4</td>
</tr>
</tbody>
</table>

1.) MPCE - CMS
2.) MH-60S - MPCE
3.) Radar - CMS
4.) COBRA - VTUAV
New Acquisition Policy and Its Impact on Systems Engineering

NDIA 11th Annual Systems Engineering Conference

October 21, 2008

Sharon Vannucci
Systems and Software Engineering/Enterprise Development
Office of the Deputy Under Secretary of Defense
(Acquisition & Technology)
Subtle, But Substantial Changes

- Process entry at Milestones A, B, or C
- Entrance criteria met before entering phase
- Evolutionary Acquisition or Single Step to Full Capability

- The Materiel Development Decision precedes entry into any phase of the acquisition framework
- Entrance criteria met before entering phase
- Evolutionary Acquisition or Single Step to Full Capability

= Decision Point △ = Milestone Review
Overview of Draft Acquisition Policy Changes*

- Mandatory Materiel Development Decision (MDD)
- Mandatory competing prototypes before MS B
- Mandatory PDR and a report to the MDA before MS B (*moves MS B to the right*)
- Configuration Steering Boards at Component level to review all requirements changes

- Renewed emphasis on manufacturing during system development:
 - Re-titles SDD phase to EMDD with two sub phases: Integrated System Design and System Capability and Manufacturing Process Demonstration
 - Establishes consideration of manufacturing maturity at key decision points
- Mandatory system-level CDR with an initial product baseline and followed by a Post-CDR Report to the MDA
- Post-CDR Assessment by the MDA between EMDD sub phases

*Coordination Draft, DoDI 5000.02
“When the ICD demonstrates the need for a materiel solution, the JROC will recommend that the MDA consider potential materiel solutions. The MDA, working with appropriate stakeholders, shall determine whether it is appropriate to proceed with a Materiel Development Decision. . . . If the MDA decides that additional analysis is required, a designated office shall prepare, and the MDA shall approve, study guidance to ensure that necessary information is available to support the decision. . . . The Materiel Solution Analysis Phase begins with the Materiel Development Decision (MDD) Review. The MDD Review is the formal entry point into the acquisition process and shall be mandatory for all programs. . . . At the MDD Review, the Joint Staff shall present the JROC recommendations and the DoD Component shall present the ICD including: the preliminary concept of operations, a description of the needed capability, the operational risk, and the basis for determining that non-materiel approaches will not sufficiently mitigate the capability gap. The Director, PA&E, shall propose study guidance for the AoA. . . . The MDA shall approve the AoA study guidance; determine the acquisition phase of entry; identify the initial review milestone; and designate the lead DoD Component(s). The MDA decisions shall be documented in an Acquisition Decision Memorandum (ADM).”
FY08 National Defense Authorization Act

- Mandates Milestone A approval prior to technology development for a major weapon system
- Requires MDA Certification prior to Milestone A for MDAPs
- Changed Milestone B Certification Requirements
- Mandates reporting and notification of program cost changes
“Evolutionary acquisition requires . . .
Technology development preceding
initiation of an increment shall continue
until the required level of maturity is
achieved, prototypes of the system or
key system elements are produced, and
a preliminary design is completed. . . .”

“The TDS and associated funding shall
provide for two or more competing
teams producing prototypes of the
system and/or key system elements
prior to, or through, Milestone B.”
Preliminary Design Review Precedes MS B

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>MS B moved “to the right” to allow contractor preliminary design to inform requirements, estimated costs, and schedule.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS</td>
<td>Technology Development extended through formal Preliminary Design Review (PDR). Preliminary design based on DRAFT CDD to facilitate trades before JROC approval. Competitive environment sustained up to and perhaps through MS B. MDA conducts MS B review as described in current policy.</td>
</tr>
<tr>
<td>SUPPORTING INFORMATION</td>
<td>PDR Report from PM. Current statutory and regulatory information</td>
</tr>
</tbody>
</table>
| BENEFITS | - Ties program decision to event-based (product-based) technical review
- Most derived requirements surfaced
- Better understanding of cost, schedule, and performance risk when the APB is approved and SAR reporting begins
- Opportunity for MDA to defer (in coordination with requirements authority) unachievable requirements to next increment
- Final requirements informed by detailed design
- Early indicator of manufacturing and production issues
- Logical extension of prototyping and competition policy |
§ 3.5.11. A Preliminary Design Review (PDR) shall be conducted for the candidate design(s) to establish the allocated baseline (hardware, software, human/support systems) and underlying architectures and to define a high-confidence design. All system elements (hardware and software) shall be at a level of maturity commensurate with the PDR entrance and exit criteria. A successful PDR will inform requirements trades; improve cost estimation; and identify remaining design, integration, and manufacturing risks. The PDR shall be conducted at the system level and include user representatives and associated certification authorities. The PDR Report shall be provided to the MDA at Milestone B and include recommended requirements trades based upon an assessment of cost, schedule, and performance risk.
The purpose of the EMDD phase is to develop a system or an increment of capability; complete full system integration (technology risk reduction occurs during Technology Development); develop an affordable and executable manufacturing process; ensure operational supportability with particular attention to minimizing the logistics footprint; implement human systems integration (HSI); design for producibility; ensure affordability; protect CPI by implementing appropriate techniques such as anti-tamper; and demonstrate system integration, interoperability, safety, and utility. The CDD, Acquisition Strategy, Systems Engineering Plan (SEP), and Test and Evaluation Master Plan (TEMP) shall guide this effort.

Integrated System Design. This effort is intended to define system and system-of-systems functionality and interfaces, complete hardware and software detailed design, and reduce system-level risk. Integrated System Design shall include the establishment of the product baselines for all configuration items.

System Capability and Manufacturing Process Demonstration. This effort is intended to demonstrate the ability of the system to operate in a useful way consistent with the approved KPPs and that system production can be supported by demonstrated manufacturing processes. The program shall enter System Capability and Manufacturing Process Demonstration upon completion of the Post-CDR Assessment and establishment of an initial product baseline. This effort shall end when the system meets approved requirements and is demonstrated in its intended environment using the selected production-representative article; manufacturing processes have been effectively demonstrated; industrial capabilities are reasonably available; and the system meets or exceeds exit criteria and Milestone C entrance requirements.
MDA Conducts Post-CDR Assessment

CHARACTERISTICS

Post-CDR Assessment replaces Design Readiness Review.

PROCESS

Post-CDR Assessment is a formal, Milestone Decision Authority (MDA)-conducted decision event. PM describes product baseline, completed build-to-packages, a summary of issues and an assessment of program risk based on the CDR report and summarized EVM data. Review considers whether, based on the Program Manager’s report, the program is able to provide capability consistent with the Acquisition Program Baseline approved at Milestone B. The MDA determines whether (1) an adjustment should be made, or (2) the program should be permitted to proceed without change.

SUPPORTING INFORMATION

System-Level CDR Report

BENEFITS

- Capitalizes on a well-defined, event-based, technical review
- Decisions based on enhanced knowledge of program and associated contract, all derived requirements surfaced, design uncertainties resolved, development and production costs well defined
- Opportunity for MDA to assess design maturity, e.g., drawings complete
- May provide opportunity to update “current” baseline if consistent with statute (“re-structure”)
- An opportunity to defer “derived” requirements if inconsistent with cost / schedule thresholds
§3.6.4.2. **Post-Critical Design Review (CDR) Assessment.** The MDA shall conduct a formal program assessment following system-level CDR. The system-level CDR, which shall be conducted as soon as practicable after program initiation, provides an opportunity to assess design maturity as evidenced by measures such as: successful completion of subsystem CDRs; the percentage of hardware and software product build-to specifications and drawings completed and under configuration management; planned corrective actions to hardware/software deficiencies; adequate developmental testing; an assessment of environment, safety and occupational health risks; a completed failure modes and effects analysis; the identification of key system characteristics, manufacturing feasibility, and critical manufacturing processes; an estimate of system reliability based on demonstrated reliability rates; etc.
§ 3.6.4.2.1. The PM shall provide a Post-CDR Report to the MDA that provides an overall assessment of design maturity and a summary of the system-level CDR results which shall include, but not be limited to:

§ 3.6.4.2.1.1. The names, organizations, and areas of expertise of independent subject matter expert participants and CDR chair;
§ 3.6.4.2.1.2. A description of the product baseline for the system and the percentage of build-to packages completed for this baseline;
§ 3.6.4.2.1.3. A summary of the issues and actions identified at the review together with their closure plans;
§ 3.6.4.2.1.4. An assessment of risk by the participants against the exit criteria for the EMDD Phase; and
§ 3.6.4.2.1.5. Identification of those issues/risks that could result in a breach to the program baseline or substantively impact cost, schedule, or performance.

§ 3.6.4.2.2. The MDA shall review the Post-CDR Report and the PM's resolution/mitigation plans and determine whether additional action is necessary to satisfy EMDD Phase exit criteria and to achieve the program outcomes specified in the APB. The results of the MDA's Post-CDR Assessment shall be documented in an ADM.
§ 3.9.6. **Program Support Reviews (PSR).** PSRs are a means to inform an MDA and Program Office of the status of technical planning and management processes by identifying cost, schedule, and performance risk and recommendations to mitigate those risks. PSRs shall be conducted by cross-functional and cross-organizational teams appropriate to the program and situation. PSRs for ACAT ID and IAM programs shall be planned by the Director, Systems and Software Engineering to support OIPT program reviews, at other times as directed by the USD (AT&L), and in response to requests from PMs.

Enclosure 5. § E5.7.2. The DUSD(A&T) shall conduct an independent Assessment of Operational Test Readiness (AOTR) for all ACAT ID programs and special interest programs designated by the USD(AT&L). Each AOTR shall consider the risks associated with the system's ability to meet operational suitability and effectiveness goals. This assessment shall be based on capabilities demonstrated in DT&E, and OAs, and criteria described in the TEMP. The AOTR report shall be provided to the USD(AT&L), D,OT&E, and Component Acquisition Executive (CAE).

§ E5.7.3. The CAE shall consider the results of the AOTR prior to making a determination of materiel system readiness for IOT&E.
New Systems Engineering Enclosure

- Codifies three previous SE policy memoranda
- Codifies a number of SE-related policies and statutes since 2003:
 - Environment, Safety, and Occupational Health
 - Corrosion Prevention and Control
 - Modular Open Systems Approach
 - Data Management and Technical Data Rights
 - Item Unique Identification
 - Reliability, Availability, and Maintainability
- Introduces new policy on Configuration Management
E12.1. **Systems Engineering Across the Acquisition Lifecycle.**

E12.2. **Systems Engineering Plan (SEP).**

 E12.2.1. PMs shall prepare a SEP for each milestone review, beginning with Milestone A. At Milestone A, the SEP shall support the TDS; at Milestone B or later, the SEP shall support the Acquisition Strategy.

 E12.2.2. The DUSD (A&T) shall be the SEP approval authority for programs that will be reviewed by the DAB/ITAB.

E12.3. **Systems Engineering Leadership.** Each PEO, or equivalent, shall have a lead or chief systems engineer on his or her staff responsible to the PEO for systems engineering across the PEO’s portfolio of programs. … and shall:

 E12.3.1. Review assigned programs’ SEPs and oversee their implementation.

 E12.3.2. Assess performance of subordinate lead or chief system engineers ...

E12.4. **Technical Reviews.** Technical reviews shall be event driven, conducted when documented entrance criteria are met, and include participation by subject matter experts who are independent of the program.
E12.5. **Configuration Management.** The PM shall use a configuration management approach to establish and control product attributes and the technical baseline across the total system life cycle. This approach shall identify, document, audit, and control the functional and physical characteristics of the system design; track any changes; provide an audit trail of program design decisions and design modifications; and be integrated with the SEP and technical planning. At completion of the system level Critical Design Review, the PM shall assume control of the initial product baseline for all Class 1 configuration changes.

E12.6. **Environment, Safety, and Occupational Health (ESOH).** The PM shall use the methodology in MIL-STD-882D to assess ESOH risk, eliminate ESOH hazards where possible, manage the risks that cannot be eliminated, and report on the status of ESOH risk at technical reviews.

 E12.6.1. **Programmatic ESOH Evaluation (PESHE).** The PM for all programs, regardless of ACAT level, shall prepare a PESHE and summarize it in the acquisition strategy.

 E12.5.2. **NEPA/EO 12114.** The PM shall conduct and document NEPA/EO 12114 analyses, to be approved by the CAE, for which the PM is the action proponent.

 E12.6.3. **Mishap Investigation Support.** The PM will support system-related Class A and B mishap investigations.
E12.7. **Corrosion Prevention and Control.** Each ACAT I program shall document its strategy in a Corrosion Prevention Control Plan at Milestones B and C.

E12.8. **Modular Open Systems Approach (MOSA).** Program managers shall employ MOSA.

E12.9. **Data Management and Technical Data Rights.** Program Managers for ACAT I and II programs, regardless of planned sustainment approach, shall assess the long-term technical data needs of their systems and reflect that assessment in a Data Management Strategy (DMS).

E12.10. **Item Unique Identification (IUID).** To enhance life-cycle management of assets in systems acquisition and sustainment, and to provide more accurate asset valuation, all PMs shall plan for and implement IUID to identify and track applicable major end items, configuration-controlled items, and Government-furnished property. IUID planning and implementation shall be documented in an IUID Implementation Plan and summarized in the program's Systems Engineering Plan (Reference (an) and DoD Directive 8320.03, Reference (bv)).

E12.11. **Reliability, Availability, and Maintainability (RAM).** PMs for all programs shall formulate a viable RAM strategy that includes a reliability growth program as an integral part of design and development. RAM shall be integrated within the Systems Engineering processes, documented in the program’s SEP and LCSP, and assessed during technical reviews, T&E, and PSRs.
Implications for Systems Engineering
New Opportunities for Enhanced SE – Starting Programs Right

What’s relevant:
- **Mandatory** Materiel Development Decision
- **Mandatory** Milestone A for all “major weapon systems”
- **MS B** after system-level PDR* and a PDR Report to the MDA*

Pre-MDD “SE Touch Points”
- Initial Capabilities Document (ICD)
- Analysis of Alternatives study plan

Pre-Milestone A “SE Touch Points”
- Systems Engineering Plan
- Technology Development Strategy
- Test and Evaluation Strategy
- Analysis of Alternatives

* PDR – Preliminary Design Review
* CDR – Critical Design Review
* MDA - Milestone Decision Authority
SE Focus: Materiel Solution Analysis

MDD

Materiel Solution Analysis

MS A

JCIDS

ICD

Government Program Office Systems Engineering

Engineering Analysis of Preferred Systems Solution(s)

Technical Planning for MS A

Areas Depending on SE input

Other Government Program Office Activities

AoA Guidance

Conduct AoA

Typically executed by PMO SE Staff

Typically executed by Industry

Delivered Product

Alternative Systems Review

Grey Areas depending on PMO SE input

Leads to

Informs

Key SE input
SE Focus: Technology Development

Technology Development

User assessment of capability needs

Initial TRA

Requirements to Preliminary Design**

Initial TRA

CTE Prototyping

Develop Feasible System Design (FD)

FD

Draft System Level Spec

Sys Spec

Design Prototyping

PDR(s)

PDR Report

SE Prep for MS B

Final SEP ISP

Other Program Activities

Actions Depending on SE input

Typically executed by PMO SE Staff
Typically executed by Industry
Delivered Product
Mandated Preliminary Design Review
Technical Review
Technical Assessment

Grey Areas depending on PMO SE input

Draft RFP for Initial Sys Dev

Update SEP

Update SEP

Update SEP

Update RFP*

Final AS TEMP CARD/ICE CCE APB

Final AS TEMP CARD/ICE CCE APB

Typically executed by PMO SE Staff
Typically executed by Industry
Delivered Product
Mandated Preliminary Design Review
Technical Review
Technical Assessment

Grey Areas depending on PMO SE input

Draft RFP for Initial Sys Dev

Update SEP

Update SEP

Update SEP

Update RFP*

Final AS TEMP CARD/ICE CCE APB

Final AS TEMP CARD/ICE CCE APB

* Prototyping for CTE and for design may be independent efforts

** May vary with contracting strategy (e.g., multiple designs)
New Opportunities for Independent Reviews

What’s relevant:
- *Mandatory* Milestone A for all “major weapon systems”
- MS B *after* system-level PDR* and a PDR Report to the MDA
- EMDD with Post-CDR* Report and MDA Assessment
- PSR and AOTR in policy

Program Support Reviews (PSRs)
- All ACAT ID & IAM
- To inform the MDA on technical planning and management processes thru risk identification and mitigation recommendations
- To support OIPT program reviews and others as requested by the MDA

Assessments of Operational Test Readiness (AOTRs)
- All ACAT ID and special interest programs
- To inform the MDA, DOTE, & CAE of risk of a system failing to meet operational suitability and effectiveness goals
- To support CAE determination of materiel readiness for IOT&E

Backup
Milestone A (per FY’08 NDAA Sec. 943)

“The project shall enter the Technology Development Phase at Milestone A when the MDA has approved the TDS. The tables in Enclosure 3 identify all statutory and regulatory requirements applicable to Milestone A. . . . The MDA shall comply with the certification requirements at Milestone A as described in Enclosure 10 of this Instruction. This effort normally shall be funded only for the advanced development work. Technology development for a major weapon system shall not proceed without Milestone A approval. For business area capabilities, commercially available solutions shall be preferred. A favorable Milestone A decision DOES NOT mean that a new acquisition program has been initiated.”
Configuration Steering Boards (CSB). The Acquisition Executive of each DoD Component shall establish a CSB with broad executive membership including senior representatives from the Office of the USD(AT&L) and the Joint Staff.

- The CSB shall review all requirements changes and any significant technical configuration changes for ACAT I and IA programs in development which have the potential to result in cost and schedule impacts to the program. Such changes will generally be rejected, deferring them to future blocks or increments. Changes shall not be approved unless funds are identified and schedule impacts mitigated.

- Program Managers shall, on a roughly annual basis, identify and propose a set of descoping options to the CSB that reduce program cost or moderate requirements. The CSB shall recommend to the MDA (if an ACAT ID or IAM program) which of these options should be implemented. Final decisions on de-scoping option implementation shall be coordinated with the Joint Staff and military department requirements officials.
Test and Evaluation

- Integrated DT&E / OT&E activities
- Evaluations include comparison with current capability
- Evaluations conducted in the expected “mission context”

MEMORANDUM FOR: SEE DISTRIBUTION

SUBJECT: Test and Evaluation Policy Revisions

The fundamental purpose of test and evaluation is to provide knowledge to assist in managing the risks involved in developing, producing, operating, and sustaining systems and capabilities.

T&E measures progress in both system and capability development. T&E provides knowledge of system capabilities and limitations to the acquisition community for use in improving the system performance, and the user community for optimizing system use in operations. T&E expertise must be brought to bear at the beginning of the system life cycle to provide earlier learning about the strengths and weaknesses of the system under development. The goal is early identification of technical, operational, and system deficiencies, so that appropriate and timely corrective actions can be developed prior to fielding the system. Consequently, to achieve this goal we have decided to immediately implement the following policies:

- Developmental and operational test activities shall be integrated and seamless throughout the system life cycle. At technology, software, and threats change, follow-on T&E should be used to assess current mission performance and inform operational users’ during the development of new capability requirements.
- Evaluations shall include a comparison with current mission capabilities using existing data, so that measurable improvements can be determined. If such evaluation is considered cost prohibitive the Service Component shall propose an alternative evaluation strategy.
- T&E should assess improvements to mission capability and operational support based on user needs and should be reported in terms of operational significance to the user. Consequently, evaluations shall be conducted in the mission context expected at time of fielding, as described in the user’s capability document, and consider any new validated threat environments that will alter operational effectiveness.
- To maximize the efficiency of the T&E process and more effectively integrate developmental and operational T&E, evaluations shall take into account all available and relevant data and information from contractor and government sources.
Accelerate Performance Improvements: Systems Engineering Skills Competency Analysis and Training Program Development

Steven A. Diebold
Director, Future Force Systems Engineering
General Dynamics, Land Systems
Agenda

- GDLS Overview
- SE Training & Education Program Overview
- Competency Assessment
- Gap Analysis
- Curriculum Development
- Results to Date
- Future Activities
GDLS Mission

General Dynamics Land Systems provides a full spectrum of land and amphibious combat systems, subsystems and components worldwide.

Our strengths are world-class design and systems integration, superior production and innovative life cycle support.

We will deploy these strengths to meet our customers’ needs in a changing world.
U.S. Locations

- Ft. Wainwright
- Ft. Richardson
- Muskegon Technical Center
- Ft. Lewis
- Schofield Barracks
- Pohakuloa Training Area
- Camp Pendleton
- Ft. Hood
- GDLS Central Office – GDLS Logistics & Engineering Center
- GDLS Future Combat Systems
- Shelby Operations
- Scranton Operations
- Robotic Systems
- Amphibious Systems
- Tallahassee Operations
- Anniston Army Depot
- Joint Systems Manufacturing Center
- GDLS Future Combat Systems

GENERAL DYNAMICS
Land Systems

Approved for Public Release, Distribution Unlimited, GDLS Approved, Log 2008-87, Dated 09/30/08
Major Contributors to Poor Program Performance*

- Lack of technical planning and oversight
- Inadequate understanding of requirements
- Incomplete, obsolete, inflexible and Stovepipe Physical and Functional architectures
- Stovepipe developments with late integration
- Lack of subject matter expertise at the integration level
- Low visibility of software risk

Lack of systems engineering discipline, authority, and resources

* DoD-directed Studies/Reviews, 2005
GDLS’s Response

- Organize along Product Centers
 - Voice of customer

- ‘One Engineering Design and Development Team’ for GDLS
 - Integrated Process System across all Locations
 - CMMI Level 3/5

- Revitalize Systems Engineering
 - Process Improvements
 - Gate Reviews, Six Sigma, DFR
 - SE Training & Education Program

Today’s Topic
Roles identified for Systems Engineering
- For each role, required competencies established
- Employees assessed against required competencies for their assigned roles
- Results of competency assessments analyzed to identify gaps
- SE Curriculum developed to address high and medium gaps and to further develop employees with low or no gaps
- Training Plan developed to incorporate SE Curriculum, mandatory courses, and Seminars/Conferences
- Progress to goals and training effectiveness measured by Level 1 evaluations
Competency Assessment

- Supervisor verifies that correct roles are assigned to Employee
- Employee conducts self-assessment of competency levels for each required competency
 - **Basic** - Trained or understands basic concepts of the competency, however still needs help in applying the competency
 - **Qualified** - Has a good command of the competency, no help needed in applying the competency
 - **Advanced** - Has advanced understanding of the competency, can lead and/or teach others in applying the competency
 - **None** – Does not meet basic competency level
- Supervisor verifies assessment
- Training Coordinator compiles all completed assessments
- Training Coordinator evaluates roles to determine which roles represent 80% of the Systems Engineering population
Gap Analysis Methodology

Determined which roles represent 80% of the SE population (top roles)

Identified top 20 required competencies for the top roles

Analyzed results of competency assessments to determine distribution of gaps across the top roles for the top 20 required competencies

Gap Analysis
(Compared Required Skill Level to Evaluated Skill Level)

High Gap
Medium Gap
Low Gap
No Gap
Competency Assessment Results

- **Highest Gap**
 - SE Principles
 - Project Management
 - Domain Specific Skills

- **Medium Gap**
 - Risk Analysis
 - Test & Validation Planning
 - Baseline Management (CM)

- **Lowest Gap**
 - Requirements Management
 - Trade Studies
 - Reliability
 - Design Integration

User defined parameters

<table>
<thead>
<tr>
<th>Required Skill</th>
<th>Evaluated Skill</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Required Level of Competency</th>
</tr>
</thead>
<tbody>
<tr>
<td>All SE - SE Principles</td>
<td></td>
<td>1.37</td>
<td>0.15</td>
<td>1.37</td>
</tr>
<tr>
<td>All SE - Risk Analysis</td>
<td></td>
<td>1.1</td>
<td>0.13</td>
<td>1.1</td>
</tr>
<tr>
<td>All SE - DOORS</td>
<td></td>
<td>1.54</td>
<td>0.87</td>
<td>1.54</td>
</tr>
</tbody>
</table>

Population = 561

Required Skill

- 0 = none
- 1 = basic
- 2 = qualified
- 3 = advanced

Evaluated Skill

- Mean 1.37
- Standard Deviation 0.15
- Required Level of Competency 1.37

Population = 291

Evaluated Skill

- Mean 1.1
- Standard Deviation 0.13
- Required Level of Competency 1.1

Population = 240
SE Curriculum

Low or No Technical Gaps

- SSCI SE Certificate Program
 - By 2011: 10% Earn SSCI SE Certificate (68 total)

Certified SE Professional (CSEP)
- By 2011: 10% Earn INCOSE CSEP (68 total)

High & Medium Technical Gaps

- SE Overview/SE Principles
 - By 2011: 100% Complete SE Overview/Principles (676 total)

- Basic Configuration Management
 - In 2008: 25 students complete Basic Configuration Management

Knowledge Retention & Development

- Risk Analysis
- Succession Planning
- Succession/Leadership Development
- Conferences & Seminars

Design for Six Sigma

- Master Black Belt TTT
- DFSS Green Belt Program

Design for Reliability Curriculum

- Developed with outside vendor (Air Academy) to be delivered in-house by GDLS Six Sigma & Emerging Methods

Cross Functional Development

- Rotational job assignments: Logistics Engineer LSE Section Manager

* Based on 676 SE employees (Contractors not included)
Development of SE Training Plan

- Technical Competency Gaps
- SE Curriculum
- Technical Conferences & Seminars (Debriefs Conducted)
- ED&D Organization Training Plan (OTP)
- ED&D Imperatives
- Available budget
- SE Organizational Training Plan (OTP)

Mandatory Health & Safety, ITAR, etc.

General Dynamics
Land Systems

Approved for Public Release, Distribution Unlimited, GDLS Approved, Log 2008-87, Dated 09/30/08

N-539 12
Training Budget Distribution

- Training represents 6% of the Systems Engineering overhead budget.

Year to Year Training Hours Distribution by Category

<table>
<thead>
<tr>
<th>Year</th>
<th>Mandatory</th>
<th>Non Technical</th>
<th>Technical</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>35%</td>
<td>14%</td>
<td>51%</td>
</tr>
<tr>
<td>2007</td>
<td>55%</td>
<td>15%</td>
<td>30%</td>
</tr>
<tr>
<td>2008</td>
<td>27%</td>
<td>27%</td>
<td>55%</td>
</tr>
</tbody>
</table>

- **Mandatory Training** includes health, safety and security courses.
- **Non Technical Training** includes courses such as leadership development, teaming, CMMI and ISO.
- **Technical Training** includes courses such as SE Certificate Program/Overviews, GD&T, Soldering and Welding.
Development of SE Courses

2006
- Training Gap Analysis of Systems Engineering employees revealed need for Systems Engineering courses.
- Completed trade study and selected Center for Systems Management (CSM) based largely on their affiliation with Stanford University.
- Delivered first sessions of SE courses with CSM.

2007
- CSM/Stanford University no longer affiliated.
- Second trade study conducted to determine if vendor change best option for future course delivery.
- Systems and Software Consortium (SSCI) selected based on reputation and prior relationship.
- Collaborated with SSCI to tailor standard course materials for GDLS.
- Delivered first sessions of 12-day SE Certificate Program (SECP).

2008
- Continued offerings of SECP and added 5-day and 2-day SE Overview course to training plan.
- Utilized Michigan Economic Development Grant
Training Goals

SE Certificate Program
- Students Trained
 - Projected
 - Actual
 - Cumulative Totals for years 2007 to 2011

Certified SE Professionals
- Employees Certified
 - Projected
 - Actual
 - Cumulative Totals for years 2007 to 2011

SE Principles
- Students Trained
 - Projected
 - Actual
 - Cumulative Totals for years 2006 to 2011

SE Concepts/Principles Skill Gap Burndown
- SE Employees with Skill Gap
 - % Gap Remaining
 - Linear (% Gap Remaining)
 - Gap Analysis for years 2006 to 2008
Training Evaluation

Levels of Evaluation

1. **Reaction**
 - **Measures:** Students reaction to the training
 - **Tool:** Surveys

2. **Learning**
 - **Measures:** Extent to which students have advanced skills/knowledge
 - **Tool:** Pre- and Post-tests

3. **Application**
 - **Measures:** The transfer of skills/knowledge to employees’ work
 - **Tools:** Employee competency level assessed by Supervisor, Employee confidence level self-assessed

4. **Results**
 - **Measures:** Impact of training on business performance
 - **Tools:** Average Competency Level of students vs. Delivery, Cost per student, process performance measures

Approved for Public Release, Distribution Unlimited, GDLS Approved, Log 2008-87, Dated 09/30/08
Results to Date

- Development of evaluation methods: surveys, pre/post testing, 90-day evaluations
- Evaluations reveal effectiveness of courses
- Student comments used to improve future course delivery
- Modest changes to 2006 SE Training Gap
SE Training Effectiveness

- Level 1 Evaluation: Course Surveys administered at end of class
 17 question survey used to evaluate students’ satisfaction with the course content, instructor, resources, and relevance of course to their jobs.

EXAMPLE COURSE 1: ANALYSIS

- Some attendees were employees with many years of experience and felt that the course was not relevant to them.
- Course material needs to be made more relevant to SE. Too much focus on Software.

CORRECTIVE ACTION

- One time offering. No action to be taken at this time. If future offerings to be scheduled, consider tailoring course material to SE and use updated gap analysis data to identify attendees.
SE Training Effectiveness

Level 2 Evaluation: Pre/Post Testing

Test of 10 questions based on course content administered at start and end of courses to measure initial effectiveness of course delivery.

Fill in the blanks using the choices above.

1. ____________________________ is an interdisciplinary approach and means to enable the realization of successful systems.
2. ____________________________ are used to quantify the performance of system products and processes.
3. ____________________________ is the condition of the system.
4. ____________________________ is the manner in which the system operates.
5. ____________________________ and ____________________________ are elements of Logistics Support.
6. ____________________________ answers the question, “Did we build the right thing?”
7. ____________________________ describes engineering specialty integration, the SE work to be done, and the management of this work.
8. ____________________________ and ____________________________ are engineering specialties.

EXAMPLE COURSE 2:

ANALYSIS

- Few students scored higher on Post Test
- Focus of course did not match pre/post test questions well.

CORRECTIVE ACTION

- Prior to next course offering, work with course instructor to develop a Pre/Post test that is more relevant to the topics reviewed during the course.
SE Training Effectiveness

- Level 3 Evaluation: Application – Post-Course Evaluation

Use standardized evaluation form to collect data.

Send via email to students 60-90 days following course.

Measures frequency of skill use, value of skill on job, self-assessed proficiency rating, barriers to use on job.

EXAMPLE COURSE 3: ANALYSIS

- Analysis of preliminary data shows course is well received and is perceived by attendees to have value in their day to day activities. Most students would recommend this course to coworkers and managers.
Path Forward

- Complete follow up Training Gap Analysis by year-end
- Renew focus on closing identified training gaps
- Continue to tailor/modify course delivery based on student feedback
- Continue to develop and improve evaluation methods to assess improved business performance
Contact Information

Steven A. Diebold
Director, Future Force System Engineering
38500 Mound Road
Sterling Heights, MI 48310
(586) 825-5869
diebold@gdls.com

Wendell Mullison
Manager, System Engineering Process Tools and Architecture
38500 Mound Road
Sterling Heights, MI 48310
(586) 825-4118
mullison@gdls.com

Kimberly Swierpel
SE Measurement Analysis & Process Architecture
38500 Mound Road
Sterling Heights, MI 48310
(586) 825-4779
swierpel@gdls.com
Roles & Competencies

<table>
<thead>
<tr>
<th>ROLES REPRESENTING 80% OF SE POPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements Engineer</td>
</tr>
<tr>
<td>Section Manager</td>
</tr>
<tr>
<td>Systems Analysis Engineer</td>
</tr>
<tr>
<td>Physical Architect</td>
</tr>
<tr>
<td>Specialty Engineer</td>
</tr>
<tr>
<td>Field Test Engineer - Vehicle Test Engineer</td>
</tr>
<tr>
<td>System Architect</td>
</tr>
<tr>
<td>Logistics Engineer</td>
</tr>
<tr>
<td>Lead System Engineer</td>
</tr>
<tr>
<td>Reliability Engineer</td>
</tr>
<tr>
<td>Technical Writer - Operations and Maintenance</td>
</tr>
</tbody>
</table>

TOP 20 COMPETENCIES

1. System Engineering Principles
2. Job Specific Process knowledge
3. Product knowledge - (Tracked, Wheeled or FCS as applicable)
4. Customer Satisfaction
5. Communication
6. Effective meeting / reviews
7. EVMS
8. Risk Analysis
9. Trade Studies
10. Reliability theory
11. Pro E
12. DOORS
13. Requirements Generation & Documentation
14. Metric development
15. Program Management
16. Test & validation plan development
17. Cost estimating / proposal development
18. DFMEA principles & techniques
19. XFMEA (reliasoft suite of tools - Vmetric, Weibull, blocksim)
20. Project Planning
SE Certificate Program (SECP)

- Is an on-site program leading to a Systems Engineering Certificate from the Systems and Software Consortium, Inc. (SSCI).
- Is an intensive, graduate-level learning curriculum for experienced, practicing engineers.
- Is a 12 day program delivered in a building block approach of four 3-day modules over a two to three month period with self-study, classroom, and team project work.
- Is a program that integrates INCOSE SE Handbook material in an effort to help participants who are interested in pursuing the INCOSE Certified Systems Engineering Professional (CSEP) certificate.
- Provides the ability to address skill/competency gaps through training
- Supports SE Revitalization
SE Certificate Program (SECP)

SE Certificate Curriculum (4 classes, 3 days each)

Manage the Work
- SE Management
- Organization & Systems
- Engineering
- Risk & Opportunity Management
- Technical Parameter Measurement
- Work Breakdown Structure
- Earned Value Management
- Scheduling
- Process

Close the Loop
- Verification
- Validation
- Integration
- Deployment
- Logistics Support

Define the Solution
- Architecting and Synthesis
- Allocation
- Cost Factors
- Analysis and Decisions
- Specialty Engineering
- Integrated Product Teams

Define the Problem
- SE Planning
- Needs, expectations and constraints
- Concept of Operations
- Requirements
- Functional Analysis
- Specifications
Other SE Courses

SE Principles
- Is an on-site courses developed by the Systems and Software Consortium, Inc. (SSCI).
- Offered as 2 and 5 day courses
- Provides overview of SE for inexperienced engineers (high or medium technical competency gap).
- Describes the basics of systems engineering – what it is, how it proceeds through the life cycle and why it needs to be done.

Basic Configuration Management
- Is a two-day, on-site course developed by the Systems and Software Consortium, Inc. (SSCI).
- Provides a foundation in basic Configuration Management principles and skills
Certified SE Professional

Certified Systems Engineering Professional is a recognized certification that confirms that an individual has the basic skills to perform fundamental Systems Engineering tasks and is able to make a productive contribution to work efforts.

Benefits of CSEP Certification

- Formally recognizes SE capabilities
- Distinguishes CSEP holder from others within a professional field
- Provides a competitive advantage
- Furthers professional SE development
- Helps advance the art and practice of SE

Certification Process
Systems Engineering in DoD

Nicholas Torelli

SYSTEMS & SOFTWARE ENGINEERING
Office of the Deputy Under Secretary of Defense for Acquisition and Technology

21 October 2008
The Problem and Root Causes

• Problem Statement: Defense Acquisition programs are experiencing significant problems:
 – over cost
 – behind schedule
 – not operationally suitable or effective

• Root Causes:
 – The Defense Acquisition workforce has experienced significant “peace dividend” and “baby boomer” losses in critical personnel
 – Implementation of Acquisition Reform went too far in terms of streamlining or reducing policies and processes
 • The Department lacks adequately defined and enforceable criteria to assess program maturity at milestones with direct linkage to technical reviews
 – Incomplete, ineffective and/or unrealistic acquisition strategies and plans have resulted in poor program performance
 – Poor or incomplete Requirements development process
Proposed Solutions

• Solutions:
 – Human Capital Strategic Plan
 – Systems Engineering Research
Enhanced Systems Engineering

• Actions:
 – Fostered Enhanced Systems Engineering Policy in DoDI 5000.02
 • Refined SE content throughout the Acquisition Life Cycle (Milestones / Mandatory Technical Reviews)
 • Detailed SE uniquely, in DoDI 5000.02 - Enclosure 12
 – Established new policy on key SE Design Considerations (Reliability, Availability, Maintainability (RAM))
 – Promulgated focused and expanded SE Guidance IAW Policy
 • Formalized design reviews and SE Processes for accountability
 • Authored sections of Defense Acquisition Guidebook update
 • Partnered in establishing RAM-C Guidebook and Contract Language
 • Continuing updates to Defense Acquisition Program Support methodology supporting Program Support Reviews

“Implement the right activities at the right time in the right way”
• Actions:
 – Improving the Defense Acquisition Workforce by:
 • Recruiting and Hiring Qualified Personnel / Highly Qualified Experts
 • Training and Developing Defense Acquisition Personnel
 • Retaining and Recognizing Qualified Personnel
 – Evaluating and Improving SE Competencies through:
 • Education (Universities and associated Service Colleges)
 • Training (DAU)
 • Experience Opportunities (e.g., rotations, OJT)
• Actions:
 – Systems Engineering Research
 • Established SE Research University Affiliated Research Center (UARC) at Stevens Institute of Technology
 – Technical Task Order-based research opportunities
 » OSD / Components fund desired research
 » Knowledge shared across all associated universities
Combining existing knowledge from different sources into new and useful working knowledge

Distributing knowledge from those who have it to those who need it

Discovering new knowledge from research, program assessments, industry best practices and other sources

Knowledge Development

Knowledge Distribution

Knowledge Discovery
• Draft OSD Acquisition Policy (DoDI 5000.02) is in for final signature ... substantial changes to the early acquisition process (in consonance with NRC Study), including
 – Mandatory Materiel Development Decision (MDD)
 – Mandatory competing prototypes before MS B
 – **Mandatory PDR and report to the MDA before MS B**
 – Configuration Steering Boards at Component level to review all requirements changes
 – Mandatory government control of Class I changes no later than CDR for Configuration Management
• Renewed emphasis on manufacturing during system development:
 – Re-titles SDD phase to EMDD with two sub phases: Integrated System Design and System Capability and Manufacturing Process Demonstration
 – Establishes consideration of manufacturing maturity at key decision points
• Mandatory system-level CDR with an initial product baseline followed by a Post-CDR Report to the MDA
• Post-CDR Assessment by the MDA between EMDD sub-phases

This includes explicit recognition of Systems Engineering in all phases, but especially early in the acquisition life cycle
• Plans are underway to complete the update of all Systems Engineering (SE) documentation based on the updated Policy:
 – Defense Acquisition Guidance (DAG) Chapter 4 (SE)
 – Systems Engineering Plan (SEP)
 – Integration of Systems Engineering into Contracts
 – Defense Acquisition Program Support (DAPS) methodology
• Impacting Requirements Generation earlier through Joint Staff recommendation for Capability Description Document early in the Technology Development phase to influence system design
• Tools
 – Acquisition Guidance Model
Human Capital Initiatives
(SE Education and Training)

- Re-coding of program level engineering specialty positions to Program Systems Engineer (PSE) is in progress across the Services.
 - Added additional training and experience requirements
 - Focus on enhancing SE in the early phases of acquisition
 - Broaden the competency set to include other career fields (e.g., PM, Logistics, Contracting)
 - Double the years of experience required for each DAWIA certification level
- Conducting Systems Engineering Competency Assessment in late 2008 / early 2009 (based on SME validation of competency model, to be completed in November 2008)
- Key contributors to DAU’s "Requirements Manager" training curriculum for Joint Staff / Services personnel who develop and manage requirements
- Surveying SE Education curricula and programs for future leverage
Defense Acquisition Workforce Development Fund (based on NDAA Section 852, Defense Acquisition Workforce Development Act)

- Recruiting and Hiring:
 - Intern Programs.
 - Recruiting Incentives.
 - Outreach Programs.
 - Journeyman Hiring Programs.
 - Hiring Expert Knowledge – Highly Qualified Experts (HQE).

- Training and Development:
 - Training Enhancement and Capacity Expansion.
 - Comprehensive Acquisition Workforce and Student Information System.
 - Competency Management and Assessments.
 - Workforce Planning Pilot Program.

- Retention and Recognition:
 - Retention and Recognition Incentives.
 - Career Broadening and Academic Programs.
Human Capital Initiatives
(Defense Acquisition Workforce Development Fund ¹)

1 Based on NDAA Section 852, Defense Acquisition Workforce Development Act
Examples of SSE Outreach (1)

- Conducted cross-Service / OSD PDR Workshop, examining the impact of the movement of PDR prior to Milestone B decision point.
 - Developed updates / improvements to the draft Guidance based on the results
- Defense Acquisition Program Support (DAPS) methodology used by SSE for Program Support Reviews is being shared with the Services
- Best Practices Clearinghouse - focused effort to leverage this Defense Acquisition University asset to provide an accessible repository of lessons learned and best practices across DoD and other agencies (e.g., NASA)
- Co-Chair of NDIA SE Division Education and Training Committee
Examples of SSE Outreach (2)

- Assisted INCOSE (International Council on Systems Engineering) in development of a certification program for Systems Engineers who work on DoD Acquisition programs, based directly on the Defense Acquisition Guidance (DAG). The designation is "CSEP - Acq"
 - Approval for DAU SYS-101 and -202 equivalency in work
- Working with Naval Postgraduate School SE Department and Air Force Institute of Technology / Center for Systems Engineering to help align their SE curriculum with Service and OSD policy and to facilitate equivalency with similar DAU SE courses
- Lead for 2009 Singapore-US Exchange Forum on Systems Engineering; focus will be on international SE competencies
Implementing the 2007 Developmental Test & Evaluation Defense Science Board Results

Oct 2008 NDIA SE Conference

Mr. Chris DiPetto
Deputy Director

Developmental Test & Evaluation
OUSD(AT&L)/Systems & Software Engineering
Problem Definition

• Approximately 50% of programs completing Initial Operational Test and Evaluation (IOT&E) have not been evaluated as operationally effective and operationally suitable. These results in IOT&E suggest deficiencies in our DT&E processes.

- Substantial increase in the number of systems not suitable during IOT&E
- Suitability failures are as high as 80% for some commodities
- Reliability, Availability and Maintainability (RAM) deficiencies comprise the primary shortfall areas
Tasking: Terms of Reference

Review, assess and recommend changes to improve:

- OSD T&E organization, roles, and responsibilities
- DT&E oversight and facilitate integrated T&E
- DT&E Title 10 authority
- DT&E process improvements to discover suitability problems earlier

Additional Task Force Objectives:

- Conduct root cause analysis of suitability problems
- Recommend changes to correct systemic problems
Summary of Major DSB Findings

- RAM shortfalls are identified during DT, but program constraints (schedule and funding) often preclude incorporating fixes and delaying IOT&E
 - Recent studies have reconfirmed that improving RAM lowers Life Cycle Costs (LCCs)

- Service acquisition programs are incorporating Integrated Testing to a limited degree through varying approaches
 - Additional emphasis on Integrated Testing will result in greater T&E process efficiency and program cost reductions

- Large government acquisition personnel reductions combined with industry/government retirements have had a severe adverse impact on acquisition program support
Selected Findings and Recommendations
RAM Findings

- Acquisition Reform implementation detrimental to RAM
 - With some exceptions, reliability growth discontinued during SDD and deferred until production
 - Relevant military specs and standards cancelled and not, in all cases, replaced with industry standards
 - Gvmt Technical/managerial workforce reduced in most PMs and test organizations

- RAM shortfalls are frequently identified during DT
 - Program constraints (schedule and funding) often preclude incorporating fixes and delaying IOT&E

- Examples of programs with such serious RAM concerns that they were precluded from proceeding to production until the problems could be corrected.
RAM Recommendations

The single most important step necessary to correct high suitability failure rates is to ensure programs are formulated to execute a viable systems engineering strategy from the beginning, including a robust RAM program, as an integral part of design and development. No amount of testing will compensate for deficiencies in RAM program formulation.

To this end, the following RAM-related actions are required as a minimum:

• Develop a military standard for consistent RAM development and testing that can be readily referenced in future DoD contracts

• Identify and define RAM requirements in JCIDS and incorporate into RFP

• Make RAM, to include a robust reliability growth program, a mandatory contractual requirement and document progress as a part of every major program review
 ➢ Flow-down RAM requirements to subcontractors

• Ensure an adequate cadre of experienced RAM personnel are part of the Service acquisition and engineering office staffs
Integrated Test and Evaluation Findings

- Service acquisition programs are incorporating integrated testing to a limited degree through varying approaches
 - Army has integrated DT and OT organizations into one command
 - Navy utilizes a full-spectrum RDT&E approach to conducting Test & Evaluation
 - Air Force employs Combined Test Force concept which consolidates test execution

- Additional emphasis on integrated testing can result in greater T&E process efficiency and program cost reductions
Integrated Test and Evaluation
Recommendations

- Mandate integrated DT and OT planning and execution throughout the program
 - Require sharing and access to all appropriate system-level and selected component-level test and model data by government DT and OT organizations as well as the prime contractor, where appropriate
 - Incorporate data access requirements in contract
 - Integrate test events, where practical, to satisfy OT and DT requirements
 - Define which testing will be accomplished by the prime contractor, government DT lead, and OT as the lead agency prior to award of contract
 - Require an operational evaluation framework as a part of the Milestone B TEMP
- Make available a cadre of operational personnel to support DT for ACAT I and special interest programs, as a minimum
- Better integrate OTAs into the DR process to include participation on Joint Reliability Maintainability Evaluation Team (JRMET) or Corrective Action Review Board throughout DT
Implementing Actions
DEVELOPMENTAL TEST & EVALUATION

• DUSD(A&T) and DOT&E February memo established working group to implement recommendations to improve RAM

• Specific Tasks:
 - Ensure execution of a viable SE strategy as an integral part of design and development
 - Ensure government orgs reconstitute cadre of experienced T&E and RAM personnel
 - Integrated DT and OT
 - ensure data access
 - conduct T&E in an operationally representative environment as early as possible

• Report issued September 5, 2008
RIWG Accomplishments/Recommendations

1. SE strategy as an integral part of design and development
 - Developed contract reliability guidance; RFP language
 ✓ Based on GEIA-STD-0009 – On DAU ACC website
 - Drafted RAM planning template
 ✓ RIWG Report, Appendix 1.3.2
 - Updated Reliability scorecard in DAG
 ✓ On DAU ACC website
 - AT&L RAM Policy Memo (July 21, 2008)
DEVELOPMENTAL TEST & EVALUATION

- Services directed to establish a reliability improvement acquisition policy
 - Report back to AT&L w/in 30 days w/ plan to implement policies

- Effective immediately, it is DoD policy for programs to execute a RAM strategy that includes a reliability growth program as an integral part of design and development
 - RAM shall be integrated w/in SE, documented in SEP and Life Cycle Sustainment Plan
 - Assessed during technical reviews, T&E, and Program Support Reviews

USD(AT&L) Memo, Jul 21, 2008
2. Reconstitute cadre of experienced T&E and RAM personnel

- Provided DAU course material recommendations for RAM and T&E
 - Recommendations provided to DAU O-FIPT
 - Curriculum/certification recommendations under review by each FIPT
- Also addressing courses for Requirements Officers

- OSD/AT&L initiative to recruit RAM and T&E expertise
 - NDAA SECT 852 Workforce Development fund
 - Considering competency alignment as an alternative to Centers of Excellence
3. Implement mandated Integrated DT and OT

- Published DoD-common Integrated Testing definition
- Revised TEMP format – In DAG update
- Guide on Incorporating T&E in Acquisition Contract
 - Approval coordination for publication in process
 - Located at: http://www.acq.osd.mil/sse/dte/docs
- Updated DAG with integrated test implementation guidance
Integrated Test Implementation

Impediments To Full Implementation:
• Common Understanding - Definition
• Lack Of Guidance - Updating DAG and TEMP Content
• Culture Change - Leadership Needs To Engage

Definition Signed By DUSD(A&T) And DOT&E
Coordinated Across Components and Services

“Integrated testing is the collaborative planning and collaborative execution of test phases and events to provide shared data in support of independent analysis, evaluation and reporting by all stakeholders particularly the developmental (both contractor and government) and operational test and evaluation communities.”
Revised TEMP Concept

<table>
<thead>
<tr>
<th>Part I Introduction</th>
<th>Part II Mgmt & Sched</th>
<th>Part III T&E Strategy</th>
<th>Part IV Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief mission description paragraph</td>
<td>Describe T&E management</td>
<td>The philosophy recognizes a T&E continuum & emphasizes evaluations</td>
<td>Include in para form or table:</td>
</tr>
<tr>
<td>System description</td>
<td>Common Data</td>
<td>Evaluation Framework ties T&E knowledge to decisions, requirements, etc</td>
<td>• Test articles needed/event</td>
</tr>
<tr>
<td>Brief Threat Assessment</td>
<td>Deficiency Reporting</td>
<td>Developmental</td>
<td>• Special equip/ instr costs</td>
</tr>
<tr>
<td>Program Background</td>
<td>TEMP Updates</td>
<td>Live Fire</td>
<td>• Target / expendable costs</td>
</tr>
<tr>
<td>Key Capabilities</td>
<td>Overarching integrated schedule that includes sequencing of T&E activities (CT, DT, OT, LFT, M&S)</td>
<td>IOT&E Readiness Cert</td>
<td>• Threat representation costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operational</td>
<td>• Manpower needs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Certifications</td>
<td>• M&S costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reliability Growth</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Future Testing</td>
<td></td>
</tr>
</tbody>
</table>

Linkage of decisions to evaluations, requirements, test phases, and resources

<table>
<thead>
<tr>
<th>What</th>
<th>Who, When</th>
<th>Why, How</th>
<th>Resources required</th>
</tr>
</thead>
</table>

Include Joint requirements throughout

T&E – From Concept to Combat
T&E in DoDI 5000.02

- Integrated Testing
 - IOT&E still separate
- Assessment of Operational Test Readiness
 - Independent DUSD(A&T) assessment – informs OTRR
- Capability Comparison
 - Additional perspective for programmatic decisions
- Data Sharing
 - Goal is common data set (contractor, government) for evals
 - Establishing & maintaining data “pedigree” is key
- TES/TDS at MS-A
 - Tailor content to competitive prototyping and preps for PDR (now prior to MS B)
 - Focus on TDS & ICD
Summary

• 2007 DT&E DSB
 ➢ Results published June 2008
 ➢ Beginning to address the systemic issues with DT&E

• RIWG Progress Update
 ➢ Report available
 ➢ Follow-up in December

• T&E in 5000.02
 ➢ In final SD 106 review for approval
 ➢ Publication expected Fall 2008
Questions and Discussion

T&E Metrics for Acquisition Phases & Decisions

Developmental Test & Evaluation
OUSD(AT&L)/Systems & Software Engineering
Purpose

- Define T&E metrics for decision points and phases across the acquisition life cycle
 - Define appropriate T&E execution and reporting measures
 - Standardize metrics to assess progress in T&E planning and execution
 - Convey value-added role of T&E
Precepts

• The purpose of T&E is to develop and deliver knowledge
 – Knowledge = actionable information
• T&E developed knowledge informs decisions to reduce risk in requiring, acquiring, and employing systems / capabilities
• T&E knowledge is used to:
 – Assess system capabilities / limitations
 – Assess program progress
 – Assess technical progress
 – Improve the product and processes
Attributes Measured

- The metrics required are related to:
 - Resources ($, people, ranges, test assets)
 - Errors / Problems (#, discovery / correction rates, criticality)
 - Process characteristics (uniqueness, complexity)
 - Project Characteristics (size, complexity, schedule)
 - Project Dynamics (Reqt chg, Sched chg, Resource chg)
Sample Integrated Schedule

How are you doing? How do you know?

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>94</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter</td>
<td>1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>Requirements</td>
<td>EIP</td>
</tr>
<tr>
<td>Acquisition Milestones</td>
<td>Technology Development</td>
<td>Engineering and Manufacturing Development & Demonstration</td>
<td>Production & Deployment</td>
<td>Operations & Support</td>
<td></td>
</tr>
<tr>
<td>Systems Engineering</td>
<td>SRR</td>
<td>SFR</td>
<td>PDR</td>
<td>CDR</td>
<td>FRR</td>
<td>PRR</td>
<td>PDR</td>
<td></td>
</tr>
<tr>
<td>Logistics Events</td>
<td>ILA</td>
<td>ILA</td>
<td>IOCSR</td>
<td>Core Capability</td>
<td></td>
</tr>
<tr>
<td>Major Contract Events</td>
<td>Prototype</td>
<td>EMD</td>
<td>EMDD</td>
<td>IBR</td>
<td>LRIP Lot 1 / IOTE support</td>
<td>LRIP Lot 2</td>
<td>LRIP Lot 3</td>
<td>LRIP Lot 4</td>
<td>FRP Lot 4</td>
<td>FRP MYP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>L/Lead</td>
<td>Lot 1</td>
<td>Lot 2</td>
<td>Lot 3</td>
<td>x 9</td>
<td>Lot 4</td>
<td>x 14</td>
<td>Lot 5</td>
<td>x 21</td>
<td>x 24</td>
<td>Lot 6</td>
<td>x 24</td>
<td>Lot 7</td>
<td>x 24</td>
<td>Lot 8</td>
<td>x 24</td>
<td>Lot 9</td>
<td>x 10</td>
<td></td>
</tr>
<tr>
<td>Training Systems</td>
<td>TDFA</td>
<td>TEMP</td>
<td>OA</td>
<td>Initial Trng (T&E)</td>
<td>Maintain. Trngs</td>
<td>OT Training</td>
<td></td>
</tr>
<tr>
<td>Test & Evaluation</td>
<td>TEB</td>
<td>OA</td>
</tr>
<tr>
<td>DIACAP</td>
<td>Phase I Definition</td>
<td>IATT</td>
<td>IATQ</td>
<td>ATO (Type Accreditation)</td>
<td>Phase II Verification and Certification Testing</td>
<td>Phase III Validation / Cert Tests</td>
<td>Phase IV Post Accreditation</td>
<td></td>
</tr>
</tbody>
</table>

T&E – From Concept to Combat
Acquisition Life Cycle and Phases
Material Solution Analysis

- **Focus:** Assess potential materiel solutions
- **Decision Points:** MDD, ITR, ASR, TRA, MS-A
- **T&E Activity:**
 - Review AoA for evaluatability, identify discriminators
 - M&S to evaluate alternatives, sensitivity analyses
- **T&E Products:** TES
- **Measures / Metrics:**
 - T&E Strategy defined
 - CARD input
Acquisition Life Cycle and Phases
Technology Development

DEVELOPMENTAL TEST & EVALUATION

Technology Development

- **Focus:** Reduce technology risk, determine technologies for system integration
- **Decision Points:** IBR, SFR, SRR, TRA, PDR, MS-B, EMDD RFP
- **T&E Activity:**
 - Risk identification & investigation
 - Technology maturation, integration, & demonstration in relevant environment
Acquisition Life Cycle and Phases
Technology Development cont.

- **T&E Products**: Technology evaluation, TEMP, CARD update
- **Measures / Metrics**:
 - T&E WIPT charter status
 - TEMP status (KPP/KSAs incorporated, design risks, resources)
 - M&S, SIL capabilities relative to desired level
 - Test point burn-down (M&S, SIL)
 - Test time vs schedule (M&S, SIL)
 - TRLs achieved
 - Risk mitigation (Initial & current risk level)
• **Focus:** Develop a system or increment of capability, reduce manufacturing risk, & ensure supportability. Also demonstrate system integration, interoperability, safety, & utility.

• **Decision Points:** IBR, CDR, SVR, TRR, FCA, MS-C

• **T&E Activity:**
 – Risk reduction – System, manufacturing
 – Assess design maturity
 – Determine system capability & limitations
 – Demonstrate spec performance
 – Estimate reliability
 – Assess information assurance
 – Ensure supportability

Acquisition Life Cycle and Phases
Engineering & Manufacturing Dev & Demo

T&E – From Concept to Combat
Acquisition Life Cycle and Phases
Engineering & Manufacturing Dev & Demo cont.

DEVELOPMENTAL TEST & EVALUATION

- **T&E Products**: Developmental evaluation reports, OA, TEMP
- **Measures / Metrics**:
 - DR quantity vs time (M&S, SIL, HITL, OAR, manufacturing)
 - DR rate of discovery/correction (design & manufacturing)
 - Test point burn-down (M&S, SIL, HITL, OAR)
 - Test time vs schedule (M&S, SIL, HITL, OAR)
 - Configuration status (M&S, SIL, HITL, OAR)
 - CTP results vs thresholds
 - CTP results vs time
 - System capabilities (mission context) characterized
 - System Certifications (Interoperability, IA, Safety)
 - TRLs
Metric Examples

![Graph showing metric examples with lines for Total Test Points, Total Attempted, Accomplished-Data Collected, Test Point Complete, and Projected Execution.](image_url)
Acquisition Life Cycle and Phases
Production & Deployment

- **Focus:** Achieve an operational capability
- **Decision Points:** PCA, OTRR, PRR, FRP, IOC
- **T&E Activity:**
 - Operational effectiveness & suitability
 - Vulnerability / Lethality
 - Production acceptance & Manufacturing process control
 - Deficiency correction
 - Reliability
Acquisition Life Cycle and Phases
Production & Deployment cont.

• **T&E Products**: Developmental evaluation report, AOTR, IOT&E report (BLRIP), LFT&E report, TEMP

• **Measures / Metrics**:
 – DR rate of discovery/correction (design & manufacturing)
 – Test point burn-down (OAR)
 – Test time vs schedule (OAR)
 – TOV&V (O-level, I-level, D-level)
 – System Certifications (Interoperability, IA, Safety)
 – MRLs
 – Configuration status (M&S, OAR, Trainers)
 – Operational Effectiveness & Operational Suitability
 – Survivability, Vulnerability, & Lethality
 – System capabilities (mission context) characterized
• **Focus:** Sustain the system
• **Decision Points:** ISR, FOC
• **T&E Activity:**
 – Assess availability, reliability, maintainability
 – Identification of new capabilities, improved supportability
• **T&E Products:** Deficiency Reports, TTP updates
• **Measures / Metrics:**
 – DR discovery & resolution
 – Operating time (periodic & cumulative)
Summary

- Product of T&E is knowledge for decisions across the life cycle
- Value of T&E – informed decisions (acquisition & operational)
- No single set of metrics applicable to all decisions or phases
- Metrics assess how well T&E is:
 - Planning
 - Executing
 - Evaluating
 - Reporting
Next Steps

- Engage with T&E and program management communities
- Continue to develop & evolve metrics
- Request your inputs to make the metrics meaningful & useful
Contact Info

Darlene Mosser-Kerner
darlene.mosser-kerner (at) osd.mil

Visit our website:
http://www.acq.osd.mil/ sse/ dte

Contact us to provide feedback and share your experience

T&E – From Concept to Combat
Back-up
Metric Examples
“New … Improved”

Test & Evaluation Master Plan

Ms. Darlene Mosser-Kerner

Developmental Test & Evaluation
OUSD(AT&L)/Systems & Software Engineering
New TEMP Content & Format

- Current TEMPs have become bloated bureaucratic packages
 - Excessive detail
 - Late to need – frequently completed after testing has started
 - Limited discussion of evaluation
 - Allowed “stovepiping” within T&E community

- Need to improve TEMP relevance, utility, and timeliness
 - Focus on evaluations
 - Facilitate integrated testing
 - Show support for Acq Strategy & SE linkage
 - Elevate discussion level to T&E strategy

- New TEMP Content & Format in DAG update

T&E – From Concept to Combat
Revised TEMP Concept

DEVELOPMENTAL TEST & EVALUATION

<table>
<thead>
<tr>
<th>Part I Introduction</th>
<th>Part II Mgmt & Sched</th>
<th>Part III T&E Strategy</th>
<th>Part IV Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief mission description paragraph</td>
<td>Describe T&E management</td>
<td>The philosophy recognizes a T&E continuum & emphasizes evaluations</td>
<td>Include in para form or table:</td>
</tr>
<tr>
<td>System description</td>
<td>Common Data</td>
<td>Evaluation Framework ties T&E knowledge to decisions, requirements, etc</td>
<td>• Test articles needed/event</td>
</tr>
<tr>
<td>Brief Threat Assessment</td>
<td>Deficiency Reporting</td>
<td>Developmental</td>
<td>• Special equip/instr costs</td>
</tr>
<tr>
<td>Program Background</td>
<td>TEMP Updates</td>
<td>Live Fire</td>
<td>• Target / expendable costs</td>
</tr>
<tr>
<td>Key Capabilities</td>
<td>Overarching integrated schedule that includes sequencing of T&E activities (CT, DT, OT, LFT, M&S)</td>
<td>IOT&E Readiness Cert</td>
<td>• Threat representation costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operational</td>
<td>• Manpower needs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Certifications</td>
<td>• M&S costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reliability Growth</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Future Testing</td>
<td></td>
</tr>
</tbody>
</table>

Linkage of decisions to evaluations, requirements, test phases, and resources

<table>
<thead>
<tr>
<th>What</th>
<th>Who, When</th>
<th>Why, How</th>
<th>Resources required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Include Joint requirements throughout</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T&E – From Concept to Combat
Test Planning Hierarchy

T&E – From Concept to Combat
PART I: SYSTEM INTRODUCTION
- Mission Description
- System Description
- System Threat Assessment
- Measures of Effectiveness and Suitability
- Critical Technical Parameters

PART II: INTEGRATED TEST PROGRAM SUMMARY
- Integrated Test Program Schedule
- Management

PART I: INTRODUCTION
1.1. Purpose
1.2. Mission Description
1.3. System Description
 - Sys Threat Assessment
 - Program Background
 - Key Capabilities

PART II: T&E PROGRAM MANAGEMENT & SCHEDULE
2.1. T&E Management
2.2. Common T&E Data Base Requirements
2.3. Deficiency Reporting
2.4. TEMP Updates
2.5. Integrated Test Program Schedule
Sample Integrated Schedule

Acquisitions Milestones

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>94</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Major Contract Events
- L/Lead
- Lot 1
- Lot 2
- Lot 3
- Lot 4
- Lot 5
- Lot 6
- Lot 7
- Lot 8
- Lot 9

Production
- EMDD
- IAT
- TDF
- Initial Trng (T&E)

Test & Evaluation
- TES
- TEMP
- OA
- IT1
- IT2
- IT3
- IT4
- IT5

Funding
- Total
- Production

T&E – From Concept to Combat
Current vs New Outline

DEVELOPMENTAL TEST & EVALUATION

Current

PART III: DEVELOPMENT TEST AND EVALUATION OUTLINE
- Development Test and Evaluation Overview
- Future Developmental Test and Evaluation Limitations

PART IV OPERATIONAL TEST AND EVALUATION OUTLINE
- Operational Test and Evaluation Overview
- Critical Operational Issues
- Future Operational Test and Evaluation Limitations
- Live Fire Test and Evaluation

New

PART III: T&E STRATEGY

3.1 Introduction
3.2 Evaluation Framework
 - Evaluation Framework Matrix (Annex)
3.3 Developmental Evaluation Approach
 - Mission Oriented Context
 - Test Objectives
 - M&S
 - Test Limitations
3.4 Live Fire Evaluation Approach
 - Test Objectives, M&S, Limitations
3.5 Certification for IOT&E
3.6 Operational Evaluation Approach
 - Test Objectives, M&S, Limitations
3.7 Other Certifications
3.8 Reliability Growth
3.9 Future Testing

Note: T&E – From Concept to Combat
Example Evaluation Framework

Key Requirements and T&E Measures

<table>
<thead>
<tr>
<th>Key Req</th>
<th>COIs</th>
<th>Key MOEs/ MOSs</th>
<th>CTPs & Threshold</th>
<th>Test Methodologies/Key Resources (M&S, SIL, MF, ISTF, HITL, OAR)</th>
<th>Decisions Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combat Radius KPP#1:</td>
<td>COI #1. Can the UAV locate and engage the XXX enemy threat at a range and time that will ensure survivability of friendly troops?</td>
<td>MOE 1.1. Range</td>
<td>Fuel Consumption</td>
<td>Aero + Propulsion M&S Engine stand Performance profiles – OAR</td>
<td>PDR CDR MS-C</td>
</tr>
<tr>
<td></td>
<td>MOE 1.2. Speed</td>
<td></td>
<td>Airspeed</td>
<td>Wind Tunnel Performance M&S Performance Flt Test - OAR</td>
<td>PDR CDR MS-C</td>
</tr>
<tr>
<td>Combat Radius KPP#2:</td>
<td>COI #2. Is the XXX suitable for…</td>
<td>MOE 1.3.</td>
<td></td>
<td>Post-CDR FRP</td>
<td></td>
</tr>
<tr>
<td>KPP #2</td>
<td>MOS 2.4. Data link</td>
<td></td>
<td></td>
<td>MS-C SR</td>
<td></td>
</tr>
</tbody>
</table>

T&E – From Concept to Combat
Current vs New Outline

PART V TEST AND EVALUATION RESOURCE SUMMARY

<table>
<thead>
<tr>
<th>Current</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Articles</td>
<td>Test Articles</td>
</tr>
<tr>
<td>Test Sites and Instrumentation</td>
<td>Test Sites and Instrumentation</td>
</tr>
<tr>
<td>Test Support Equipment</td>
<td>Test Support Equipment</td>
</tr>
<tr>
<td>Threat Representation</td>
<td>Threat Representation</td>
</tr>
<tr>
<td>Test Targets and Expendables</td>
<td>Test Targets and Expendables</td>
</tr>
<tr>
<td>Operational Force Test Support</td>
<td>Operational Force Test Support</td>
</tr>
<tr>
<td>Simulations, Models, and Test Beds</td>
<td>Models, Simulations, and Test Beds</td>
</tr>
<tr>
<td>Special Requirements</td>
<td>Joint Operational Test Environment</td>
</tr>
<tr>
<td>Test and Evaluation Funding Requirements</td>
<td>Special Requirements</td>
</tr>
<tr>
<td>Manpower/Personnel Training</td>
<td></td>
</tr>
</tbody>
</table>

PART IV: RESOURCE SUMMARY

4.1 Introduction

- Test Articles
- Test Sites and Instrumentation
- Test Support Equipment
- Threat Representation
- Test Targets and Expendables
- Operational Force Test Support
- Simulations, Models, and Test Beds
- Special Requirements
- Test and Evaluation Funding Requirements
- Manpower/Personnel Training

4.2 Federal, State, Local Requirements

4.3 Manpower/Personnel Training

4.4 Test Funding Summary

- Resource Summary Matrix

DT&E – From Concept to Combat
Critical Technical Parameters

- CTPs are not well defined or productively implemented
- A short review
 - What are they?
 - How should they be determined?
 - How should they be used?
Critical Technical Parameters

Definition

• Pick the CTPs -

 • Radar Target Location Error
 • Interoperability
 • MTBF
 • Software Functionality
 • Support Internet Protocol
 • Range Safety
 • Position Accuracy
 • Operational Availability
 • Critical field length
 • Jammer Duty Cycle
 • Range
 • Single Mission Sortie
 • Open Architecture Certification
 • Interoperability Certification
 • Handling Qualities

• **Definition:** A CTP is a measurable critical system characteristic that, if not achieved, preclude the fulfillment of desired operational performance capabilities.

• CTPs are technical measures derived from desired user capabilities.

• CTPs are NOT a percentage of KPPs!
• CTP development process is the responsibility of the program test manager
• Lead Systems Engineer plays a key role in determining CTPs

T&E – From Concept to Combat
• While not user requirements, CTPs are technical measures derived from desired user capabilities.
• Testers use CTPs as reliable indicators that the system is on (or behind) the planned development schedule or will likely (or not likely) achieve an operational capability.
• CTPs should be significant from a T&E program perspective – should drive scope / magnitude of the T&E program.
New Terminology

DEVELOPMENTAL TEST & EVALUATION

• Mission-oriented context:
 ➢ Ability to relate evaluation results to an impact on the warfighters’ ability to execute their tasks
 ➢ More robust test environment allows ID of design issues that may not be discovered in a pure DT environment
 ➢ Opportunity to influence design, increase reliability, performance

• Integrated Testing:

 “Integrated testing is the collaborative planning and collaborative execution of test phases and events to provide shared data in support of independent analysis, evaluation, and reporting by all stakeholders particularly the developmental (both contractor and government) and operational test and evaluation communities”
Mission-Oriented Context

Mission-oriented DT&E is not a dress rehearsal that is conducted just prior to IOT&E. It is the focus throughout the DT program to ensure the design of the system will meet the user’s needs.

- Part of policy to emphasize robust DT&E
 - Discover operational failure modes in time to fix them

- Mission-oriented DT and Integrated Testing will increase efficiencies and reduce risk
Bonus – New TES Sneak Peak

- T&E Strategy required at Milestone A
- TEMP format – 4 parts
- Less detail – similar to “draft” TEMP
- Includes T&E life cycle concept
- Includes TDS test plan
Summary

- New TEMP Content
 - Brings evaluation focus into TEMP
 - Assumes a continuum of T&E
 - Life cycle view versus scoping to next milestone
 - Facilitates Integrated Testing & Mission-oriented context
 - Additional test plan details shifted to System Test Plan
- In next revision to DAG – Chapter 9
 - Applies to new programs, restructured programs, & others if desired
Contact Info

Darlene Mosser-Kerner
darlene.mosser-kerner (at) osd.mil

Visit our website:
http://www.acq.osd.mil/sse/dte

Contact us to provide feedback and share your experience
Building net-ready information interoperability performance indicator widgets for DoD Af 2.0 dashboards

Jayson Durham
NAERG/ELS Project Lead (ASN RDA CHSENG)
SPAWAR Systems Center Pacific, Code 56150
jayson.durham@navy.mil

Bill Anderson & David Zubrow
Carnegie Mellon, Software Engineering Institute
wba@sei.cmu.edu, dz@sei.cmu.edu
Agenda

Motivation
Goal Driven Measurement – GQIM
Workshop Outcomes
Case Example: Mission-Architecture IPT
Next Steps
HSDII Committee Objective

Benefit ITAA/GEIA members, government sponsors, builders, developers, and users of …

Products, Processes and Tools related to …

Information Interoperability by …

Filling critical gaps, Improving performance, and Reducing costs.
But How Do We Judge?

Measurement!
Agenda

Motivation
Goal Driven Measurement – GQIM
Workshop Outcomes
Case Example: DODAF 2.0
Next Steps
Goal-Driven Measurement

When using goal-driven measurement, the primary question is not:

“What metrics should I use?”

rather, it is:

“What do I want to know or learn?”
Measuring Goal Achievement

Goal
Success criteria

Strategy to accomplish goal

Tasks to accomplish goal
Task 1
Task 2
Task 3
•
•
•
•
Task n

Success indicators
Impact
Progress indicators

Analysis indicators

© 2006 by Carnegie Mellon University
Indicator Template

Goal ID:
Objective:
Question:

Step 1: Goals
Components of good goal statements

Step 2: Clarify Questions to refine the goal

Step 3: Decomposing Goals
Subgoals by perspective

Step 4: Operationalize Goals
Operationalize goal statement

Step 5: Success Criteria
Clear articulation of the criteria you will use to decide if the goal has been met.

Step 6: Success Indicators
Postulate Success Indicators

Step 7: Strategies & Activities

Step 8: Identify the data elements

Step 9: Identify the actions needed to implement your measures

Step 10: Prepare a plan
Verification and action plans

Table:

<table>
<thead>
<tr>
<th>Task</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td>50</td>
<td>N</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2</td>
<td></td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3</td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task n</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Elements:
- Size
- Defects
- Avail:
 - +
 - 0
 - -
- Source:
 - QA
 - CM
 - ?
 - Etc.

© 2006 by Carnegie Mellon University
Version 6.6
Agenda

Motivation
Goal Driven Measurement – GQIM
Workshop Outcomes
Case Example: Mission-Architecture IPT
Next Steps
Workshop Outcomes: Top Three Goals

• Enable precision information sharing among stakeholders
 – Minimal ambiguity

• Measure the “goodness” for information interoperability standards
 – Then standards in general
 – “Goodness” for information interoperability
 – How effectively are users getting & using information exchanges

• Systems and enterprises achieve more effective collaboration and/or achieve greater success by enabling inter-enterprise collaboration
Enable information sharing among stakeholders with minimal ambiguity.

<table>
<thead>
<tr>
<th>ID</th>
<th>Theme (Stakeholder, Info, Std)</th>
<th>Type of Indicator (Success, Progress, Analysis)</th>
<th>Questions</th>
<th>Atomic Indicator</th>
<th>Roll-up Indicator</th>
<th>DoDAF Product & Other Sources</th>
<th>CADM Data Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stakeholder</td>
<td>Success</td>
<td>Vow are the stakeholders?</td>
<td>Completeness</td>
<td>Completeness</td>
<td>OV-2, OV-3</td>
<td>OperationalNode</td>
</tr>
<tr>
<td>11</td>
<td>Information</td>
<td>Success</td>
<td>Vow the context information provided voice and value needed?</td>
<td>Visibility</td>
<td>Visibility</td>
<td>OV-2, OV-3</td>
<td>InformationExchangeRequirement/InformationExchange/Needline</td>
</tr>
<tr>
<td>12</td>
<td>Information</td>
<td>Success</td>
<td>Does the info exchange enable traceability back to the original context?</td>
<td>Understandable</td>
<td>Understandable</td>
<td>SV-4a/b, Enterprise Catalog Service (ECS) & Service Registry, Content Discovery and Delivery (CD&D)</td>
<td>InformationExchange/InformationElement</td>
</tr>
<tr>
<td>13</td>
<td>Information</td>
<td>Success</td>
<td>Can the info packages/services be integrated?</td>
<td>Unambiguous</td>
<td>Unambiguous</td>
<td>AV-2, SV-11, DDMS, Metadata Registry (MDR)</td>
<td>InformationExchange/InformationElement</td>
</tr>
<tr>
<td>14</td>
<td>Information</td>
<td>Progress</td>
<td>Is the information standardized?</td>
<td>Extensible</td>
<td>Extensible</td>
<td>TV-1, MDR</td>
<td>InformationElement, Operational Nodes, Technology Areas, Technical Standards, Performance Parameters</td>
</tr>
</tbody>
</table>

DoDAF Product & Other Sources:
- OV-2, OV-3
- SV-4a/b, Enterprise Catalog Service (ECS) & Service Registry, Content Discovery and Delivery (CD&D)
- AV-2, SV-11, DDMS, Metadata Registry (MDR)
- TV-1, MDR

CADM Data Elements:
- OperationalNode
- InformationExchangeRequirement/InformationExchange/Needline
- InformationExchange/InformationElement
Quality Evaluation

Standard Quality Evaluation

Categories

Extensibility Simplicity Openness Security Scalability Usability

Goodness

Notes:

Each category is graded on a scale of 1-5 and weighted to a total of 100%. Data is based on a survey of stakeholders.

Users of the indicator include:
• standard developers and associated marketing
• potential adopters
• actual users
Scalability means across multiple domains
Usability means by multi-functions (non-IT experts)
Adoption

Information Technology Association of America

Standard Adoption

Number

Adopters Target

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10
Semantic Alignment

Latency vs. Session time

of touches vs. Session time

WordNet Cyc
DoDAF 2.0 “Dashboards”

Defining indicator widgets for dashboards
Workshop Outcomes: Conclusions

• The SEI GQ(I)M provides a viable methodology to develop information interoperability indicators
• We identified a preliminary set of indicators for measuring the “goodness” of information exchange standards relative to business goals
• We concluded
 • Enterprise architecture frameworks with an explicit focus on services (transactions) provide a means of implementing and improving Information Interoperability
 • Indicators provide a means for establishing a standardized set of reusable dashboard elements („indicator widgets“) in these frameworks
Workshop Outcomes: Observations

• The DoDAF 2.0 presentation technology working group has set forth dashboards as a category of presentation views

• Baseline indicators for information interoperability need to be developed (similar to baseline KPI’s for enterprise architecture frameworks)

• Existing work from assessment, performance, and other model based efforts provide valuable resources for developing information interoperability (as well as other) indicator widgets
Agenda

Motivation
Goal Driven Measurement – GQIM
Workshop Outcomes
Case Example: Mission-Architecture IPT
Next Steps
Architecture Models: Background
Tenets of Network Centric Warfare (NCW)
(Networked Force, Quality Information, Information Sharing, etc.)

Quality of Organic Information

New Concepts & TTP

Individual Situational Awareness

Tempo

Speed of Maneuver

Self Synchronization

Cognitive Domain

Physical Domain

Precise Application Of Force

Precision Effects

Mission Effectiveness

Robustly Networked Force

Information Sharing

Shared Situational Awareness

Collaboration

Quality of Shared Information

Information Domain

Lexicon Services

Common Tactical Picture

Quality of Organic and Shared Information is The Primary Focus of Terminology and Lexicon Services

Terminology Services: Challenge
Semantic Interoperability Scoping

- Terminology Services Primary Focus
- Strong Semantics
 - Some Intelligence, Defense, Security, Health, Science & Business applications share information at these levels
- Increasing Metadata
 - DRM 1.5 sets the bar here
- Logical Theory
 - Axiology
 - Modal Logic
 - First Order Logic
- Conceptual Model
 - Description Logic
 - OWL
- Taxonomy
 - RDF/S
- Thesaurus
 - ER Model
 - DB Schema, XML Schema
- List
 - Topic Map
 - Relational Model, XML
- Glossary
 - Controlled Vocabulary
- Many Federal applications do not enable data sharing

Source: Dr. Leo Obrst, Mitre; Mills Davis, TopQuadrant
Terminology Services: Challenge
Information Interoperability

Common Lexicon vs Ad-Hoc Reverse Engineering

Common Terminology Makes Information Interoperability Possible

Reverse Engineering is Expensive, Difficult, and Often Not Feasible
Terminology Services: Related Work

Capability-Based Systems-of-Systems Engineering (SOSE)

NCEE

Naval Collaborative Engineering Environment (NCEE)

NAERG

Naval Architecture Element Reference Guide (NAERG)

Common Access Card (CAC) Enabled Websites

https://ncee.navy.mil/Pages/default.aspx

https://stalwart.spawar.navy.mil/naerg
Architecture Frameworks: Current Work
Mission Architecture Dashboard

- Capability Tracing, Assessment, Validation, and Gap Analysis
- Threat Scenarios
- Inter-Agency Cross-Domain Information-Sharing Supply-Chain

- Enterprise Framework - Policies, Rules, Metrics Processes, Architectures, ...
- Mission Architecture Dashboard
- Operational Plans (OPlans)
- Mission Operations Systems Devices
- Integrated AT&L Life Cycle Management Framework

Common Terminology - Managed Vocabulary - Enterprise Lexicon Services (ELS)
Architecture Models: Emerging Standards
DoD Architecture Framework 2.0 Example

Standardized Dashboard Views, Data Elements, Business Rules, etc.
Architecture Frameworks: Emerging Focus

Enterprise Dashboards and Widgets

DoDAF 2.0

Roles & Responsibilities

Decision Makers

Dashboards

Multiple Dashboards & Decision Makers

Presentation Layer

Business Logic

Data Resources

KPI – Key Performance Indicator
Agenda

Motivation
Goal Driven Measurement – GQIM
Workshop Outcomes
Case Example: Mission-Architecture IPT
Next Steps
Way Ahead

- Further explore leveraging DoDADF 2.0 to help define an open standard for indicator widgets
- Produce an exemplar reference implementation for a set of indicator widgets
- Produce guidance on how to go from existing standards to the indicator widget paradigm
Questions?
Resources Related to Information Interoperability Indicator and Assessment

- **DOD Net-Centric Checklist, Version 2.1.4, July 30, 2004**
 - Assists program managers in understanding the net-centric attributes that their programs need to implement to move into the net-centric environment as part of a service-oriented architecture in the Global Information Grid.

- **NCIOC Network Centric Analysis Tool (NCAT) & SCOPE model**
 - NCAT is a metric measurement tool developed by the NCOIC for use in evaluating the ability of a system/subsystem/component to operate in a network centric environment. Designed to leverage complementary tools developed by DISA and others, the NCAT is highly flexible, easily adaptable, and can be tailored for specific requirements.

- **DOD's Modular Open Systems Approach (MOSA) Program Assessment and Rating Tool (PART)**
 - An analytical tool to aid DoD Program Managers assess their approach to open systems throughout the acquisition life cycle.

- **Navy Open Architecture Assessment Tool (OAAT)**
 - A Navy tool to assess the openness of a systems or program.

- **DOD’s Data and Service Exposure Verification Tracking Sheets**
 - Used to measure net-centricity in support of the DOD's Net-Centric Data Strategy.

A catalog of reusable indicators can be readily derived
NO WARRANTY

ANY CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL CONTAINED HEREIN IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copyright license under the clause at 252.227-7013.
Applying Open Architecture Concepts to Mission and Ship Systems

John M. Green Gregory Miller
Senior Lecturer Lecturer
Department of Systems Engineering
Introduction

• **Purpose:** to introduce a simulation based methodology to facilitate development of a software product line architecture concept for the Navy’s C5ISR systems.

• **Two key advantages to the proposed methodology:**
 1. it provides a formal systems approach to the verification of the product line architecture requirements consistent with the Department of Defense Architecture Framework.
 2. it provides a medium for the iterative development of architectures that blend the operational concepts of FORCEnet with the system and technical imperatives of Open Architecture and Services-Oriented Architecture (SOA).
What I’m Going to Tell You

• Background
• Technical Approach
 – Key Concepts
 – Open Architecture
 – Domain Modeling
 – Formal Methods
 – H-P Method
 – Details of the Technical Approach
• Conclusion
The last 15 years (or thereabouts) has seen a number of interesting developments in the technologies that support C4ISR system development.

- For example, the advent of CEC and GPS provided the impetus for the conceptual development of Network-Centric Warfare (NCW), Network-Centric Operations (NCO) and FORCEnet [Alberts, Garstka, and Stein 2000].
- Yet, despite all that has been written about the concepts of FORCEnet and Open Architecture (OA), there has been little written on how these two concepts will come together in the naval C4ISR systems of the future.

The main emphasis has been on technologies such as Internet Protocol version 6 (IPv6), not the architecture.

As a result, there is no commonly shared or understood model of what this end state may look like.
More Background

- There is a tendency to view the system architecture using existing paradigms that were used to develop the “stove-piped” systems that are now proving to be limited in their capability.

- This is a “paving the cow paths” approach and has made developing FORCEnet capable systems difficult.

- European firms such as Thales, Saabtech and Terma have already validated the concepts of open architecture, software product lines, and software reuse as applied to combat systems.
In addition to lessons learned from European firms, the proposed Technical approach is built upon lessons learned from Lockheed Martin’s Norwegian Frigate Project and a predecessor program, Taiwan’s PFG-2 Class Frigate project.

Valuable lessons were also learned from the predecessor program to OA, the Common Command and Decision (Common C&D) project.

Common C&D resulted in the development of several FORCEnet related concepts that were briefed to the Assistant Secretary of the Navy for Research and Development.
The key Open Architecture principles espoused by the Navy are [Naval OA Strategy]:

- **Modular design and design disclosure**
- **Reusable application software**
- Interoperable joint warfighting applications and secure information exchange
- Life-cycle affordability
- Encouraging competition and collaboration through development of alternative solutions and sources

The first two principles are especially relevant to this paper. It is the authors’ belief that proper attention to these principles will result in *software product lines* that provide *domain specific solutions*.
• The ability to make good design decisions early in the process is a significant driver in effectively lowering life-cycle cost and system development time.

• There are two key issues to be addressed with the use of the Open Architecture concept:
 – What is the structure of the various product lines required to support the various warfare domains, and
 – What is the technical approach?
Formal methods are mathematically-based techniques for the specification, development and verification of software and hardware systems.

Natural language specifications tend to get out of hand as the document grows and with growth comes ambiguity.

The use of formal methods for software and hardware design is motivated by the expectation that, as in other engineering disciplines, performing appropriate mathematical analyses can contribute to the reliability and robustness of a design.

Formal methods are appropriate for the design of discrete-event real-time systems because they can be used to specify system behavior without ambiguity.
The following approach uses two formal methods as a foundation:

- **Finite State Machines (FSM)**
- **Petri Nets**

A Petri net consists of *places*, *transitions*, and directed arcs.
The Methodology

• Centered around the Hatley-Pirbhai “Process for Systems Architecture and Requirements Engineering” (PSARE)
 – Model-based process that uses FSM & Petri Nets
 – Accommodates HW, SW & PW
 – Can be described using SYSML/UML or EFFBD’s (to name two) (not tool dependent)
 – Results in both a functional and architectural specification model
 – Can be captured with Clymer’s OpEMCSS modeling approach which represents both FSM and Petri Nets

• Core elements are the process/control model and the architecture template

Operational Evaluation Modeling for Context Sensitive Systems
http://www.ecs.fullerton.edu/~jclwyer/
Hatley-Pirbhai Process/Control Model

- **Process Model**
 - Input
 - Processed Output
 - Process Activators
 - Control Outputs
 - Control Inputs

- **Control Model**
 - Data Conditions
 - List of Internal Signals
 - List of Events
 - List of Actions

- **Decision Table**
 - List of Input Signals
 - Event Logic 1
 - Event Logic 2
 - State Transition Diagram
 - List of Events
 - List of Actions

- **List of Internal Signals**
 - List of Events

- **List of Events**
 - List of Actions

- **List of Actions**
 - List of Input Signals
Hatley-Pirbhai Architecture Template

User Interface Processing

Input Processing

Main Functions (Core Processing)

Support Functions

Output processing
The steps

H-P originally used Yourdon-DeMarco notation

Figures used with permission from H&A Systems Engineering http://www.hasys.com/
Figure 2 Hardware/software interface modeling using stores. Hardware processes produce flows into stores which are accessed by software processes. Software processes produce flows into stores which are accessed by hardware processes and transformed for intermodule communication.

Figure used with permission from H&A Systems Engineering
http://www.hasys.com/
Figure 11: OpEMCSS Directed Graph Model of a Part Production System
Table 1 HPM Features and Benefits

The rigor and hierarchical nature of HPM provide specific benefits.

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierarchical model</td>
<td>• Specifies requirements at appropriate level</td>
</tr>
<tr>
<td></td>
<td>• Depicts manageable amount of information at one time</td>
</tr>
<tr>
<td>Graphical and text representation of functionality</td>
<td>• Clearly shows interfaces (functional and physical)</td>
</tr>
<tr>
<td></td>
<td>• Graphics depict abstract aspects of system</td>
</tr>
<tr>
<td></td>
<td>• Text defines details</td>
</tr>
<tr>
<td>Allocation of functions to physical entities</td>
<td>• Greatly improved interface consistency</td>
</tr>
<tr>
<td>Rigorous method</td>
<td>• Promotes thorough design</td>
</tr>
<tr>
<td></td>
<td>• Identifies gaps early</td>
</tr>
</tbody>
</table>

Figure used with permission from H&A Systems Engineering
http://www.hasys.com/
• Another advantage of a simulation-based approach using H-P can be seen by reference to the figure.

• As system development proceeds down the left side of the “Vee” the models developed provide the foundation and guidance for the steps as integration proceeds up the right side of the “Vee”.

• It should noted that the “Vee” model has been demonstrated to be consistent with spiral development
Conclusion

- The presented work gives emphasis to the value of a formal process in architecture development.
- In this case formal will mean that the architecture requirements will be validated through the use of simulation as part of a defined methodology as described.
- Specifically, the model driven architecture approach has the following advantages:
 - It is a formal method for tying the architecture requirements process to the architecture verification process.
 - It is consistent with acquisition policy
 - It provides a methodology to test Network Centric Operations concepts such as MDA, CMD, and TCT.
- The use of a simulation-based methodology will result in the requisite DODAF artifacts required for both requirements capture and the description of the system functional behavior.
- In addition, it supports the development of architectures that incorporate modular design and the identification of reusable and interoperable modules/applications.
- This approach is consistent with the development of a capability/systems-based architecture using a spiral or “Vee” approach.
Future Work

- Incorporation of the use case paradigm
- Mapping to DoDAF
- Incorporation of Clymer’s work
- Merging notations/languages into a universal architecture descriptive framework
“Improving Process Utilization with Tools”

October 22, 2008

Frank Salvatore
High Performance Technologies, inc.
3159 Schrader Road
Dover NJ, 07801
(973) 442-6436 ext 249
fsalvatore@hpti.com
Overview

- Introduction
- The Process Problem
- Tools are a solution
- Examples
- Substantiating Data
- Conclusion
All the “best” processes in the world are useless if they are not accepted, understood and implemented by the workforce.
Difficulties with Process Acceptance

- Hard to understand/implement the process
- Don’t know what’s available to help process implementation
- No common method of implementation
- Uncertainty on the part of the user and the advocate on whether implementation is being done correctly.
The US Army ARDEC Systems Engineering Directorate (SED) has been investing in its infrastructure via tools that facilitate proper use of its processes:

- Many are simple Excel/Access tools that were developed in <100 man hours

Tools that:

- Guide the user through the process and document the results of each step (DAR, Peer Review, Roadmap)
- Evaluate a project’s compliance to process(es) (PP Eval)
- Guide the user towards additional resources to assist them (PP Eval, IPPD, PAL)
- Get the user started with some instruction (Requirements Management Plan Template, System Spec Template)
- Provide the user with examples to choose from (Technical Engineering Database (TED), Example Project Plans)

Feedback has shown that they improve process utilization.
ARDEC SE Roadmap

The SE Roadmap Tool encompasses 17 ARDEC SE process areas that describe key aspects of SE tasks covered by projects during the complete product lifecycle.

- Project Planning
- Requirements Development
- Logical Analysis
- Design Solution
- Implementation
- Integration
- Verification
- Validation
- Transition
- Decision Analysis and Resolution (DAR)
- Technical Assessment
- Requirements Management
- Risk Management
- Data Management
- Configuration Management
- Interface Management
- Peer Review
SE Roadmap Implementation

Roadmap provides basis for technical planning, feeds the Project Plan/Schedule, allows technical assessment versus planned activities and supports multiple reporting needs

SE Roadmap is the Linchpin that Ensures Effective Technical Planning and Technical Assessment Activities on Projects

Roadmap Implementation Guide:

1. Planning
 - Coordinate with APO/IPT to baseline current SE activities
 - Based on the project objectives, define with APO/IPT the required SE End State (use SE procedures to assist with tailoring as appropriate)
2. Planning
 - Work with APO/IPT to determine what SE Tasks will satisfy transition criteria to achieve next SE level & complete Roadmap accordingly
3. Planning
 - Develop or update Project Plan/Schedule using Roadmap input to complete SE sections of plan
4. Tracking
 - Verify that IMS/Project Schedule reflects accomplishments, schedule and products contained in Roadmap
5. Assessment
 - Assess Project’s performance against Roadmap details and provide status in the Roadmap Column title “status”. Describe any corrective actions as required.
6. Reporting
 - Use tech assessment from Roadmap to address reporting requirements (MAPR, Level 1, Level 2, Level 3 Briefings, etc.)

MAPR format includes SE Status (tech assessment), project rating, and corrective action plan (if needed)

Level 1 Briefing summarizes SE status of project
The Project Plan (PP) is a key piece of the ARDEC Project Management process

- Originally developed for Project Plan (PP) evaluators to perform an assessment of a PP which lead to PP approval and project funding
- Quickly became a key instructional document provided to projects who were writing/updating their PP
- Also used to capture the Ownership Matrix for every PP section (who the SME is for each PP section). This provides key contact for further assistance

Process Flow

- Automatically tailors the Evaluation Criteria based on project details that are used to “seed” the tool. (project scenario, phase etc.)
Project Plan Evaluation Tool

The Questions are tailored based on the Project Details above

Ownership Matrix details SMEs for each section

Feedback

We welcome feedback on the Evaluation Criteria and this Evaluation Tool itself. Please use the link below to send feedback to Frank J. Salvatore (SED), Humnas Staniper (PIO), and Dan Crowley (PIMG).

Click to Send Feedback
Decision Analysis and Resolution

- Process is nested within the tool
 - Each Process Step has a corresponding section of the tool.

- Use of the tool provides a project with “self documenting” input data and results

- Provides the user with some standard graphical forms of output that assist with both making the decision and capturing its rationale

- Use of the tool follows the DAR Procedure
Identify and Weight Goals + Criteria

<table>
<thead>
<tr>
<th>Goal Number</th>
<th>Goal Name</th>
<th>Goal Weight Factor</th>
<th>Normalized Weight Factor</th>
<th>Criteria Name</th>
<th>Criteria Weight (within each goal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reduce Cost</td>
<td>9</td>
<td>0.563</td>
<td>Cost</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Meet Schedule</td>
<td>4</td>
<td>0.250</td>
<td>Schedule</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Reduce Risk</td>
<td>3</td>
<td>0.188</td>
<td>startup risk</td>
<td>9</td>
</tr>
</tbody>
</table>

Raw Input for each Alternative

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weight</th>
<th>Alt 1</th>
<th>Alt 2</th>
<th>Alt 3</th>
<th>Alt 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>0.563</td>
<td>30000</td>
<td>50000</td>
<td>25000</td>
<td>80000</td>
</tr>
<tr>
<td>Schedule</td>
<td>0.100</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Safety</td>
<td>0.150</td>
<td>Good</td>
<td>Fair</td>
<td>Bad</td>
<td>Great</td>
</tr>
<tr>
<td>Startup Risk</td>
<td>0.188</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

Utility applies to the Raw Input to Score the Alternatives against the Criteria
Integrated Process & Product
Development Tool

- database of available resources (procedures, tools, templates etc.)

- search based on different “languages” (DOD lifecycle, Six Sigma, SED SE Process...), and the sub-steps within that language
Integrated Processes and Tools

Help You Find the Best Processes and Tools to Support IPPD

Use Drop Down Lists to Generate Report

- 1) Select Process/Method
- 2) Select Procedure/Step
- 3) Select Resource Type (optional)

<table>
<thead>
<tr>
<th>Resource</th>
<th>Type</th>
<th>User</th>
<th>Purpose</th>
<th>Reference</th>
<th>Reference Location</th>
<th>POC</th>
<th>Applies to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Breakdown Structure (WBS)</td>
<td>Tool</td>
<td>APO</td>
<td>To better define and organize the total scope of a project, using a hierarchical tree structure</td>
<td>Para. 7.1 Phase A Project Initiation Step A4 WBS Template 1 Oct 2007</td>
<td>ARDEC 101 Project Management Procedure</td>
<td>PIO</td>
<td>Project Planning, Technical Planning,</td>
</tr>
<tr>
<td>Earned Value Management (EVM)</td>
<td>Tool</td>
<td>APO</td>
<td>To better ensure the total integration of cost, schedule, and work scope aspects of the contract.</td>
<td></td>
<td></td>
<td>POC</td>
<td>Project Planning, Technical Planning, Risk Management,</td>
</tr>
<tr>
<td>Project Plan Evaluation Tool</td>
<td>Tool</td>
<td>ALL</td>
<td>To better evaluate the quality of the Project Plan</td>
<td>Project Plan Evaluation Tool 21 Sept 2007</td>
<td>POC, SED</td>
<td></td>
<td>Project Planning, Technical Planning,</td>
</tr>
</tbody>
</table>

Report provides tailored list of Resources
Verification Tool

- Use Interview
- Use Questionnaires
- Include Stakeholders Early and Often.
- Have Stakeholders Peer Review Requirements
- Use a JCCB
isting of some Templates:
- Project Plan Template
- Requirements Management Plan Template
- System Specification Template
- Interface Control Document Template
- Etc....
his year we are working on metrics and measures that will provide greater insights into what is and isn’t working.

here is a whole suite of metrics and measurement tools that have been developed.
What makes a “good” tool?

- Configuration Management built into the tool for Change History, versioning etc.
- Instructions on how to use the tool
 - Instruction sheet, pop-up comments
- Process Flow
- Feedback Form
- Import the tool into the process they are seeking to implement (language, steps etc.)
Conclusion

- Tools are common focal points for discussion.
- Management expects them to be used.
- We are starting to capture metrics to help guide future changes and to build a case to develop and make improvements to tools.
Questions?
Educating the Next Generation of Software Engineers

Art Pyster
Distinguished Research Professor
Stevens Institute of Technology and
Deputy Executive Director, SER-UARC

October 22, 2008
art.pyster@stevens.edu
Agenda

- How the world has changed
- The current state of software engineering education
- A new reference curriculum
Resolved: Software Should Lead in Systems Engineering

Jim Armstrong vs. Art Pyster

The systems engineering community has long debated the extent to which software disciplines, processes, and practitioners should influence systems engineering. In August 1996, the authors held a lively debate at a meeting of the Washington Metropolitan Area Chapter of INCOSE on the proper role of software engineering within systems engineering. The particular issue debated was the proposal that software ideas, process, and people should be in the lead when building complex systems. Pyster favored that view while Armstrong opposed it.
Software will be the center of systems design.

Eberhardt Rechtin, 1993
Twenty years from now, software people will be sitting at the table and the other disciplines will be sitting around the sides of the room.

Eberhardt Rechtin,
1993
What do we teach for a master’s degree in software engineering?

- The last effort to create a reference curriculum for graduate software engineering education was by the SEI in the early 1990s.
- There are, in effect, no current community-endorsed recommendations on what to teach software engineers – nothing that recognizes how the world has changed.
- Response: create a project to create a new reference curriculum in software engineering
The Integrated Software and Systems Engineering Curriculum Project

- Begun in May 2007 at Stevens Institute of Technology
- Sponsored by DoD Director of Systems and Software Engineering
- Three products planned:
 1. A modern reference curriculum for a master’s degree in software engineering that integrates an appropriate amount of systems engineering
 2. A modern reference curriculum for a master’s degree in systems engineering that integrates an appropriate amount of software engineering
 3. A truly interdisciplinary degree that is neither systems nor software engineering – it is both
1st Project – Graduate Software Engineering Reference Curriculum

1. Understand the current state of SwE graduate education (November 2007)

2. Create GSwERC 0.25 with a small team, suitable for limited review (February 2008)

3. Publicize effort through conferences, papers, website, etc (continuous)

4. Obtain endorsement from INCOSE, NDIA, ACM, IEEE, and other professional organizations (continuous)

5. Create GSwERC 0.50 suitable for broad community review and early adoption (October 2008)

6. Create GSwERC 1.0 suitable for broad adoption (2009)
The evolving author team

- Rick Adcock, *Cranfield University and INCOSE*
- Edward Alef, *General Motors*
- Bruce Amato, *Department of Defense*
- Mark Ardis, *Rochester Institute of Technology*
- Larry Bernstein, *Stevens Institute of Technology*
- Barry Boehm, *University of Southern California*
- Pierre Bourque, *Quebec University and SWEBOK volunteer*
- John Bracket, *Boston University*
- Murray Cantor, *IBM*
- Lillian Cassel, *Villanova and ACM volunteer*
- Robert Edson, *ANSER*
- Richard Fairley, *Colorado Technical University*
- Dennis Frailey, *Raytheon & Southern Methodist University*
- Gary Hafen, *Lockheed Martin and NDIA*
- Thomas Hilburn, *Embry-Riddle Aeronautical University*
- Greg Hislop, *Drexel University and IEEE Computer Society participant*
- Dave Klappholz, *Stevens Institute of Technology*
- Philippe Kruchten, *University of British Columbia*
- Phil Laplante, *Pennsylvania State University, Great Valley*
- Qiaoyun (Liz) Li, *Wuhan University, China*
- James McDonald, *Monmouth University*
- John McDermid, *University of York, UK*
- Ernest McDuffie, *National Coordination Office for NITRD*
- Bret Michael, *Naval Postgraduate School*
- William Milam, *Ford*
- Ken Nidiffer, *Software Engineering Institute*
- Art Pyster, *Stevens Institute of Technology*
- Doug Schmidt, *Vanderbilt University*
- Mary Shaw, *Carnegie Mellon University*
- Robert Suritis, *IBM*
- Richard Thayer, *California State University at Sacramento*
- Barrie Thompson, *Sunderland University, UK*
- Richard Turner, *Stevens Institute of Technology*
- Joseph Urban, *Texas Technical University*
- Ricardo Valerdi, *MIT & INCOSE*
- David Weiss, *Avaya*
- Mary Jane Willshire, *Colorado Technical University*
Methodology to understand current state of SwE education

- Diverse set of universities with Masters programs in SWE
 - Vary in size, geography, maturity, resources, target market, …
 - Focused on programs with degree in SWE or Computer Science with a SWE specialization - not degrees in information technology and related areas

- Used Software Engineering Body of Knowledge (SWEBOK) as the primary framework for SWE competencies

- Collected data from school websites
 - Degree, faculty size, student population, target market, …
 - Degree structure, individual course descriptions
 - Map between courses and SWEBOK

- Validated data with one or more professors from each school

- Analyzed for commonalities and uniqueness
Schools studied

1. Air Force Institute of Technology
2. Brandeis University
3. California State University – Fullerton
4. California State University – Sacramento
5. Carnegie Mellon University
6. Carnegie Mellon University West
7. DePaul University
8. Drexel University
9. Dublin City University (Ireland) *
10. Embry-Riddle Aeronautical University
11. George Mason University
12. James Madison University
13. Mercer University
14. Monmouth University
15. Naval Postgraduate School
16. Penn State University – Great Valley
17. Quebec University (Canada) *
18. Rochester Institute of Technology
19. Seattle University
20. Southern Methodist University
21. Stevens Institute of Technology
22. Texas Tech University
23. University of Alabama – Huntsville
24. University of Maryland University College
25. University of Michigan – Dearborn
26. University of Southern California
27. University of York (UK) *
28. Villanova University

* Non-US Schools
Observations from 28 schools

1. SWE is largely viewed as a specialization of Computer Science - much as systems engineering was often viewed as specialization of industrial engineering or operations research years ago

2. Faculty size is small - few dedicated SWE professors, making programs relatively brittle

3. Student enrollments are generally small compared to CS and to other engineering disciplines

4. Many programs specialize to specific markets such as defense systems or safety critical systems

5. The target student population varies widely - anyone with Bachelors and B average to someone with CS degree and 2+ years of experience

6. Online course delivery is popular
More observations

7. Objective for graduates vary widely - software developer to researcher to software manager

8. Wide variation in depth and breadth of SWEBOK coverage in required and semi-required* courses

9. Many programs have required or semi-required courses that cover material that is either not in the SWEBOK at all or is not emphasized in the SWEBOK

10. Some significant topics are rarely mentioned - agility, software engineering economics, systems engineering

11. Some topics are ubiquitous - formal methods and architecture

12. “Object-oriented” is the standard development paradigm - creating a “clash” with many systems engineering programs that emphasize structured methods

*A student has a 50% or greater probability of taking a semi-required course.
Diverse focuses

1. Development of defense systems
2. Acquisition of defense systems
3. Embedded real-time systems
4. Entrepreneurial technology companies
5. Quantitative software engineering
6. Software economics
7. Safety critical systems
8. Secure software engineering
9. Highly dependable software systems

No focus dominated
Entrance requirements

Most programs offer leveling courses for students lacking entrance requirements

Many programs routinely waive academic requirements for students with industrial experience

[Bar chart showing the percentage of programs requiring various entrance criteria]

- Know how to Program: 100%
- Degree in Eng/Sci / Math: 60%
- Degree in Computing: 30%
- Industry Experience: 30%
SWEBOK coverage in required and semi-required courses
The approach – GSwERC 0.50

1. Understand the current state of SWE graduate education (November 2007)

2. Create GSwERC 0.25 with a small team, suitable for limited review (February 2008)

3. Publicize effort through conferences, papers, website, etc. (continuous)

4. Obtain endorsement from ACM, IEEE, INCOSE, NDIA, and other professional organizations (continuous)

5. Create GSwERC 0.50 suitable for broad community review and early adoption (October 2008)

6. Create GSwERC 1.0 suitable for broad adoption (2009)
Expectations at entry

1. The equivalent of an undergraduate degree in computing or an undergraduate degree in an engineering or scientific field and a minor in computing
2. The equivalent of an introductory course in software engineering
3. At least two years of practical experience in some aspect of software engineering or software development.
Outcomes 1 to 4 at graduation

1. Mastered the Core Body of Knowledge

2. Mastered at least one application domain, such as finance, medical, transportation, or telecommunications, and one application type, such as real-time, embedded, safety-critical, or highly distributed systems. That mastery includes understanding how differences in domain and type manifest themselves in both the software itself and in their engineering, and includes understanding how to learn a new application domain or type.

3. Mastered at least one knowledge area or sub-area from the CBOK to at least the Bloom Synthesis level.

4. Demonstrated how to make ethical professional decisions and practice ethical professional behavior.
Outcomes 5 to 7 at graduation

5. Understand the relationship between software engineering and systems engineering and be able to apply systems engineering principles and practices in the engineering of software.

6. Be able to work effectively as part of a team, including teams that may be international and geographically distributed, to develop quality software artifacts, and to lead in one area of project development, such as project management, requirements analysis, architecture, construction, or quality assurance.

7. Show ability to reconcile conflicting project objectives, finding acceptable compromises within limitations of cost, time, knowledge, existing systems, and organizations.
Outcomes 8 to 10 at graduation

8. Understand and appreciate the importance of feasibility analysis, negotiation, effective work habits, leadership, and good communication with stakeholders in a typical software development environment.

9. Understand how to learn new models, techniques, and technologies as they emerge, and appreciate the necessity of such continuing professional development.

10. Be able to analyze a current significant software technology, articulate its strengths and weaknesses, and specify and promote improvements or extensions to that technology.
Curriculum architecture

Baseline: expected capability of CS and SE Grads

Prep Material

Core Materials

University-Specific Materials

Elective Materials

Capstone Experience

Old degree, recent experience

Business grads

BSEE and BSCE grads

BSSE and BSCS grads

BS and extensive experience

Other degree, some experience
Additional material in GSwERC

- Comparison of existing graduate software engineering programs with GSwERC recommendations – know how big the gap is between recommendations and practice
- Strategies recommended by the authors to implement GSwERC
- Hypothetical modifications of existing programs to more fully satisfy GSwERC
Reviewers, authors, and early adopters

SEEKING AUTHORS, REVIEWERS AND EARLY ADOPTERS FOR VERSION 0.5

A New Reference Curriculum for Graduate Studies Leading to a Master’s Degree in Software Engineering

Since August 2007, a group of more than 80 professionals from academia, industry, and government have been developing a new reference curriculum leading to a Master’s Degree in Software Engineering. This new reference curriculum will integrate systems engineering into the education of software engineers and reflect the dramatic changes in how software is being developed into the 21st century. A graduate reference curriculum was published in the early 1990s. The effort is sponsored by the International Council on Systems Engineering (INCOSE), and the U.S. National Science Foundation (NSF), Systems Engineering sub-department. The SEI Computer Science Initiative’s participating academy and the ACM has a volunteer contributor. Sponsorship and funding for this effort are being provided by the U.S. Department of Defense.

Version 0.25 of the Graduate Software Engineering Reference Curriculum (GSwERC) was released in February 2009 for a limited review. Version 0.5 is being evaluated for worldwide release at the end of October 2009. The document will be posted on the GSwERC website (www.GSwERC.org). Review comments from all interested professionals are being sought. Version 0.9 baseline is expected sometime in 2010.

A clear limitation of the effort so far has been the demographics of the author team. While the team is now filled with talented and dedicated volunteers, the inclusion of more than 120 authors from the United States, the first round of reviewers was more international, but still dominated by professionals from the U.S. In order to ensure that GSwERC has global applicability, we are looking to further balance the range of views in the addition of more reviewers for the second draft and the author team for Version 1.

One of the novel features of GSwERC is the indication of explicit comparisons of existing graduate software engineering programs to GSwERC recommendations and the location of specific references to two of these programs to further enhance GSwERC. These comparisons and modifications offer a measure of how well GSwERC aligns with existing practices and will help faculty understand how to adapt GSwERC in their own contexts. We welcome additional comparisons and hypothetical modifications from other universities to provide more insight into the gap between GSwERC and current practice and how to close that gap.

The Graduate Software Engineering Reference Curriculum (GSwERC) is ready for early adoption. Several of the current authors are new integrating partners of GSwERC in their own programs. We’re also interested in helping universities begin to adopt GSwERC in 2010.

Please visit our website at www.GSwERC.org for more information.

Dr. Art Pyper, Distinguished Research Professor, from Stevens Institute of Technology in the United States, is the project leader for GSwERC.

Please contact Dr. Pyper if you are interested in participating.

www.GSwERC.org
Architecting Systems to Meet Expectations - Managing Quality Characteristics To Reduce Risk

Paul R. Croll
CSC
pcroll@csc.com

Chair, NDIA Software Industry Experts Panel

Co-Chair, DoD Software in Acquisition Working Group on Software Quality Attributes
Outline

- The Systems Quality Challenge
- Architecture And Quality Defined
- Quality Attribute-Based Approaches To Architecting Systems
- Making The Case For Architectural Quality
- Customer Implications Of Quality-Attribute-Based Architectural Approaches
- Process Maturity And Product Quality
- A Current Concern: Architecting For System Assurance
- Summary
It’s About The Architecture . . .

One of the top ten emerging systemic issues, from fifty-two in-depth program reviews since March 2004, was inadequate software architectures.

It’s Also About Quality . . .

The NDIA Top Software Issues Workshop examined the current most critical issues in software engineering that impact the acquisition and successful deployment of software-intensive systems.

Two issues emerged that were focused specifically on the relationship between software quality and architecture:

- Ensure defined quality attributes . . . are addressed in requirements, architecture, and design.
- Define software assurance quality attributes that can be addressed during architectural trade-offs.

The Systems Quality Challenge

If we are successful in managing risk for the systems we build, and meet stakeholder expectations, we must:

– Start as early as possible in the design process to understand the extent to which those expectations might be achieved
– Develop candidate system architectures and perform architecture trade-offs
– Define and use a set of quantifiable system attributes tied to stakeholder expectations, against which we can measure success
The Systems Quality Challenge Is A Software Quality Challenge

- Most systems we encounter today contain software elements and most depend upon those software elements for a good portion of their functionality.
- Modern systems architecture issues cannot be adequately addressed without considering the implications of software architecture.
Architecture Defined

The fundamental organization of a system embodied in its components, their relationships to each other, and to the environment, and the principles guiding its design and evolution.

The set of all of the most important, pervasive, higher-level, strategic decisions, inventions, engineering trade-offs, assumptions, and their associated rationales concerning how the system meets its allocated and derived product and process requirements.

Quality Defined

Software quality: The degree to which software possesses a desired combination of attributes.

Software product quality: The totality of characteristics of an entity that bear on its ability to satisfy stated and implied needs.

Quality Attribute-Based Approaches To Architecting Systems

Developing systematic ways to relate the software quality attributes of a system to the system’s architecture provides a sound basis for making objective decisions about design tradeoffs and enables engineers to make reasonably accurate predictions about a system’s attributes that are free from bias and hidden assumptions. The ultimate goal is the ability to quantitatively evaluate and trade off multiple software quality attributes to arrive at a better overall system.

Relationships Between Attributes

- **Collaboration**
 - Increasing the degree to which one attribute is realized increases the realization of another

- **Damage**
 - Increasing the degree to which one attribute is realized decreases the realization of another

- **Dependency**
 - The degree to which one attribute is realized, is dependent upon the realization of at least some sub-characteristics of another

Optimization Among Quality Attributes

Example: A large telecommunication application

– Good optimization (Collaboration)
 - balance among multiple quality attributes, such as maintainability, performance and availability

– Poor optimization (Damage)
 - Focusing solely on maintainability often results in poor system performance
 - Focusing on performance and availability alone may result in poor maintainability

Explicit architectural decisions can facilitate optimization among quality attributes

Understanding Quality In The Context Of Architectural Structures

Structures for describing architectures
- *Functional structure* is the decomposition of the functionality that the system needs to support
- *Code structure* is the code abstractions from which the system is built
- *Concurrency structure* is the representation of logical concurrency among the components of the system
- *Physical structure* is just that, the structure of the physical components of the system
- *Developmental structure* is the structure of the files and the directories identifying the system configuration as the system evolves

Using architectural structures to understand quality
- *Concurrency and Physical* structures are useful in understanding system Performance
- *Concurrency and Code* structures are useful in understanding system Security
- *Functional, Code, and Developmental* structures are useful in understanding system Maintainability

Attribute-Driven Design (ADD) produces an initial software architecture description from a set of design decisions that show:

- Partitioning of the system into major computational and developmental elements
- What elements will be part of the different system structures, their type, and the properties and structural relations they possess
- What interactions will occur among elements, the properties of those interactions, and the mechanisms by which they take place

In the very first step in ADD, *quality attributes requirements* are expressed as the system’s desired measurable quality attribute response to a specific stimulus.

Knowing these requirements for each *quality attribute* supports the selection of design patterns and tactics to achieve those requirements.

Understanding The Consequences Of Architectural Decisions With Respect To Quality Attributes

The Architecture Tradeoff Analysis MethodSM (ATAMSM) is dependent upon quality attribute characterizations, like those produced through ADD, that provide the following information about each attribute:

- The stimuli to which the architecture must respond
- How the quality attribute will be measured or observed to determine how well it has been achieved
- The key architectural decisions that impact achieving the attribute requirement

ATAM takes proposed architectural approaches and analyzes them based on quality attributes

- Generally specified in terms of scenarios addressing stimuli and responses
 - Use case scenarios, describing typical uses of the system
 - Growth scenarios, addressing planned changes to the system
 - Exploratory scenarios, addressing any possible extreme changes that would stress the system

ATAM also identifies sensitivity points and tradeoff points

Some Real World Architecture Review Issues

- Results from four AT&T companies Between 1989 and 2000
- More than 1,000 issues
- Six classes of issues
 - Product architecture and design, 29–49%
 - Management controls, 14–26%
 - Problem definition, 10–18%
 - Process, 4–19%
 - Technology, 3–14%
 - Domain knowledge, 2–5%

Making The Case For Architectural Quality

The Quality Case
- The set of claims, supporting arguments, and supporting evidence that provide confidence that the system will in fact demonstrate its expected quality characteristics
- Common types of quality cases include:
 - safety cases
 - security cases
 - assurance cases

The Architectural Quality Case
- The architectural claims, supporting arguments, including architectural decisions and tradeoffs, architectural representations, and demonstrations that the architecture will exhibit its expected quality characteristics

Risk Management Implications Of Quality-Attribute-Based Architectural Approaches

- Stakeholder *quality requirements* will have been distilled into *architectural drivers* which will have shaped the system architecture.

- Tradeoffs will have been made to optimize the realization of important *quality characteristics*, in concert with stakeholder expectations.

- The level of confidence that the resultant architecture will meet those expectations will be known.

- Stakeholders will be knowledgeable of any *residual risk* they are accepting by accepting the delivered system.

Process Maturity Does Not Guarantee Product Quality

The CMMI® embodies the process management premise that, *the quality of a system or product is highly influenced by the quality of the process used to develop and maintain it.*

However:

Several recent program failures from organizations claiming high maturity levels have caused some to doubt whether CMMI® improves the chances of a successful project.

Source: R. Hefner. CMMI Horror Stories: When Good Projects Go Bad. SEPG Conference, March 2006
Process maturity can in many cases improve project performance, but special attention to the engineering processes is required to ensure that stakeholder quality expectations are realized in resultant products.
A Current Concern: Architecting For System Assurance

The challenge:

Integrating a heterogeneous set of globally engineered and supplied proprietary, open-source, and other software; hardware; and firmware; as well as legacy systems; to create well-engineered integrated, interoperable, and extendable systems whose security, safety, and other risks are acceptable – or at least tolerable.

The vision:

The requirements for assurance are allocated among the right systems and their critical components, and such systems are designed and sustained at a known level of assurance.

Architectural Principles For Assurance

- Isolate critical components from less-critical components
- Make critical components easier to assure by making them smaller and less complex
- Separate data and limit data and control flows
- Include defensive components whose job is to protect other components from each other and/or the surrounding environment
- Understanding the interrelationships between components and their linkages
- Use defense-in-depth measures where appropriate
- Beware of maximizing performance to the detriment of assurance

Summary

If we are to be successful in managing risk for the systems we build, and meet stakeholder expectations, we must:

- Start as early as possible in the design process to understand the extent to which those expectations might be achieved
- Define a set of quantifiable quality attributes tied to stakeholder expectations, against which we can measure success and understand the residual risk stakeholders are being asked to accept
- Develop candidate system architectures and perform architecture trade-offs using those attributes
For More Information . . .

Paul R. Croll
CSC
10721 Combs Drive
King George, VA 22485-5824

Phone: +1 540.644.6224
Fax: +1 540.663.0276
e-mail: pcroll@csc.com
Changing the value equation in engineering and acquisition to align systems of systems with dynamic mission needs:

The Value Stairs

Philip Boxer, Suzanne Garcia, William Anderson, Pat Kirwan

October 21st 2008
Agenda

The demand for agility
Managing alignment
Creating value for the defense enterprise
Changing the value equation
Modernization AND Stability/Counterinsurgency

I’ve spent much of the last year talking about irregular or asymmetric warfare, and making the argument in favor of institutionalizing counterinsurgency skills, and our ability to conduct stability and support operations.

The need for the state of the art systems – particularly longer range capabilities – will never go away, as we strive to offset the countermeasures being developed by other nations. But at a certain point, given the types of situations we are likely to face, it begs the question whether specialized, often relatively low-tech equipment for stability and counterinsurgency missions is also needed.

- **How do we institutionalize procurement of such capabilities – and the ability to get them fielded quickly?**
- **Why do we have to go outside the normal bureaucratic process** to develop counter-IED technologies, to build MRAPs, and to quickly expand our ISR capability? In short, why did we have to bypass existing institutions and procedures to get the capabilities we need to protect our troops and pursue the wars we are in?

Our conventional modernization programs seek a 99 percent solution in years. Stability and counterinsurgency missions – the wars we are in – require 75 percent solutions in months.

- **The challenge is whether in our bureaucracy and in our minds these two different paradigms can be made to coexist.**
- The issue then becomes how we build this kind of innovative thinking and flexibility into our rigid procurement processes here at home. **The key is to make sure that the strategy and risk assessment drives the procurement, rather than the other way around.**

I believe we must do this. The two models can – and do – coexist.

Extracted from speech delivered by Secretary of Defense Robert M. Gates, National Defense University, Washington, D.C. September 29, 2008

There are three diverging tempos

'Arms-length' or 'smart' Defense Companies await Requirements expressed in Programmes.

Competitive advantage is gained by aligning the Composite Capabilities to the Demand.

Divergence of tempos increases costs of alignment

Adapted from: Appropriate Collaboration and Appropriate Competition in C4ISTAR Transformation, Dr Nicholas Whittall RUSI 2007
The divergence of tempos challenges the supplier to support Type III Agility

Type 1 Agility
Directed Composition
Traditional or ‘Smart’ Engineering

Type 2 Agility
Centre-driven Collaboration
Design for Integration

Type 3 Agility
Edge-driven Collaboration
Design for Flexibility (Supporting SoS extensibility)

Type 1+ Agility
Directed Composition
Workarounds, UORs, etc

Supplier Alignment
Competitive

Operational Alignment
Anticipated
Unanticipated

Integrate what we have

The C4ISTAR Sector net-enabled journey

Agenda

The demand for agility

Managing alignment

Creating value for the defense enterprise

Changing the value equation
The approach to alignment is ‘stratified’

The WHAT: Equipment

The HOW: Fielded Equipment and Force Elements

The WHO (in relation to) WHOM: Force Structure and Mission Command

The WHY: Decisive Points in Campaign Strategy

This alignment is ‘Stratified’
The divergence of these tempos creates new challenges for the Defense Enterprise

The Zachman framework assumes a static definition of the Enterprise

Where does the role of the supplier fit in?

Operational Alignment (to Campaign Tempo)

Supplier Alignment (to Acquisition Tempo)

Capability Alignment (to Alignment Tempo)

What kinds of agility are needed from suppliers?

What kinds of value equation are involved here?

Type 1 Agility
Directed Composition
Traditional or ‘Smart’ Engineering

Type 2 Agility
Centre-driven Collaboration
Design for Integration

Type 3 Agility
Edge-driven Collaboration
Design for Flexibility (Supporting SoS extensibility)

Anticipated Operational Alignment

Operational Alignment (to Campaign Tempo)

Supplier Alignment (to Acquisition Tempo)

Collaborative

Competitive

Type 1 Agility
Directed Composition
Traditional or ‘Smart’ Engineering

Type 2 Agility
Centre-driven Collaboration
Design for Integration

Type 3 Agility
Edge-driven Collaboration
Design for Flexibility (Supporting SoS extensibility)

Anticipated Operational Alignment

What kinds of value equation are involved here?

Type 1 Agility
Directed Composition
Traditional or ‘Smart’ Engineering

Type 2 Agility
Centre-driven Collaboration
Design for Integration

Type 3 Agility
Edge-driven Collaboration
Design for Flexibility (Supporting SoS extensibility)

Anticipated Operational Alignment

What kinds of agility are needed from suppliers?

Where does the role of the supplier fit in?
The divergence of these tempos creates new challenges* for the Defense Enterprise.

Agenda

The demand for agility
Managing alignment
Creating value for the defense enterprise
Changing the value equation
Value for Defense comes from managing a Double ‘V’

Geometries-of-use

Scenarios and Campaign Plans

Joint Command

Composite Capabilities

Force Command Structure and Composite Capabilities

Military Effects

Geometries-of-use

Demand-side

Supply-side

Capability gap

\[\text{Capability gap} = \text{Requirement} - \text{DOTMLPF} \]

Plus DOTMLPF = Force Element Solution

The cycle creating value for Defence.

Design decomposition

System integration

System components

This double ‘V’ is layered, spanning the three different kinds of tempo

The WHY
Decisive Points 6
Synchronization

The WHO (in relation to) WHOM
Joint Command 5
Composite Capabilities
Agile Force Structure 4
Force Elements

The HOW
Force Element 3
Fielded Equipment
Fielded Equipment 2
Equipment

The WHAT
Equipment 1

The nature of this overlap depends on the engineering constraints being determined.

Pragmatic constraints

Engineering constraints

© 2008 Carnegie Mellon University
These contexts-of-use have to be related to the individual capabilities

Many-to-many composition

Variety of Scenarios

Demand for Synchronization

Demand for Composite Capabilities

Supply of Force Elements

Effects ladders

6: Decisive Points

5: Joint Command

4: Agile Force Structure

Mission Tasking

Campaign Planning

Orchestration of geometries-of-use

Force Elements

Composite Capabilities

Synchronization

Effects

Supply of Force Elements

demand-side

Supply-side

Adding the socio-technical perspective in relation to demand extends the analytical space

Socio-technical SoS = SoS foundation + Organization + Synchronization views

SoS foundation = Equipment and Information views

The analysis puts the Socio-technical SoS in relation to an Effects View
This leads to a different kind of analysis of interoperability…

Special permission to use PAN in this Technical Probe was granted by Boxer Research Limited.
Agenda

The demand for agility
Managing alignment
Creating value for the defense enterprise
 Changing the value equation
Spanning the layers means managing different kinds of value equations.

The Value Stairs:
changing the value equation
Philip Boxer, October 21st 2008
© 2008 Carnegie Mellon University

Decisive Points
- Mission Command
- Agile Force Structure
- Force Element
- Fielded Equipment
- Equipment

Type 1: Supplier
Type 2: Unified Customer + Supplier
Type 3: Military Command + Unified Customer + Supplier

Campaign Tempo
Alignment Tempo
Acquisition Tempo
The Value Stairs: a progressive development of the value equation model

Type I
Through Life-cycle
(of equipment or platform)

Arms-length

‘Smart’

Decisive Points

Mission Command

Agile Force Structure

Force Element

Fielded Equipment

Equipment

‘Above the customer strategy ceiling’

Purchaser pre-contractual

Provider Contract

Provider subcontracted

‘strategy ceiling’

The purchaser is buying:

Defense Equipment & Support

Defense Equipment

The Value Stairs: a progressive development of the value equation model
Philip Boxer, October 21st 2008
© 2008 Carnegie Mellon University
The Value Stairs: a progressive development of the value equation model

<table>
<thead>
<tr>
<th>Type I</th>
<th>Type II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through Life-cycle (of equipment or platform)</td>
<td>Through-Life (equipment- or platform-based) Capability</td>
</tr>
<tr>
<td>Arms-length</td>
<td>TLAM (availability management)</td>
</tr>
<tr>
<td>‘Smart’</td>
<td>TLCM (capability management)</td>
</tr>
</tbody>
</table>

Decisive Points
- Mission Command
- Agile Force Structure
- Force Element
- Fielded Equipment
- Equipment

The purchaser is buying:
- Operational Military Capability
- Military Capability across DOTMLPF
- Defense Equipment & Support
- Defense Equipment

TLAM: Through-Life Availability Management
TLCM: Through-Life Capability Management

The Value Stairs: changing the value equation
Philip Boxer, October 21st 2008
The Value Stairs: a progressive development of the value equation model

<table>
<thead>
<tr>
<th>Type I</th>
<th>Type II</th>
<th>Type III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Through-Life Composite Capability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arms-length</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Decisive Points

- Mission Command
- Agile Force Structure
- Force Element
- Fielded Equipment
- Equipment

The ‘plus’ in TLCM+ indicates that what is being supplied is a SoS the definition of which is not equipment-based or platform-based.
The value equation must evolve as the demand for the variety of operational behaviors changes.

Supplier Alignment (to Acquisition Tempo)

- Type 1 Agility: Directed Composition (Traditional or "Smart" Engineering)
- Type 2 Agility: Centre-driven Collaboration, Design for Integration
- Type 3 Agility: Edges-driven Collaboration, Design for Flexibility (Supporting SoS extensibility)

Operational Alignment (to Campaign Tempo)

- Anticipated Unanticipated Operational Alignment

Capability Alignment (to Alignment Tempo)

- Collaborative
- Competitive

How does the role of the supplier fit in?

What kinds of agility are needed from suppliers?

How does the DoD generate the requisite variety of operational behaviors?

The value equation changes with the nature of the demand*

Making the two models coexist

Talking about irregular or asymmetric warfare and institutionalizing counterinsurgency skills, …

• How do we institutionalize procurement of such capabilities – and the ability to get them fielded quickly?
• Why do we have to go outside the normal bureaucratic process?

…

The challenge is whether in our bureaucracy and in our minds these two different paradigms can be made to coexist.

• The key is to make sure that the strategy and risk assessment drives the procurement, rather than the other way around.

• These forms of warfare, skills and abilities demand Type III Agility.
• This means modernization ‘+', in which
 – Campaign Strategy and Interoperability Risk Assessment drive procurement.
 – The full Double ‘V’ cycle is managed to create value for Defense.
 – Suppliers support different value equation models on the value stairs depending on the nature of the demand.

Contact Information

Philip Boxer

Research, Technology and Systems Solutions Program, Software Engineering Institute, Carnegie Mellon University

Email: pboxer@sei.cmu.edu

Mail:
Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA
Abstract

1. New kinds of threat and much wider varieties of demand on mission capabilities are requiring the military to achieve unprecedented levels of agility and responsiveness, and are driving the transformation of military capabilities.

2. The great benefit of net-enablement in this new strategic environment is that it enables mission capabilities to be orchestrated and composed from constituent capabilities within the context of systems of systems.

3. The presentation will outline three essential ways in which the foundational nature of the systems engineering task needs to be transformed to take advantage of these new possibilities, and will use examples from various military contexts to illustrate their applicability.

 • First, the definition of systems-of-interest also has to give an explicit account of the contexts-of-use from which emerge new forms of demand for mission capability.
 • Second, the definition of systems-of-interest has to be extended to include their socio-technical nature.
 • Third, it has to be possible to analyze how these new forms of demand translate into new patterns of interoperability (geometries-of-use) across systems of systems, thus defining the agility of systems of systems in terms of the required varieties of geometry-of-use that they must support.

4. The presentation will conclude by considering the impact this has on the suppliers’ role, the acquisition process, and in particular the changes it introduces into how value is defined.
Concept Definition:
A Historical Perspective
(Based on A-10 Systems Engineering Case Study)

23 Oct 08

David Jacques
Air Force Institute of Technology
(david.jacques@afit.edu)
Overview

- Mission Area Analysis Today - JCIDS
- Mission Area Analysis circa 1960’s
 - The A-X Example
- A-X Concept Formulation
- Comparison and Contrast
- Air Force Center for Systems Engineering Case Studies
Decisions and Decision Making*

Decision – A Definition:
1. A choice from among a set of alternatives
2. An irrevocable allocation of resources

Steps in the Decision Making Process:
1. Formulation of preferences that, for the situation at hand, define good and bad and differentiate levels of goodness
2. Generation of a set of alternatives for consideration of choice
3. Evaluation of alternatives against the decision maker’s preference
4. Selection of the preferred alternative in accordance with the decision maker’s preference

* Drawn from several papers by G. Hazelrigg, appearing in the ASME Journal of Mechanical Design
Decision Making in Conceptual Design

- What are the operational capabilities that are needed?
- Should a conceptual design effort be undertaken?
- What mix of systems (legacy and new) are likely to achieve the desired operational capabilities?
- For materiel approaches (new systems), which system concept (usually a mixture of technologies) should be the basis of the design?
- Which technology for a given subsystem should be chosen?
- What existing hardware and software can be used?
- Is the envisioned concept technically feasible, based on cost, schedule and performance requirements?
- Should additional research be conducted before a decision is made?
JCIDS* Analysis

Functional Area Analysis

Functional Needs Analysis

DOD Strategic Guidance

Family of Joint Future Concepts
CONOPS
Joint Tasks

Integrated Architectures

JCD

Ideas for non-Materiel Approaches (DOTMLPF Analysis)

Ideas for Materiel Approaches

Analysis of Materiel/non-Materiel Approaches

Approach N

Approach 2

Approach 1

Post Independent Analysis

Functional Solution Analysis
(supportability, TRL, schedule, affordability)

* Joint Capability Integration and Development System
What is an Architecture?

“The structure of components, their relationships, and the principles and guidelines governing their design and evolution over time.” (IEEE STD 610.12 as stated in the DoD Architecture Framework (DoDAF))

ΑΡΧΙΤΕΚΤΩΝ (Greek) = Master Builder
Is JCIDS sound policy?

Recall our decision making process….

1. Formulation of preferences that, for the situation at hand, define good and bad and differentiate levels of goodness

 FAA – Establish Tasks, Conditions, Attributes and Measures

2. Generation of a set of alternatives for consideration of choice

 FNA considers current alternatives
 Early FSA identifies future alternatives

3. Evaluation of alternatives against the decision maker’s preference

 FSA – Evaluates alternative approaches against FAA criteria

4. Selection of the preferred alternative in accordance with the decision maker’s preference

 Concept Decision based on FSA priorities and recommendations

This actually makes sense when you consider what is supposed to be done!
Is JCIDS Really New?

- The initial instruction (and manual) came out in 2003, but is it really new?

- Let’s take a trip back in time – approximately 40 years – to the Close Air Support challenges of the 1960’s
Lessons from Vietnam

- Air Force largely unprepared for Close Air Support (CAS) mission
 - A-1, A-37 had insufficient payload, loiter
 - Incompatible comm with ground units

- Army doctrine evolving towards air mobile tactics
 - Increased reliance on armed helicopters
 - Initiated development of AH-56 Cheyenne

- Johnson-McConnell Agreement
 - AF retained CAS mission, but recognized role of Army helicopters for fire support
 - Army gave up large fixed-wing transports
Task Definition

Three Mission Tasks

• Close Support Fire (CSF)
• Armed Escort (AE)
• Armed Reconnaissance (AR)

• CSF and AE were considered complementary
• AR involved different weapons and acquisition systems, considered a secondary A-X mission due to parallel development of AC-130 gunship
The System of Systems Perspective

Coordination for Pre-Planned CAS Requests

The Tactical Air Control System (circa 1968)

But aren’t these simply elements of a mission architecture?
Attributes and Measures

Only four key mission characteristics specified!

- **Responsiveness** considered not just speed, but basing locations, availability, loiter time over target, and ability to communicate with ground elements
- **Simplicity** emphasized ease of production, maintenance, and low cost
- **Lethality** made it clear that it was not an aircraft development effort, it was a weapon system development
- **Survivability** concerns would drive redundancy, component placement, protection systems, maneuverability, targeting systems, et.al.
- Mission characteristics drove performance parameters, which resulted in concept aircraft configurations
 - Alternatives evaluated against mission and cost effectiveness measures
Attributes and Measures (ctd.)

Impact of Loiter Time and Sortie Rate on Force Requirements

Relative Aircraft Attrition Versus Velocity and Maneuver

Maintenance Man Hours/Flight Hour for Vietnam era Aircraft
Capability of Existing Systems

- F-4, F-111 were the Air Force’s primary tactical aircraft of the time
 - Both were expensive, and ill suited to CAS mission
- F-5
 - Initially the Air Force choice for a low-cost tactical fighter
 - Better air-to-air capability than A-7
- A-7D
 - Derivative of existing Navy aircraft
 - Favored by many in OSD, Congress
 - Could not carry a big gun, significantly lower loiter time
 - Would eventually be involved in a flyoff with A-10 prior to production decision
- Army Helicopters?
 - Roles and missions agreements prevented serious consideration
Aircraft Comparison

<table>
<thead>
<tr>
<th></th>
<th>A-1J</th>
<th>OV-10 (Impr.)</th>
<th>A-37B</th>
<th>A-X</th>
<th>A-7D</th>
<th>F-4C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating weight empty</td>
<td>13,328</td>
<td>9,440</td>
<td>6,200</td>
<td>20,140</td>
<td>19,250</td>
<td>31,097 w/gun pod*</td>
</tr>
<tr>
<td>(lb) (includes crew, gun, ammunition)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal fuel capacity</td>
<td>2,280</td>
<td>3,680</td>
<td>2,974</td>
<td>7,000</td>
<td>9,750</td>
<td>12,818</td>
</tr>
<tr>
<td>(lb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External load capacity</td>
<td>9,392</td>
<td>4,394</td>
<td>4,826</td>
<td>16,860</td>
<td>14,000</td>
<td>14,085</td>
</tr>
<tr>
<td>— with FIF (lb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum TOGW (lb)</td>
<td>25,000</td>
<td>17,514</td>
<td>14,000</td>
<td>44,000</td>
<td>43,000</td>
<td>58,000</td>
</tr>
<tr>
<td>Engines (number/type)</td>
<td>one</td>
<td>two</td>
<td>two</td>
<td>two</td>
<td>one</td>
<td>two</td>
</tr>
<tr>
<td></td>
<td>R-3350</td>
<td>T-76</td>
<td>J-85</td>
<td>T-55</td>
<td>TF-41</td>
<td>J-79</td>
</tr>
<tr>
<td>Useful load capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(fuel and ordnance—lbs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for takeoff—distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Ground Run, S.L.,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropic Day) of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750 ft</td>
<td>4,000**</td>
<td>1,300**</td>
<td>3,200**</td>
<td>9,000</td>
<td>-0-</td>
<td>-0-</td>
</tr>
<tr>
<td>1,000 ft</td>
<td>6,200**</td>
<td>3,800</td>
<td>4,000**</td>
<td>12,500</td>
<td>-0-</td>
<td>-0-</td>
</tr>
<tr>
<td>Maximum speed, clean, S.L. (KTAS)</td>
<td>277</td>
<td>262</td>
<td>417</td>
<td>400</td>
<td>607</td>
<td>M 1.2</td>
</tr>
<tr>
<td>Best cruise speed, 5,000 ft, maximum ordnance (KTAS)</td>
<td>170</td>
<td>170</td>
<td>265</td>
<td>240</td>
<td>315</td>
<td>420</td>
</tr>
<tr>
<td>Ferry range, unfueled (NM)</td>
<td>2,800</td>
<td>2,600</td>
<td>1,560</td>
<td>2,600</td>
<td>2,600</td>
<td>1,600</td>
</tr>
<tr>
<td>Number of ordnance stations</td>
<td>15</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Internal guns (number/caliber)</td>
<td>four</td>
<td>four</td>
<td>one</td>
<td>one</td>
<td>one</td>
<td>*(one</td>
</tr>
<tr>
<td></td>
<td>20-mm</td>
<td>7.62-mm</td>
<td>7.62-mm</td>
<td>30-mm</td>
<td>20-mm</td>
<td>SUU-16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20-mm pod)</td>
</tr>
</tbody>
</table>

Cannot land in this distance at any weight.
A-X Concepts

- Concept design studies conducted in 1967
 - Resulted in two government configurations, and four contractor configurations
- Concept determined to be feasible within existing technology
 - Most configurations used turbo-prop designs
 - Identified risk elements included gun/ammunition development and integration, and early IOC
 - Lean avionics packages defined to keep costs down
- Concept Formulation Package (predecessor to Initial Capability Document) completed in 1968

Performance Parameter

<table>
<thead>
<tr>
<th>Performance Parameter</th>
<th>Desired</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Weight (lbs)</td>
<td>22,500</td>
<td>30,000</td>
</tr>
<tr>
<td>Payload - Mixed Ordnance (lbs)</td>
<td>8,000</td>
<td>6,000</td>
</tr>
<tr>
<td>Combat Radius (nautical miles)</td>
<td>---</td>
<td>200</td>
</tr>
<tr>
<td>Loiter Time @ Combat Radius (hrs)</td>
<td>---</td>
<td>2</td>
</tr>
<tr>
<td>Min Maneuvering Speed @ 5000 ft (knots)</td>
<td>120</td>
<td>150</td>
</tr>
<tr>
<td>Turn Radius @ Combat Weight (ft)</td>
<td>1,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Max Speed @ Sea Level w/ Ext. Ordnance (knots)</td>
<td>550</td>
<td>450</td>
</tr>
</tbody>
</table>
Notes: Significant design changes occurred during Concept Definition (now referred to as Concept Refinement)

- Single or twin turboprop propulsion gave way to twin turbofan (leveraged Navy S-37 aircraft development)
- Payload essentially doubled to 16,000 lbs – led to aircraft size/cost growth
Did the A-X concept formulation adhere to (in retrospect) JCIDS principles?
Yes …, kind of …
 • Clear definition of tasks, conditions and measures (FAA)
 • Consideration of a range of existing Air Force systems to provide the needed capability (FNA)
 • Concept formulation traceable to previously defined tasks, conditions and measures (FSA)

Shortcomings
• No serious consideration of the full range of joint warfighting concepts to meet the capability needs
Summary

- The A-X concept formulation was rigorous and traceable to user needs
- While full consideration of joint concepts may not have been done, the emphasis was not on joint capabilities
- Aircraft has performed well, and is still in service today
Ongoing & Future Case Studies

International Space Station
- Underway

Global Hawk
- Underway

MH-53J/M Helicopter
- FY09 Option

KC-135 Simulators
- FY09 Start

E-10
- FY10 Option

T-6A Texan II
- FY10 Start
Questions?
Overview

- Systems Engineering in Sustainment Phase
- A-10 Development and Operational Service
- Aircraft Structural Integrity Program
- Structural Problems on the A-10
- HOG-UP/Service Life Extension
- Re-winging Decision and the A-10C
- Summary
SE Sustainment Activities

A Partial List:

• Execution of strategies for operations, sustainment and, when necessary, disposal
 • Maintain baselines, data, and supply chain

• Maintain Operational Suitability, Safety and Effectiveness
 • Monitoring and comparing performance and condition to design and prediction models

• Re-engineering of legacy system performance requirements and designs

• Decision analysis support for upgrades/mods and life extension decisions
 • May include modifications to maintenance concepts
Aircraft Structural Integrity Program (ASIP)

- ASIP Initiated in 1958
 - Monitor and evaluate structural health of AF aircraft
 - AFI-63-1001 requires plan, MIL-HDBK 1530 provides guidelines and details
- During 1970’s and 80’s
 - Damage Tolerance Assessments (DTA)
 - Inspection and modification programs
 - Fatigue tests on wing, fuselage, and full aircraft
 - Used to develop individual aircraft tracking program, and tech orders for inspection, maintenance and repair actions
A-10: Early Struggles

• Within the Air Force
 • Close Air Support (CAS) was considered less important than strategic bombing, air superiority, and interdiction
 • Tactical force mix required less expensive aircraft, but AF still favored fast multi-role fighters
 • F-5, A-7D were early choices for the CAS role
 • Reluctantly agreed to pursue specialized CAS aircraft
Within the Army

- Unsatisfied with level of CAS provided by Air Force
- Doctrine evolving towards air mobile tactics
- Increased reliance on armed helicopters
- Initiated development of AH-56 Cheyenne
- Competed with AF for CAS development

- AF retained CAS mission, but recognized role of Army helicopters for fire support
- Army gave up large fixed-wing transports
A-10: The aircraft that almost wasn’t!

- Key sustainment features:
 - Survivability – redundancy, shielded systems, engine placement
 - Maintainability – interchangeable left/right side parts, simple skin panels, engine placement
 - Cost Considerations – lean avionics (no night/adverse weather systems), ammunition cost reduction efforts
A-10 Deployment, and Debate

• Final production aircraft delivered in 1984
 • No service support for continued production (F-16 factor)

• Army Air-Land Battle doctrine
 • Greater reliance on Battlefield Air Interdiction (BAI)
 • Survivability concerns associated with greater SAM threat
 • By 1985, studies emerged suggesting an A-16 as a replacement for the A-10

• Defense Authorization Act for FY88-89
 • Directed completion of CAS/BAI Master Plan
 • Directed yet another CAS fly-off (A-10, F-16, A-7, AV-8, F/A-18)
Desert Storm

- Performance vindication
 - High effectiveness, and demonstrated survivability
 - High sortie rate, low maintenance man hours/flight hour
 - CAS F-16’s performed poorly, reverted back to standard

- Post war decisions
 - Serious proposal floated by CSAF to give CAS and A-10 to Army in exchange for ATACMS, space mission, et.al.
 - AF decided to keep A-10, but in reduced numbers
A-10 Structural Configurations

<table>
<thead>
<tr>
<th>Retrofit WOP Configuration</th>
<th>Intended for Aircraft 7-441 (not completed on all aircraft)</th>
<th>Thin wing center panel, cold worked at WS 0, Retrofit thick wing outer panel. Qualified to 6,000 hours Spectrum 3.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production WOP</td>
<td>Aircraft 442-581</td>
<td>Thin wing center panel, cold worked at WS 0, Production thick wing outer panel. Qualified to 6,000 hours Spectrum 3.</td>
</tr>
<tr>
<td>Thick Skin Configuration</td>
<td>Aircraft 582 and subsequent</td>
<td>Production increased wing center panel and outer panel thickness. Configuration qualified to 8,000 hour service life.</td>
</tr>
</tbody>
</table>

Notes:
- Original design life was 6,000 flight hours
- Design load spectrum changed in 1977 based on measured fleet usage
- Fatigue test failed at less than 60% of new spectrum service life
- Resulting production and retrofit changes indicated above
ASIP Implementation

• Fairchild sold A-10 rights to Grumman in 1987
 • Fairchild ceases to exist shortly after
• Grumman delivers updated DTA and associated Force Structural Maintenance Plan (FSMP)
 • Never fully incorporated into tech orders, not accomplished
 • Difficulty with field inspections, budget constraints cited
• Analytical Condition Inspection (ACI)
 • Addressed some inspection locations, but on few aircraft
 • Cracks found in several locations in 1995, 96
 • Cracks classified as minor
And then, the wheels started to come off!

- **1994** – Northrop merges with Grumman
 - Although NG still the prime, most mods competed or done organically by government
 - “Fallout funds used to task NG to incorporate design changes into configuration baseline drawings…”

- **1995** Base Realignment and Closure (BRAC)
 - Closes McClellan AFB
 - Maintenance and repair operations moved to Hill AFB
 - Results in loss of 80% of experienced workforce by 2000

- **1997** – SPO competes prime sustainment contract
 - Lockheed Martin Systems Integration wins
 - NG expected to be part of team due to proposed LM-NG merger

- **1998** – LM-NG merger called off
 - NG reduced to supporting role
HOG UP

• 1998: Northrop Grumman delivers “A-10A Aircraft Wing Center Panel Rework-Fatigue Life Improvement” report
 • Detailed changes required to support 16,000 hour service life
 • Based on assumption that 1993 FSMP implemented

• 1999: SPO initiates HOG UP
 • Repair program vice modification
 • Allowed use of maintenance funding
 • Did not require acquisition approval
 • Configuration Control Board action not required

• HOG UP expands to catch other necessary changes
 • No composite assessment of structural risk
 • Cost growth from $140M to $600M, not including unprogrammed cost for WS-23 inspection and repair
 • No full-scale fatigue test to validate HOG UP
HOG UP Evolution

Hog Up 1999 and 2003

- Forward/Aft Fuel Tank Cavity Corrosion control/inspections
- Wing Outer Panel (WOP) Mid-Spar Web Rework
- Wing Center Panel (WCP) Rework N/A for USAFE
- Center Fuselage Fuel Cell Floor & Boost Pump Flange Repair
- Fuselage Station 365 Bulkhead Repair
- Leading Edges
- Paint
- Flight Control Rework
- ACI Inspections
- Additional ACI Inspections
- 1999 – Original Hog Up
- 2003 – Current Hog Up
Sometimes, things have to get worse before they can get better!

- HOG UP delays due to WS-23 inspection and repair
 - Number of unusable wings higher than expected
 - Predictions that serviceable wings would run out by 2011
 - Back-up of aircraft in depot due to longer than expected repair times
 - Well short of 16,000 hour life expectancy
- 2005: AF completes business case analysis
 - Option 1: Organic sustainment of thin skinned wings, increase SLEP for all wings ($4.6B)
 - Option 2: Buy 135 wings, increase SLEP for remaining wings ($3.16B)
 - Option 3: Buy 242 wings and avoid cost of SLEP ($1.72B)
- 2006: AF competes contract for new wings! (Option 3)
 - Boeing wins contract to build wings, to be installed on a Fairchild Republic aircraft, being maintained by Lockheed Martin!
Learning Principle 5*

Successful design, development and production is not enough to sustain a system throughout its life cycle.

• A-10 sustainment efforts were severely impacted by a number of factors
 • On-again, off-again retirement decisions
 • Vanishing prime contractor
 • BRAC, and general turnover of government personnel
• Loss of condition baseline led to initially poor decisions regarding life extension efforts
• A-10 sustainment has recovered, but after significant cost associated with the original HOG-UP program

* 6 Learning Principles are contained in the A-10 Case Study
A Second Life for a Modern Day Hog

- Low Altitude Safety and Targeting Enhancements (1990’s)
- Embedded GPS/INS system added (1999)
- Precision Engagement (2005)
 - Results in A-10C Designation
- Replacement of TF-34 Engines (Proposed)
Air Force Center for Systems Engineering
Case Studies

Hubble Space Telescope
GPS (Global Positioning System)
F-111 Aardvark

C-5 Galaxy
B-2
TBMCS (Theater Battle Management Core Systems)

A-10
Peacekeeper Intercontinental Ballistic Missile

Website:
http://www.afit.edu/cse/
Ongoing & Future Case Studies

International Space Station
Underway

Global Hawk
Underway

MH-53J/M Helicopter
FY09 Option

KC-135 Simulators
FY09 Start

E-10
FY10 Option

T-6A Texan II
FY10 Start
Questions?
Improving Work Breakdown Structure (WBS) Guidance for Weapons Systems with Substantial Software

11th Annual NDIA Systems Engineering Conference

Christopher Miller

supporting the
Office of the Deputy Director,
Software Engineering and System Assurance

SYSTEMS & SOFTWARE ENGINEERING
Office of the Deputy Under Secretary of Defense
for Acquisition and Technology
US Department of Defense

October 2008
OUSD AT&L Organization

USD, Acquisition Technology & Logistics

DUSD, Acquisition & Technology

Dir, Joint Advanced Concepts

Dir, Systems and Software Engineering

Dir, Portfolio Systems Acquisition

Defense Acquisition University

Defense Procurement and Acquisition Policy

Industrial Programs

Small Business Programs

Defense Contract Management Agency
Software Engineering and Systems Assurance (SSA) initiatives

- Software Resources and Data Report: Feasibility Study
- **Revision of MIL-HDBK-881A to improve software guidance**
- Program feasibility analysis using estimation models
- Integration of software metrics with EVM to assess consistency of estimates
• Military Handbook 881A is the Department of Defense handbook on Work Breakdown Structures (WBS) for Defense Materiel Items
 - A WBS provides a consistent and visible framework for defining work and structuring contracts within a program
 - Approved guidance for DoD Departments & Agencies
 - Current version was released on 30 July 2005
 - MIL-HDBK-881A is controlled by the Office of the Undersecretary of Defense (Acquisition, Technology, and Logistics) (OUSD (AT&L)) Acquisition Resources and Analysis (ARA)
Software in MIL-HDBK-881A

- SSA initiated a Software Cost Control Working Group project to provide software recommendations
 - Including representation from the Services, DCMA, ARA, DAU, NDU, PA&E/DCARC and using NDIA software experts panel
- MIL-HDBK-881A revision objectives:
 - Make handbook acceptable of software engineering practice
 - Correct errors and inconsistencies
- Walkthrough of MIL-HDBK-881A revealed inconsistencies with respect to defense material items and software intensive systems development
 - Handling of System Development & Demonstration (SDD) phase software engineering activities is insufficient
 - Decision made to provide revisions versus complete rewrite
Comment Summary

- Notable changes:
 - Replace 'material item' with 'acquisition program'
 - Add words to make 'artifacts' equal to 'products'
 - Include words that make 'product-oriented' and 'DoDAF architecture' views acceptable WBS hierarchy structures

- Results
 - Compiled into Comment matrix
 - Drafted a new Appendix B for software

Comments by Severity

- Critical comments directly support revision objectives
- Substantive comments highlight incorrect, misleading, potentially unnecessary, or inconsistent text
- Administrative comments captures typos, paragraph structure, etc.
Comment Matrix Entry #16: Paragraph 1.7 WBS Evolution:

“For material item acquisitions, since the system is mainly a concept at this point, it is not until the System Development and Demonstration (SDD) phase that the system is broken into its component parts and a detailed WBS can be developed. In the SDD phase, configuration items that describe the Program WBS are first identified and contracts can be awarded to develop these items. By the end of SDD, the WBS is fully defined to its lowest levels that best represent the system.

For software intensive systems and acquisition programs that involve procuring in single or very low volume, there needs to be a greater refinement of the engineering activities in the Technology Development phase within the Program WBS. For these types of acquisition programs, it is essential that both government and contractor can agree on a fully defined WBS at Milestone B, prior to entering SDD.”
Comment Matrix Entry #25: Delete Paragraph 2.3.1
Specifications and Drawings:

“The family of specifications and drawings, resulting from the progressive steps of the systems engineering process, provides the basis for the Program WBS, the Contract WBS, and its extensions.”

Rationale: For software intensive systems, specifications and drawing are products normally produced after PDR which is too late to drive the development of the initial Program WBS.
Overview of New Appendix B

- Leveraged text from draft MIL-HDBK-171
- Contains three WBS examples to encourage thoughtful tailoring based on project characteristics
- Emphasized use of standards and consistent use of terminology when defining WBS elements
- Maintained Appendix ‘look and feel’ as the other Appendices
- Included ‘notes’ to provide guidance on handling COTS and software development methodologies
MIL-HDBK-881A Project Summary

• Working group met our goal to provide a software community-coordinated set of recommendations to OUSD AT&L ARA as they began official review and update process
 – Maintained ‘software’ focus
• Reached out to industry members of NDIA to review the suggested changes
 – Validated recommended changes are improvements from industry perspective
 – Obtained additional examples to include in Appendix B
• Next steps will be determined based on results of ARA update (i.e., contents of MIL-HDBK-881B)
Questions/ Discussion

Contact Information:
Christopher Miller
Software Engineering & Systems Assurance (SSA) Support
ODUSD(A&T) Systems & Software Engineering
Christopher.miller.ctr@osd.mil
The System Architecture Tradeoff Analysis Method® (SySATAM®)

Mike Gagliardi and Bill Wood

® Architecture Tradeoff Analysis Method and ATAM are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
The System ATAM is a method that helps stakeholders ask the right questions to discover potentially problematic architectural decisions (risks).

Discovered risks can then be made the focus of mitigation activities—for examples:

- changing architecture
- further analysis
- extending prototyping.

Tradeoffs can be explicitly identified and documented

- Tradeoffs made already
- Upcoming tradeoffs
Purpose of the System ATAM – 2

The purpose is NOT to provide precise analyses. . . the purpose IS to discover risks created by architectural decisions.

We want to find trends: correlations between architectural decisions and predictions of system properties.
Presentation Outline

What is an ATAM?

Similarities and **Differences** between ATAM and System ATAM

Highlights of Differences

Experiences and results
Phase 2 – Stakeholders

The following is a partial list of potential stakeholders:

<table>
<thead>
<tr>
<th>Software Architect</th>
<th>Developer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintainer</td>
<td>Integrator</td>
</tr>
<tr>
<td>Tester</td>
<td>Standards Expert</td>
</tr>
<tr>
<td>Performance Expert</td>
<td>Reliability/Availability Expert</td>
</tr>
<tr>
<td>Security Expert</td>
<td>Safety Expert</td>
</tr>
<tr>
<td>Project Manager</td>
<td>Product Line Manager</td>
</tr>
<tr>
<td>Customer (Buyers, Acquirers)</td>
<td>End User</td>
</tr>
<tr>
<td>Application Builder</td>
<td>Mission Specialist/Planner</td>
</tr>
<tr>
<td>System Administrator</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>Service Representative</td>
<td>Domain Representative</td>
</tr>
<tr>
<td>System Architect</td>
<td>Device H/W Expert</td>
</tr>
</tbody>
</table>
What is an ATAM -1

Process

- **Actors**
 - sponsor (Program management) and architects (6)
 - Lead Evaluator – has lead evaluator training
 - Evaluation team (4)- all have taken ATAM training courses
 - Stakeholders (20)

Schedule

- **Phase 0:** Partnership and Preparation
 - Telecon

- **Phase 1:** Architecture Centric Evaluation
 - 1.5 - 2 days each for conducted at customer site

- **Phase 2:** Stakeholder Centric Evaluation

- **Phase 3:** Report
 - Few Weeks phone, email
What is an ATAM -2

Technical Basis

- **Business and Mission Drivers**
 - New threats, capabilities, technology, automation, legacy
 - Scalability, schedules, budgets, joint, coalition, FMS
- **There is a documented software architecture (SAD, UML Diagrams)**
 - Multiple viewpoints, views, framework
- **Quality attributes are the architecture drivers**
 - Performance: avoid too slow, too late, bottlenecks
 - Availability: avoid fragility due to failures
 - Security: avoid spoofing, unauthorized access
 - Usability: avoid operator overload
 - Sustainability: avoid hard to update functions and new COTS
 - Interoperability, scalability, extensibility etc
What is an ATAM -3

Technical Basis (Continued)

• Scenarios represent the quality attributes
 — Stimulus, environment, response
 — “A tank commander’s COP shows an identified threat, he has authorization to engage the threat, when it comes within his range he conducts a successful engagement and reports it via the COP”.
 — Elicited in a meeting with stakeholders (or from previous QAW)

• Architectural approaches can be identified and analyzed
 Passive and active redundancy, publish/subscribe, client/server, reliable protocol

• Architectural Decisions
 — Provide a tool to assist with mapping spectrum allocation to force structure
 — Break down a system into components for transportation
 — Use a proxy-based pub/sub
What is an ATAM - 4

Technical Basis (Continued)

• Walking scenarios through the software architecture, and having the ATAM team and stakeholders probe the quality attributes exposes architectural risks and maps each risk to business drivers
• These risks can be “rolled up” into risk themes mapped to business drivers

Results- content

• A number of scenarios (10 to 15) are analyzed and documented
• Table of risks, trade-offs, programmatic issues, atta-boys
• Rollup of the risks into risk themes

Results- documents

• Summary Outbriefing after Stakeholder Phase (1 hour)
• Report (50, 60 pages) of findings with an Executive Summary (2 pages)
Commonalities and Differences -1

The System ATAM (including software) basically conforms to the ATAM process, technology, and results as follows:

| Process | Actors | System and Software Architects
Fast Tracking of subject matter experts (SME)
SM designers |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phases</td>
<td>More careful scoping (what’s in, what’s out)</td>
</tr>
<tr>
<td>Technical</td>
<td>Architecture</td>
<td>Need system (block diagrams) and software architecture views and white papers</td>
</tr>
<tr>
<td></td>
<td>Quality Attributes</td>
<td>A few additional QA (transportability, shake and bake, force modularity, spectrum management)</td>
</tr>
<tr>
<td></td>
<td>Scenarios</td>
<td>Stress system aspects as well as software</td>
</tr>
</tbody>
</table>
| | Analysis | Combination of system and software architects
System Architectural Approaches |
| Results | | No differences in either the outbriefing or the report |
Highlights of Experiences -1

ATAM

• Four 2 day courses providing the basic software architecture knowledge, including an ATAM team lead evaluator course
• Have conducted numerous ATAMS
• Have an ATAM Reference Guide for the team
• Have extensive set of templates to assist the team in all activities
• External organizations (commercial, DoD contractors) have qualified leads

SySATAM

• Have a process in-place for conducting SySATAMs
• Still in piloting Phase- have conducted 2 SySATAMs
• Have extensive set of templates to assist the team in all activities
Highlights of Experiences -2

SME Experiences

- On one system an Evaluation Team member was also an SME
- On the other the SME was a seasoned Mechanical Engineer and a domain expert
 - Took the SME training
 - Evaluation team had to initially prompt the SME for risks.

New Quality Attributes and associated risks

- Force Modularity, Mobility, Spectrum Management
- Logistics, installation, mechanical checks

New Considerations

- DoDAF operational views
- Experimental simulation and analysis results
- White papers
- Manual versus automated activities are more prevalent
Highlights of Experiences -3

Architectural Representations

- System architecture documentation consists mainly of block diagrams and sequence diagrams and some DoDAF lower level views

Stakeholders

- System engineers tend to trump the software engineers
- Good exercise for system and software arch and eng to get on the same page

Surprises

- Preparation phase was easier than expected, scoping was straightforward
Typical Risk Themes

- There are a number of significant system engineering issues that require further analysis as a basis for architectural decision.
- CONOPS for Using Programs has not been updated/supplemented to take this system into effect.
- Architectural support for flexibility is powerful. However, without careful management of flexibility it could become overly complex and impose an unnecessary cognitive burden on users.
- Approach to automate and reduce test time not thought out.
- Fault Tolerance approach needs to be developed.
Conceptual Flow of ATAM

- Business Drivers
- Quality Attributes
- Architectural Approaches
- Scenarios
- Architectural Decisions
- Risk Themes
- Tradeoffs
- Sensitivity Points
- Non-Risks
- Risks
Conclusion

System ATAM is a natural extension to the ATAM

- Basic approach works just fine

SME is needed with functional/domain expertise

- Fast track training was effective

Risk Themes identified areas to help the programs choose what to explore to firm up the architecture

- Both software and system risks were revealed

Have been too busy “doing” to develop lessons learned

- But need to do more pilots first
For Additional Information

Jay Douglass
Business Development
Product Line Systems Program
Telephone: 412-268-6834
Email: jcd@sei.cmu.edu

Linda Northrop
Director
Product Line Systems Program
Telephone: 412-268-7638
Email: lmn@sei.cmu.edu

Technical Details:
Mike Gagliardi
Product Line Systems Program
Telephone: 412-268-7738
Email: mjg@sei.cmu.edu

U.S. Mail:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213

World Wide Web:
http://www.sei.cmu.edu/architecture
SEI Fax: 412-268-5758
DoD Software Engineering and System Assurance

Kristen Baldwin
Deputy Director, Software Engineering and System Assurance
Office of the Under Secretary of Defense Acquisition, Technology and Logistics
Elements of AT&L Strategy for Software

• Support Acquisition Success
 – Ensure effective and efficient software solutions across the acquisition spectrum of systems, SoS and capability portfolios

• Improve the State-of-the-Practice of Software Engineering
 – Advocate and lead software initiatives to improve the state-of-the-practices through transition of tools, techniques, etc.

• Leadership, Outreach and Advocacy
 – Implement at Department and National levels, a strategic plan for meeting Defense software requirements

• Foster Software Resources to meet DoD needs
 – Enable the US and global capability to meet Department software needs, in an assured and responsive manner

Promote World-Class Leadership for Defense Software Engineering
Top Software Issues*

1. The impact of requirements upon software is not consistently quantified and managed in development or sustainment. \textit{“Requirements”}

2. Fundamental system engineering decisions are made without full participation of software engineering. \textit{“SE/SW Integration”}

3. Software life-cycle planning and management by acquirers and suppliers is ineffective. \textit{“SW Sustainment”}

4. The quantity and quality of software engineering expertise is insufficient to meet the demands of government and the defense industry. \textit{“Human Capital”}

5. Traditional software verification techniques are costly and ineffective for dealing with the scale and complexity of modern systems. \textit{“SW Testing”}

6. There is a failure to assure correct, predictable, safe, secure execution of complex software in distributed environments. \textit{“SW Assurance”}

7. Inadequate attention is given to total lifecycle issues for COTS/NDI impacts on lifecycle cost and risk. \textit{“SW COTS/NDI/Reuse”}

*NDIA Top Software Issues Workshop August 2006
OSD Software Systemic Analysis

- OSD(AT&L)/SSE Systemic Analysis Database
- Current Dataset: 68 reviews on 38 different ACAT 1D systems acquisition programs since early 2004
 - Approx 4,000 findings from these reviews placed into formal database repository
- Data extracted using the following key words:
 - Software
 - Systems-of-Systems (SoS)
 - Assurance
 - Architecture
 - Security
- 600+ findings resulted from the keyword search
Data Validation

• Data validation was conducted to:
 – Remove any extraneous records from the resulting report unrelated to SW
 – Ensure that positive, neutral, and negative findings were identified properly

• Resulted in 284 Directly Software Related Findings

We examined these software findings without a predefined taxonomy in order to allow issue areas and recurring trends to emerge.
What leads to Software Problems in DoD Programs?

Human Capital
Insufficient availability of qualified software engineering personnel with necessary skills and expertise

Knowledge Sharing
There is inadequate sharing of knowledge related to software engineering issues, risks, and lessons learned within and across programs and services

Management Oversight
There is a failure to establish program-wide governance for all software engineering activities

Management Oversight
Program software engineering status is inadequately tracked against plans throughout programs’ lifecycles

Management Oversight
There is an underestimation of the complexity of software integration efforts

Misapplied software engineering processes are adversely impacting management oversight

Process Planning

Software architecture quality attributes and priorities in Software requirements documents

Architecture
There are inadequate software architecture designs

Last Updated: August 2008
Detailed Results of Overarching Trends

Level 1-1

Management Oversight
- There is a failure to establish program-wide governance for all software engineering activities

Human Capital
- Insufficient availability of qualified software engineering personnel with necessary skills and expertise

Knowledge Sharing
- There is inadequate sharing of knowledge related to software engineering issues, risks, and lessons learned within and across programs and services

Level 1-2

Management Oversight
- There is an underestimation of the complexity of software integration efforts

Management Oversight
- There is a failure to establish program-wide governance for all software engineering activities

Schedule Estimation
- Poor communication of schedule status

Sustainment / Maintenance
- Inadequate planning of software sustainment/maintenance activities

Software Testing
- Inconsistent Test Process Management – planning

Resource Allocation
- Underestimation of available budget and resources

SW COTS/Reuse
- Poor software estimation analysis for COTS/reuse within the program

Systems and Software Integration
- Lack of engineering plans for integration such as CONOPS and architecture

Software Metrics
- Lack of clear insight into status of software activities throughout program lifecycle

Software Assurance
- Inability to maintain accountability during program lifecycle

Tier 2 Trends (Impacting resulting from Level 2 Trends)

Tier 1 Trends – Level 2 (Derivative of Tier I Trends)

Level 2

Management Oversight
- Program software engineering status is inadequately tracked against plans throughout programs’ lifecycles

Schedule Estimation
- Poor communication of schedule status

Sustainment / Maintenance
- Inadequate planning of software sustainment/maintenance activities

Software Testing
- Inconsistent Test Process Management – planning

Resource Allocation
- Underestimation of available budget and resources

SW COTS/Reuse
- Poor software estimation analysis for COTS/reuse within the program

Systems and Software Integration
- Lack of engineering plans for integration such as CONOPS and architecture

Software Metrics
- Lack of clear insight into status of software activities throughout program lifecycle

Software Assurance
- Inability to maintain accountability during program lifecycle

Tier 1 Trends – Level 1

Software Configuration Management
- Lack of emphasis on configuration management process

Schedule Estimation
- Lack of detail in planning leading to schedule delays

EVM
- Over reliance on EVM to provide visibility into schedule risks

Architecture
- There is a lack of emphasis on software architecture quality attributes and priorities in software requirements documents

Requirements Engineering
- Requirements gathering is incomplete (i.e., lack of funding, over reliance on contractor, staff experience, and immature technology)

Requirements Management
- Inadequate Requirements Management process causing undeveloped definition of requirements and lack of traceability
NDIA/DUSD(A&T) SSE
Issues Validation

National Defense Industrial Association (NDIA)
Top 7 Software Issues
August 2006

DUSD(A&T) SSE Directorate
Program Review Software Systemic Analysis Findings

Software Human Capital
- Resources
- Quality Level

Software Requirements
- Engineering
- Management
- Acquisition Strategy

Systems/Software Integration
- Systems of Systems
- Interoperability
- Tech Refresh

Software Assurance

Software Development
- Software Testing*
- Software Sustainment/Maintenance*
- Software COTS/NDI*
 - Technology Readiness
 - Software Architecture

Software Metrics
- Software Metrics
- EVM

Software Engineering Management
- Project Planning
- Management Oversight
- Software Configuration Management

Knowledge Sharing
- Process
- Reporting
SW Roundtable Results

• Shared Army, Navy, Air Force software strategies
 – Found synergy in many areas

• Identified/prioritized 22 proposed initiatives to tackle software issues – Top 5 of these:
 – Synergize/Harmonize "core SW metrics" across DoD; develop approaches for incorporating them into gate reviews, processes, earned value
 – Organize start-up teams and infrastructure to facilitate software program success
 – Establish SE/SW architecture “review board” to engage early with programs and provide constructive suggestions
 – Define analysis process for reuse/reusable assets to improve estimation accuracy; including consideration of product features
 – Develop approaches for SW testing and evaluation to enable mission success
• Goal: Prosecute top software and assurance issues
• SSA FY08/09 Activities:
 – SW Lifecycle Touchpoints: SW guidance to complement Enhanced SE and SE Technical Reviews
 – SW Human Capital Strategy: Graduate-level and DoD acquisition workforce software curricula
 – SE/SW Integration: Design a framework to define and measure integration. Partnership with academia, industry
 – SW Measurement: Guidance on collection and use of SW Data
 – SW Test, SW Reliability: New in FY09
 – System Assurance: SA Guidebook; Program Protection Policy/Guidance, DIB Cyber Security Strategy
DoD SW Community Way Forward

• Review all initiatives to determine opportunity for collaboration/augmentation
 – DoD Software Working Group
 – NDIA Software Expert Panel
• Discuss plans for individual initiatives (top 5) on Collaborator teleconferences
• Organize collaborator events for FY09
 – Focused working groups/workshops as appropriate
• Continue to increase software visibility in NDIA SE Conference
 – Plan event for FY09
Increased Priority for System Assurance

Threats: Nation-state, terrorist, criminal, rogue developer who:
- Gain control of IT/NSS/Weapons through supply chain opportunities
- Exploit vulnerabilities remotely

Vulnerabilities: All IT/NSS/Weapons (incl. systems, networks, applications)
- Intentionally implanted logic (e.g., back doors, logic bombs, spyware)
- Unintentional vulnerabilities maliciously exploited (e.g., poor quality or fragile code)

Consequences: Stolen critical data & technology; corruption, denial of critical warfighting functionality

System Assurance is the confidence that the system functions as intended and is free of exploitable vulnerabilities, either intentionally or unintentionally designed or inserted during the lifecycle
Program Protection - The Road Ahead

• DoD System Assurance
 – Evolved from Software Assurance Efforts
 – Creates a “framework” to integrate multiple security disciplines and policies
 – Leverages 5200.39: expanding CPI definition to include system assurance and total life cycle

• DoDI 5200.39 CPI: Three Categories of CPI:
 – Information, Technology, Components

• Programs will
 – Define CPI at Milestone A
 – Develop a Program Protection Plan (PPP) for Milestone B
 – Be Subject to Review and Oversight
 – Execute mitigation strategies (such as use of Trusted Foundries or Anti-Tamper)
“Engineering for System Assurance” V1.0 Guidebook signed out at NDIA October 1, 2008

Posted on SSE Web site at:

Provides guidance on how to address System Assurance through Systems Engineering processes
 - Aligns to DoD acquisition lifecycle processes with actionable criteria
 - Adds emphasis to ISO/IEC 15288 SE processes

Enhanced IA focus and alignment with current processes
 - Focus on hardware, software and operational environment
 - Dovetails with Program Protection Planning (PPP) processes
 - Supports identification of trusted foundry resources
 - Informs Anti-tamper considerations
Expanding DoD Industry Partnership

• Acquisition Cyber Security is a long term interest for DoD
 – Fully anticipating Cyber Security is expected to be a ongoing priority for the new administration

• DoD will continue to take advantage of the global marketplace and COTS solutions
 – Engineering for System Assurance seeks to identify and fortify critical components allowing

• Industry is part of the solution
 – NDIA System Assurance Committee will continue to focus on the solution strategy
 – ITAA, GEIA, INCOSE, others all participate on this committee
Implications of Capability-based Planning on Requirements Engineering

Leonard Sadauskas
Presented at
NDIA SE Conference
Requirements Development & Management Session
22 October 2008
Disclaimer

The views and opinions expressed in this presentation are those of the author and do not reflect the policy of the Department of Defense
Scope of this Presentation

• Capability-based planning
• The problem and solution space interface
• The dual roles of measures of effectiveness (MOEs)
• Capability feedback process
• Issues, challenges and trends
Definitions

• Capability-based planning (CBP):
 – An overarching framework for planning under uncertainty that provides capabilities suitable for a wide range of modern-day challenges and circumstances while working within an economic framework that necessitates choice

• Capabilities-Based Assessment (CBA)
 – Study that identifies the capabilities (and operational performance criteria) required to successfully execute missions

• Capability:
 – The ability to execute a specified course of action
 • Move troops rapidly

Candidate Solutions:
 • Truck
 • Ship
 • Aircraft
Capabilities-based Planning Framework (work in progress since 2003)
Focus of this Presentation

Feedback Process

Problem Space
CBA

Solution Space
Acquisition

Fielded Capability
O&S
Draft CJCSI 3170.01G JCIDS Process and Acquisition Decisions

Problem Space

Solution Space

ICD

EMDD

ICD

CBA

DCR

ICD

AoA

Technology Development

MDD

MS A

PDR

EMDD

MS B

CPD

LRIP

MS C
Capabilities-Based Assessment (CBA)

Existing Guidance

FAA

What are we talking About?

FNA

How good Are we at Doing it?

FSA

What Should we Do about it?

From:
CBA User’s Guide
V2 December 2006
Draft 5000.02 The Defense Acquisition Management Framework.

- The Materiel Development Decision precedes entry into any phase of the acquisition framework
- Entrance criteria met before entering phase
- Evolutionary Acquisition or Single Step to Full Capability

= Decision Point △ = Milestone Review
Problem / Solution Space Interface

Business Analyst

Requirements / Systems Engineer
Information Transfer at the Interface

If your goal in software development is to "make the business case come true" (and by 'business case' I mean the initial justification for spending time, money, and effort on the development in the first place), then the most important thing to understand is: why are we building this? That is, what are the needs of the customers (or business)? **If you don't know, or clearly understand, the customer needs, then you cannot know if you are building the right system** - which then makes the technical correctness of the functional spec (what we intend to build) or the design spec (how we think it should work) a moot point.

Richard Zultner

30 Sep 2008 Requirements-Engineering Group
AoA and Effectiveness Analysis Process

Initial Capabilities Document (ICD)

Mission Tasks

Functional Needs

MOEs

Materiel Approaches

Analysis Guidance Planning & Methodology

Study Operational Effectiveness Analysis

<table>
<thead>
<tr>
<th>Task 1</th>
<th>Task 2</th>
<th>Task 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOE 1-1</td>
<td>MOE 1-2</td>
<td>MOE 1-3</td>
</tr>
<tr>
<td>MOE 2-1</td>
<td>MOE 2-2</td>
<td>MOE 2-3</td>
</tr>
<tr>
<td>MOE 3-1</td>
<td>MOE 3-2</td>
<td>MOE 3-3</td>
</tr>
</tbody>
</table>

- Alternative 1
- Alternative 2
- Alternative 3

Determine Alternative Solutions
Select Models And Data
Perform Analysis

22 Oct 2008 Leonard Sadauskas
Definitions and Attributes of MOEs

• MOEs are standards against which the capability of a solution to meet the needs of a problem may be judged. The standards are specific properties that any potential solution must exhibit to some extent.

• Therefore, MOEs are independent of any solution.

• A meaningful MOE must be quantifiable and a measure to what degree the real objective is achieved.

The MOE is part of both the AoA and the CBP feedback process
Feedback Process

- Multiple sources of capability information
- Separate JS, COCOM and Service Processes
- Not part of JCIDS or AMS
- Statutory for fielded capability as Post Implementation Review (PIR)
Post Implementation Review (PIR) Defined

An analysis of an investment or acquired system that is part of a capability portfolio, operating in its intended environment, using data collected from various sources to answer the question:

Did we get what we needed, and if not what to do about it?
PIR Information Path in Feedback Process

Doctrine, Organization, Training, Leadership and Education, Personnel and Facilities (DOTLPF)
Plan and Execute Process and Cultural Change Management

Capability Based Analysis
Establishes Need and MOEs that Define Need Fulfillment

Post Implementation Review (PIR)
Assesses Outcome Of Investment By Measuring MOEs

Materiel
Develop System Requirements, Acquire System and conduct OT&E on Key Performance Parameters (KPPs)
PIR in the Feedback Process

- Platform Readiness Assessments
- CC Exercise results
- User Satisfaction Surveys
- Annual CFO Report Input
- Mission Readiness Assessments
- ROI Computation
- War Games

FCB: Functional Capabilities Board
ICD: Initial Capabilities Document
CDD: Capability Development Document
CPD: Capability Production Document
MOE: Measure of Effectiveness

22 Oct 2008
Leonard Sadauskas
Opportunities, Challenges and Trends
Model Compatibility & Sharing Opportunity at the Problem-Solution Interface

Initial Capabilities Document (ICD)

- Mission Tasks
- Functional Needs
- MOEs
- Materiel Approaches

Tasks

- Task 1
- Task 2
- Task 3

Alternatives

- Alternative 1
- Alternative 2
- Alternative 3

Analysis

- Determine Alternative Solutions
- Select Models and Data
- Perform Analysis

Analysis Guidance Planning & Methodology

Study Operational Effectiveness Analysis

<table>
<thead>
<tr>
<th>MOE 1-1</th>
<th>MOE 1-2</th>
<th>MOE 1-3</th>
<th>MOE 2-1</th>
<th>MOE 2-2</th>
<th>MOE 2-3</th>
<th>MOE 3-1</th>
<th>MOE 3-2</th>
<th>MOE 3-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td>Task 2</td>
<td>Task 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

22 Oct 2008 Leonard Sadauskas 19
MOE Deficiencies in CBA

CBA Document MOE Deficiencies
Dec 2005 through Jul 2008

Functional Capability Board

CBA Docs Reviewed
MOE Deficiencies
Potential Impact of MOE Deficiencies

• Likely Scenario:
 – 43% ICDs submitted to the JS for review during past 30 month period contained no MOEs

• Assumptions (conservatively stated)
 – Requirements volatility accounts for 10% of Program of Record cost overruns.
 – Lack of MOEs accounts for 10% of requirements volatility
 – The 2008 DoD Major Program cumulative expenditure is $800B + $800B less than major = $1,600B
 – Cost overrun is 5% or $80B

• Cost of not providing MOEs to the SE process:
 – $.1 x .1 x .43 x $80B = $344M
Recent Trends

- Publication of CBA Guide v2 by JS-J8 in Dec 2006
 - Describes CBA process
 - Guidance for study plan and planning
 - Discusses analytic approaches
 - Development of MOEs

- Implementation of requirements manager training and certification
 - USD(AT&L) Memoranda of 2 September 2008, Requirements Management Certification Training Program Policy, John Young
 - Includes training and certification of requirements authors, reviewers and validators

- Joint Staff considering shortening the CBA cycle to a month or two instead of a year or two.
 - Impact on development of MOEs not clear
 - May be signal that Problem-Solution interface boundary is shifting
Some Remaining MOE Issues

• How could MOEs be allocated?

\[\text{MOE}_{\text{Desired Capability}} = \text{MOE}_{\text{Existing Capability}} + \text{MOE}_{\text{Gap Capability}} \]

\[\text{MOE}_{\text{Gap Capability}} = \text{MOE}_{\text{DOTLPF}} + \text{MOE}_{\text{ICDs}} \]

where \(\text{DOTLPF} = f(\text{Existing processes + changes needed to maximize benefit of materiel investment}) \)

• How could MOEs be traced?

Could MOEs be traced through the DOTLPF and materiel acquisition processes in a manner analogous to requirements tracing by the systems engineers?
PIR Input to JCA Assessment

PIR input to Capability Assessment

Provide Operational Capability with fielded Systems to meet Warfighter requirements

Assesses potential programmed capabilities in a warfighting operational context
Models Bridge Layers of Requirements and Provide Verification Criteria

INCOSE Work Shop 08

- Statement of need
- Sponsor Capability Requirements
- System Requirements
- Design Specification
- e.g. Goal / Usage modeling
- e.g. Functional modeling
- e.g. Performance modeling

Non-Functional

Measures of Effectiveness

Verification Requirements

Integration Requirements

Capability Assessment Results

System Test Results

Integration Test Results

22 Oct 2008

Leonard Sadauskas
After Jeremy Dick’s Sandwich Requirements & Modeling Concept
Typical MOE Situations

• Outcome metrics presented but measures deferred for CDD
• Study team not adequately staffed
• Study team neither tasked nor funded to undertake analytic approach needed to develop MOEs
• Outcome measures stated in narrative but solution performance parameters KPPs presented as MOEs
• CJCSM 3170.01 does not explicitly require MOEs for the ICD, Draft CJCSI 3170.01G has eliminated the term MOE
 – Uses the term desired effects
• Developed MOEs do not address desired outcomes
Cause - Effect Candidates

• Lack of capability analyst training
 – Analyst jumps into solution mode comfort zone

• Capability lexicon confusion
 – Miscommunication amongst analysts and reviewers

• Regulatory MOE requirement inconsistencies
 – Analyst takes path of least work
 – ICD approval available without MOEs

• Inadequate study team guidance
 – Analyst not steered to analytic approaches needed to develop MOEs
A Framework for Integrating Systems and Software Engineering

NDIA Systems Engineering Conference
San Diego, California

Art Pyster
art.pyster@stevens.edu

Richard Turner
richard.turner@stevens.edu

October 21, 2008
Agenda

- Rationale: Why integrate systems and software engineering?
- Touchpoint: A framework
- Initial Results
- Next steps
Rationale: Assertions

- **Interdependent** systems are those where:
 - A "major" portion of the capabilities/value of the system is delivered through software
 - A "major" portion of system quality attributes "largely" depend on software (safety, security, agility, reliability, availability, resilience, ...)

- Today most high value systems are interdependent; that percentage is increasing

- In these systems, nearly all important decisions require equal consideration of software engineering and systems engineering expertise
 - Technical, management, personnel and customer concerns are included

- But, what does it mean to integrate SE and SwE?
Rationale: Questions needing answers

1. What outcomes do we expect from SE/SwE integration?
 - Does integration reduce key risks?

2. How do you measure integration or it’s outcomes?

3. **How and why do the SwE and SE activities conflict, complicate, or reinforce each other?**

4. How much integration is needed?
 - What is the scope of integration (development, operations, business areas...)?
 - Is more integration always better?
 - Is integration domain- or application-dependent?

5. Why haven’t IPTs or CMMI solved this problem?
Rationale: Barriers to integration

- Historical context and vestigial prejudices
 - SE and SwE cultures are significantly different
 - SE and SwE have different educational backgrounds
 - SE and SwE vocabularies are similar but meanings differ

- SE and SwE process implementations are often incompatible (e.g. V versus spiral)

- SE and SwE may use the same tools differently (UML)

- No language to discuss integration of SE and SwE
Rationale: Issues needing to be addressed

1. **Vocabulary.** There is no precise way to talk about the integration of systems and software engineering.

2. **Measurement.** There is no precise way to talk about *how much* integration there is between systems and software engineering in a particular situation.

3. **Entanglement.** The complexity of the disciplines makes it difficult to identify where software and systems engineering touch.

4. **Value.** There is no comprehensive list of benefits that can be achieved by integrating systems and software engineering nor is there an understanding of the associated costs.
Touchpoint

- A framework to support the discussion of SE/SwE integration
- Simple and (seemingly) robust
- Provides a way to describe integration at the practitioner level
- Describes touchpoints where the two disciplines interact
- May help to describe the degree of “integratedness”
Touchpoint Framework: Components

- **Processes.** The ordered activities that define the systems and software engineering disciplines

- **Touchpoints (TPs).** The two discipline’s processes touch when interactions between their constituent activities affect program risk or value – positively or negatively.

- **Faults.** A touchpoint may exist, but the process or activity may fail to produce its maximum value.

- **Resolution Strategies (RSs).** For each fault, there may be one or more actions that will eliminate the fault or reduce its impact.
ISO 15288 provides “harmonized” systems and software engineering processes

Agreement, Organizational Project-enabling, Project, and Technical processes

<table>
<thead>
<tr>
<th>Agreement</th>
<th>Acquisition</th>
<th>Project Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life Cycle Model Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrastructure Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Portfolio Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Resource Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality Management</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project</th>
<th>Technical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Assessment and Control</td>
<td>Stakeholder Requirements Definition</td>
</tr>
<tr>
<td>Decision Management</td>
<td>Requirements Analysis</td>
</tr>
<tr>
<td>Risk Management</td>
<td>Architectural Design</td>
</tr>
<tr>
<td>Configuration Management</td>
<td>Implementation</td>
</tr>
<tr>
<td>Information Management</td>
<td>Integration</td>
</tr>
<tr>
<td>Measurement</td>
<td>Verification</td>
</tr>
<tr>
<td></td>
<td>Transition</td>
</tr>
<tr>
<td></td>
<td>Validation</td>
</tr>
<tr>
<td></td>
<td>Operation</td>
</tr>
<tr>
<td></td>
<td>Maintenance</td>
</tr>
<tr>
<td></td>
<td>Disposal</td>
</tr>
</tbody>
</table>
Touchpoint Framework: Faults

- **Gap**
 - Logically, there should be an interaction between the corresponding SE and SwE processes, but the processes do not include one. A needed activity is therefore performed poorly, or not performed at all.

- **Clash**
 - One or more activities in each of the two corresponding SE and SwE processes produce are incompatible and result in inconsistent results or inconsistent actions.

- **Waste**
 - Activities in the two corresponding SE and SwE processes independently expend resources that produce the same result or take the same action with no added benefit to the program.
Touchpoint Framework: Faults - Clashes

- Vocabulary
 - SE/SW activities use the same terminology with different meanings, or terms not recognized by the other, making communication harder
 - Example: Object-oriented terminology

- Value
 - Software and systems engineers in an organization or program value different process characteristics
 - Example: Stability of baselines

- Mental Model
 - Software and systems engineers think differently about how to carry out process activities
 - Example: “part-of” relationships vs. “uses” relationships.
Touchpoint Framework: Example TP

<table>
<thead>
<tr>
<th>Process</th>
<th>Touchpoint</th>
<th>Fault</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Design</td>
<td>Systems architectures include significant software components to deliver critical capability</td>
<td>Software-engineering architectures define layers of related functionality, while most systems-engineering methods are hierarchical structures.</td>
<td>Clash – Mental Model</td>
</tr>
</tbody>
</table>

Example from pilot research
Touchpoint Framework: Resolution Strategies

- There is a desire to fix faults, especially those with high impact on risk or value.
- For each fault, there may be one or more resolution strategies, which, when executed well, will eliminate the fault or at least reduce its impact.
 - In some cases, resolution strategies are known and just need to be applied
 - On the other hand, resolving some faults will require research
- Resolution strategies are grouped into four traditional categories: *process*, *people*, *environment*, and *technology*. Any number of resolution strategies in each category is possible for a fault.
Touchpoint Framework: Example RSs

<table>
<thead>
<tr>
<th>Process</th>
<th>Touchpoint</th>
<th>Fault</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Design</td>
<td>Systems architectures include significant software components to deliver critical capability</td>
<td>Software-engineering architectures define layers of related functionality, while most systems-engineering methods are hierarchical structures.</td>
<td>Clash – Mental Model</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resolution Strategy</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research must be conducted to resolve the clash between object-oriented and structured methods. Maier provides some of the best research in this area.</td>
<td>Technology</td>
</tr>
<tr>
<td>Design software architecture to look just like system architecture. Make it easy for a system architect to understand. (SW systems mirror HW systems, e.g. relays, motors, etc). Then SW helps the system architect understand things in better detail.</td>
<td>Process</td>
</tr>
<tr>
<td>Middleware may be able to bridge the gap.</td>
<td>Technology</td>
</tr>
</tbody>
</table>

Examples from pilot research
Touchpoint Framework: Measurement

- Provides a way to measure *how much* integration has been achieved and *how good* that integration is.
- The amount of integration is simply the total number of touchpoints in the implementation of the 25 processes – a higher number indicates more integration.
 - A somewhat more sophisticated approach associates a weight with each touchpoint to reflect its potential impact on program risk or value.
- The number of faults determines integration quality.
 - Faults can also be weighted based on their consequence.
 - A fault that severely impacts an important touchpoint would be of far greater consequence than a fault that barely impacts a minor touchpoint.
Initial research: Piloting

- Process activities at the “touchpoint” level are generally not found in available traditional documentation (standard processes, WBS, plans)
 - Often technical management/practitioner activities

- Approach – interview SE and SwE leadership
 - Identified ~10 programs through OSD AT&L and NDIA
 - Interviewed each program to identify touchpoints, faults, resolution strategies and challenges; rigid “no attribution” policy

- Compared interview findings with the systemic analysis findings of AT&L/SSE Program Support Assessments
Piloting Results

- Touchpoint elements (TPs, Faults, RSs) identified by Systemic Analysis Category

<table>
<thead>
<tr>
<th>Category</th>
<th>Elements</th>
<th>No. of Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>CM</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>EVM</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Human Capital</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Process Planning</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Requirements</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>Risk Management</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>System Integration</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Software Metrics (Visibility)</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
Piloting Results

- Touchpoint elements not in Systemic Analysis Category

<table>
<thead>
<tr>
<th>Category</th>
<th>Elements</th>
<th>No. of Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contracting</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Life Cycle</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Technical Reviews</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Sample Architectural Design Process Findings

<table>
<thead>
<tr>
<th>Touchpoint</th>
<th>Fault</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture concept</td>
<td>Underutilized software capability</td>
<td>Gap</td>
</tr>
</tbody>
</table>

Resolution Strategy

- Concept development should be performed jointly and careful trades made that reflect HW and SW capabilities, strengths, and weaknesses

<table>
<thead>
<tr>
<th>Touchpoint</th>
<th>Fault</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeting non-functional requirements</td>
<td>HW reliability numbers are calculated to many decimal places, and include the contributions of very low-level WBS components. SW reliability is not understood and so ignored.</td>
<td>Gap</td>
</tr>
</tbody>
</table>

Resolution Strategy

- Research in integrated reliability approaches is needed
- Train systems and reliability engineers to understand software reliability

From pilot research
Authors’ suggestion
Sample Requirements Analysis Process Findings

<table>
<thead>
<tr>
<th>Touchpoint</th>
<th>Fault</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Requirements</td>
<td>SW specifications that limit trade space</td>
<td>Clash – Mental Model</td>
</tr>
</tbody>
</table>

Resolution Strategy
- Define software requirements in terms of “what” not “how.”
 - Process
- SE and SW collaborate in the development of software requirements
 - Process

<table>
<thead>
<tr>
<th>Touchpoint</th>
<th>Fault</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirement Maturation</td>
<td>The difference in speed of maturation between HW and SW requirements causes tension between SEs and SwEs.</td>
<td>Clash – Mental Model</td>
</tr>
</tbody>
</table>

Resolution Strategy
Requirements management tools and processes need to better support iterative approaches to requirements maturation.
 - Technology

From pilot research

Authors’ suggestion
Sample Life Cycle Management Process Finding

<table>
<thead>
<tr>
<th>Touchpoint</th>
<th>Fault</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE and SW life cycles</td>
<td>Life cycle speeds differ causing perceived architecture instability and schedule coordination problems</td>
<td>Clash – Value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resolution Strategy</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involve SEs in software projects using iterative life cycles to gain comfort and trust.</td>
<td>People</td>
</tr>
</tbody>
</table>
Conclusions and Next steps

- Framework seems useful
- Need much more data
 - More programs
 - More variety
- Refine and extend initial findings with new data
- Create products that make findings useful to programs
Questions and Discussion
Systems Engineering Analysis of Threat Reduction Systems Using a Collaborative Constructive Simulation Environment

NDIA Systems Engineering Conference
San Diego, CA
October 20-23, 2008

James E. Coolahan, Ph.D.
Roger L. West, Ph.D.
Joseph G. Kovalchik, Ph.D.
Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Road Laurel, MD 20723-6099
301-228-5155, 240-228-8383, 240-228-6264
James.Coolahan@jhuapl.edu, Roger.West@jhuapl.edu, Joseph.Kovalchik@jhuapl.edu

Andrew C. K. Wiedlea, Ph.D.
Defense Threat Reduction Agency
8725 John J. Kingman Road Stop 6201
Fort Belvoir, VA 22060-6201
703-767-3021
andrew.wiedlea@dtra.mil
The work presented herein was supported by the Defense Threat Reduction Agency (DTRA) under NAVSEA Contract N00024-03-D-6606, Task SG412.
Threat Reduction Analytic Objectives

Issues

- Many potential system solutions are being proposed for detection of materials important to Weapons of Mass Destruction (WMDs)
- System effectiveness evaluation requires analysis of system performance in operationally realistic tactical vignettes
- Material detection effectiveness is an element of broader campaign-level scenarios

Overall analysis objective:

- To enable system acquisition decision-making by constructing an analysis-of-alternatives capability

Immediate analysis objective

- Construct an analysis-of-alternatives capability focused on detection of nuclear materials
Original Long-Term Vision for the Constructive Simulation Environment

Stakeholders
- Users, Tools, and Resources Can Be Physically Distributed

Initial Focus
- Users, Tools, and Resources Can Be Physically Distributed

Tools Layer
- Battle Management
- Nuclear/Rad Detection
- ISR
- Interdiction Effects
- Protection & Mitigation
- Simulation Interoperability
- Command & Control
- Chem./Bio Detection
- Forensics
- Partnership Engagement

Resources Layer
- Translators
- Local inputs

Resource Interface Mechanisms (with Access Controls)

General Use Information
- M&S Catalog
- Related Documents

M&S Resource Repository
- Signature Data
- Infrastructure Databases
- Scenario Databases
- Environment Databases
Overview of Spiral Development / Analysis Approach

- Spiral 0 (April - July 2007)
 - Proof-of-concept use of Joint Semi-Automated Forces (JSAF) simulation for radiation detection in tactical vignette

- Spiral 1 (August 2007 – January 2008)
 - Setup of M&S laboratories at DTRA and JHU/APL
 - Development of checkpoint scenario vignettes
 - Development of higher fidelity JSAF radiation detection module and production of initial passive detection sensor performance

- Spiral 2 (February – September 2008)
 - Expansion of scenario vignettes, with 3D rendering
 - Development of Behavior Module linked with JSAF
 - Initial development of JSAF-embedded software for active concepts for nuclear material detection
Spiral 0 Activities (April - July 2007)

- Evaluated several alternatives, and selected JSAF as simulation of choice to model tactical vignette in selected “100 x 100 mi. box”
- Obtained / installed JSAF simulation
- Modified JSAF sensor module to model radiation detector
- Obtained terrain database for selected area
- Set up “land bridge” scenario vignette and checkpoint in JSAF
- Performed multiple JSAF executions to generate sensor performance estimates, including multi-sensor detections
- Tabulated sensor performance data in spreadsheet for use during table-top exercise
Spiral 1 Activities (August 2007 – January 2008)

- Conducted trade-off study to determine most effective configurations of dual DTRA and JHU/APL systems engineering M&S laboratories
- Procured hardware and software for both M&S laboratories
- Instantiated three land-based scenario vignettes for checkpoints in JSAF, consistent with accepted campaign-level scenario
- Developed higher fidelity radiation detector module for JSAF
- Performed multiple short JSAF executions to get (preliminary) performance curves for a variety of passive radiation sensor types
Spiral 2 Activities (February – September 2008)

- Instantiated five additional scenario vignettes in JSAF
- Incorporated 3D rendering of vignettes using JStealth, federated with JSAF
- Improved JSAF passive radiation detection module
- Developed a JSAF module to model active concepts for nuclear material detection
- Performed additional JSAF runs to explore the performance of selected combinations of sensors and to produce inputs for Joint Analysis System (JAS) campaign-level simulation executions
- Incorporated intelligent behavior for red and blue assets in JSAF
 - Federated new “Behavior Module” with JSAF, based on prior JHU/APL “commander federate” Independent Research and Development (IRAD) project
 - Incorporated tactics based on discussions with subject matter experts
- Developed a secure shared repository containing scenario information, sensor characteristics, and performance results from simulation executions
Constructive Simulation Environment
Progress Toward Long-Term Vision

Stakeholders (JHU/APL & DTRA)

RunTime Infrastructure

JSAF
CultureSim
Behavior Module
JAS

General Use Information
Documents

DTRA SE M&S Resource Repository

Sensor Characteristics
Terrain Database
Scenario Database
Simulation Results

Local inputs

As of Spiral 2

Tools Layer

Resources Layer
Scenario Vignettes (Three Types)

- Land-based checkpoints to detect mobile nuclear material
 - Rural / mountainous, limited road system
 - Rural / flatland, broader road system
 - Port area
- Land-based detection of stationary / hidden nuclear material
 - Rural hideout
 - Above-ground storage site
 - Underground facility
- Detection of mobile nuclear material in maritime environment
 - Straits
 - Open water
Nuclear Radiation Detection Modeling
Source Signal to Detector

$$S(e, r) = \frac{S_{\text{gross}}e^{-\lambda(r)r}}{4\pi r^2} s(e, r)$$

Radiation Spectra Present at Detector Face

$s(e, r)$ Fractional spectral density present at the detector face (function of energy & range)
$S(e, r)$ Spectrum present at detector face
Sensor Model - Input Constants

\[B_{\text{gross}} = \text{Gross background count (counts/sec)} - \text{Assume constant} \]
\[\lambda = \text{atmospheric attenuation coefficient.} \]

Properties dependent on detector type:

\[A_{\text{sensor}} = \text{projected surface area of detector [m}^2\text{]} \]
\[\text{FOV} = \text{field of view of sensor [deg]} \]
\[\bar{\varepsilon}_B = \text{Gross background count efficiency [unitless]} \]
\[\beta_E = \text{Fraction of gross background count in energy band } E \text{ [unitless]} \]
\[\bar{\varepsilon}_S = \text{Gross source count efficiency [unitless]} \]
\[\sigma_E = \text{Fraction of gross source count in energy band } E \text{ [unitless]} \]
Sensor Model Functions

- Calculate background signal, \(<N_{B,E}>\) (assume constant \(B_{\text{gross}}\))
- Calculate source signal, \(<N_{S,E}>\)
- Calculate signal-to-noise ratio (SNR)
- Calculate detection probabilities, \(P_D, P_{FA}\)
- Random draw for Detection Outcome
JSAF Source-Sensor Model Data Interactions

Where:
\(S_{\text{gross}} = \text{Gross source count (counts/sec)} \)
\(\tau = \text{integration time interval (sec)} \)
\(V = \text{Relative velocity of target (m/s)} \)
\(r = \text{Range of target (m)} \)

and “Detection Outcome” can be one of:
- No detection
- Positive detection
- False positive detection
- Negative detection
- False negative detection
Sensor Signal-to-Noise Ratio vs. P_D, P_{FA}
Nuclear Radiation Detection Modeling Physics for Active Detection

A GeV Proton Beam passes through an Attenuator, Structure, and Target, ultimately reaching a Detector protected by Shielding.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Attenuators</th>
<th>Structures</th>
<th>Targets</th>
<th>Shielding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminum</td>
<td>Lead, Tungsten,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbon, Calcium, Water</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Motivation for the Behavior Module

Issue
- Standard scripting for Red and Blue CONOPS in scenario vignettes in JSAF attributed insufficient reactive behavior to humans involved
 - For example, drivers of vehicles carrying nuclear materials simply proceeded to known checkpoints, were scanned, and detained

Behavior Module needed to
- Provide reactive CONOPS for Red and Blue assets, and background behaviors for Green entities
- Enable analysis of effectiveness of Blue CONOPS using various sensors in opposition to Red CONOPS, together with Green background activity
- Enable trades between CONOPS and sensor investment decisions
 - For example, given a sensor’s maximum probability of detection, can an adjustment of resources to execute a CONOPS improve the ability to detect and interdict the nuclear material?
Technology Basis for Behavior Module: Hybrid Reasoning Technology Framework

- Function approximation
- Causal reasoning
- Expert System
 Course of action

- Neural Networks
- Bayesian Networks
- Fuzzy Rule Engine
- Cooperative Agents
- Planner
- Knowledge Base
- Case-Based Reasoning
- Automated-planning systems

Solve new problems based on solutions of similar problems
Hybrid Reasoning Framework
Preparation and Use

- Analyst gains understanding of the decision process to be simulated
- Analyst maps appropriate reasoning technologies to the decision process
- Analyst creates a domain-specific file using reasoning software GUI editor and exports the domain-specific file for agent’s future use
- Agents load domain-specific files as needed for their function, provide problem specific inputs (state), and use appropriate generic engines to create solution outputs
Baseline Concept for Enhanced Checkpoint Scenario Vignette Using Behavior Module
When a Red or green vehicle reaches a checkpoint, a roadblock prevents passage in one direction until the sensor reports:

- If the reading is negative, the roadblock raises and allows the vehicle to pass.
- If the reading is positive,
 - The vehicle is sent to a quarantine location.
 - A mobile sensor platform is tasked to report to the quarantine location to conduct a second reading:
 - If the second reading is negative, the vehicle is allowed to continue its journey.
 - If the second reading is positive, the vehicle is sent to a holding location.

- Blue adjusts the roadblock to manage the length of the traffic backup.
- Certain types of vehicles are randomly selected for checks. If the checkpoint queue gets too long, Blue communicates to the Blue selection point in order to reduce the percentage selected until the queue length is satisfactory.
Behavior Module
Current Red Checkpoint Behaviors

- Red vehicle starts at safe house and travels to destination over existing roads
- Red vehicle is informed by a Red “scout” vehicle that a checkpoint is ahead so that the Red vehicle with weapons grade nuclear material either aborts or evades
- When a Blue checkpoint is seen, Red has option to:
 - Stop and pull over at the roadside for ten minutes to consider either aborting or continuing
 - Continue journey
 - Evade around checkpoint if possible
 - Abort and return to starting location
- Red either diverts or aborts if progress along the current route is too slow.
Behavior Module
Current Green Checkpoint Behaviors

- Background traffic without any nuclear sources
- Several green vehicles with medical nuclear sources are dispatched at random intervals to add to congestion at checkpoints
Near-Term Plans
Spiral 3 (October 2008 – September 2009)

- Enhance passive nuclear detection modeling
 - Spectroscopic capability for source and sensor
 - Gamma imaging capability for sensor
 - Passive fast and thermal neutron imaging for source and sensor
 - Thermal neutron directional / imaging capability for sensor
 - Fast neutron imaging for sensor

- Add fidelity to active nuclear detection concept modeling
 - Introduce active interrogation sources
 - Modify targeted material behavior
 - Modify passive sensor as needed to support active concepts

- Add behaviors to Behavior Module (selected based on perception of Red capabilities)
 - Blue – downstream checkpoints, traffic funneling to checkpoints, vehicle tagging and tracking, CONOPS variation based on nature of Blue forces
 - Red – Red security vehicle follower, bribery, rush-hour exploitation, peaceful demonstration, traffic accident diversion, limited attacks, etc.
Systems Engineering Plan and Systems Engineering Management Plan Alignment

NDIA 11th Annual Systems Engineering Conference
October 21, 2008

Chet Bracuto
DoD OUSD A&T (SSE)

Bob Scheurer P.E., P.M.P.
Boeing Integrated Defense Systems
Purpose

Present efforts of SE Working Group discussions with recommendations for improving Acquirer and Supplier technical planning
Outline

- Problem Definition
- Background
- Future State
- Approach
- Traits of SEPs and SEMPｓ
- SEP – SEMP Comparisons and Findings
- Vision of the Ideal SEMP
- Data Item Description Update
- Benefits
- Way Forward
- Questions/Answers
Problem Definition

The Need:

- Improved SE planning discipline to better facilitate program execution
- Better communication, integration, and efficiency between acquirer and suppliers
- Early technical planning (i.e. in RFP) to ensure that SE is scoped and priced adequately in the contractors’ proposals
- Better planning alignment between acquirer and suppliers

Programs Need Improved Guidance That Will Yield More Effective Planning
Systems Engineering Plan (SEP) is a DoD-developed (acquirer) technical planning document required for milestone approval.

Systems Engineering Management Plan (SEMP) is a contractor-developed (supplier) plan for the conduct, management, and control of the integrated engineering effort.

DoD SEP Preparation Guide was updated in October 2007 to improve completeness and consistency in SE planning:
- Highlighted five (5) key areas of SE planning.

Briefed NDIA SE Conference in October 2007 on feasibility of a single, unified plan.

Questions raised if other DoD policy and guidance needed updating (e.g., DI-MGMT-81024).
Background

Path to a Unified SE Plan
October 2007
Approach

- Evaluated Feasibility of a Unified SE Plan

 - Launched Study to Explore the Current Environment on Programs Regarding SEPs and SEMP

 - Selected Five Boeing Programs for Review

 - Gained Understanding of Differences and Similarities Between the Two Documents (SEP / SEMP) in the Current Environment
Traits of the SEP

- Defines government (customer) technical planning expectations
 - What needs to happen from customer perspective

- Describes overall approach in key areas
 - Requirements
 - Technical Staffing and Organizational Planning
 - Technical Baseline Management
 - Technical Review Planning
 - Integration with Program Management

- Provides contractor guidance for systems engineering as applied to the acquisition program at hand

- Identifies to program management and contract personnel the essential systems engineering activities and products required
Traits of the SEMP

- Responsive to the contract and the SEP

- Defines contractor (supplier) technical planning
 - How it will be accomplished from the contractor perspective

- Contractor further develops planning outlined in the SEP

- Project (Supplier) team articulates details of their
 - Processes
 - Tools
 - Organization
 - etc.

- Describes activities involved in the transformation from requirements to solution

- Includes integration of subcontractor planning
A Majority of SEP Sections Could Readily be Mapped to SEMP Sections
Specific Findings from SEP & SEMP Comparisons

- SEP and SEMP both deal with SE planning but from different perspectives
 - SEP focus is acquirer problem space
 - SEMP focus is supplier solution space

- Documents discuss similar subjects but are disconnected
 - Different language/terminology
 - Different paragraph structures

Alignment of Plans is Preferred Over Unification
SEP-SEMP Comparison
Specific Findings

Over-all

- Stakeholders are different
 - SEP: Owner is Government (Acquirer)
 - SEMP: Owner is Contractor (Supplier)

- Details are different
 - SEP: Acquirer-focused problem definition
 - SEMP: Supplier-focused solution description

- Perspectives are different
 - SEP: Oversight focus
 - SEMP: Delivery focus
SEP-SEMP Comparison
Specific Findings

- **Requirements**
 - Emphasis is different
 - SEP: Key program requirements
 - SEMP: Translating requirements into product deliverables

- **Technical Staffing and Organizational Planning**
 - Differing types of talent needed by each organization
 - Organizational interfaces are key for alignment
 - Combined organizational details are unnecessary

- **Technical Baseline Management**
 - Different focus
 - SEP: What the Baselines are (descriptions)
 - SEMP: Achievement of the Baselines with Supporting Processes
SEP-SEMP Comparison
Specific Findings

- **Technical Review Planning**
 - Common interests
 - Different preparation approach
 - SEP: Review Strategy; What’s to be Reviewed
 - SEMP: ‘How’ it’s Reviewed; ‘What’ is deferred to the IMP; ‘When’ is deferred to IMS

- **Integration with Program Management**
 - Different detail levels and focus
 - SEP: Integration of Planning between Government and Contractor
 - SEMP: Total Integration of Engineering Effort with Government and between Contractor, Associated Contractors, and Sub-Contractors
Vision of the Ideal SEMP

- **Used regularly by the program for:**
 - Consistency with DoD SEP
 - Communicating with the program personnel
 - How things get done on the program
 - Maintaining the baseline of program technical planning concepts
 - Introducing new team members to program objectives

- **Improves program efficiency by:**
 - Creating a uniform understanding of the program approach
 - Establishing a common program lexicon
 - Maintaining support of the technical margin (boundaries)

- **Has on-going relevance via**
 - Periodic updates, e.g., program reviews
 - Consistency with the contractor’s goals and environment
Data Item Description Update

- **DID DI-MGMT-81024 (Systems Engineering Management Plan)**
 - Last released in August 1990
 - Based on MIL-STD-499A

- DID outdated due to changes in DoD acquisition environment, lessons learned, references, etc.

- DID drives contractor to divert from newer Government SE policy and guidance
Team assembled June 2008 to investigate possible improvements

- Emphasis to align SEMP DID with the SEP Prep Guide Topics
- Team consisted of OSD and Services
10 PREPARATION INSTRUCTIONS

10.1 Format. The SEMP format shall be selected by the contractor. Unless effective presentation would be degraded, the initially used format arrangement shall be used for subsequent submissions.

10.2 Content. The SEMP shall describe the contractor’s planned systems engineering processes and approach, tailored as necessary to the program’s contract, objectives, and overall technical and management approach. The SEMP shall describe the contractor’s detailed operational plan for executing systems engineering and include, at a minimum the following SE related topics and processes:

1) Alignment with SEP Prep Guide Topics
 • The topics detailed in the latest version of the Systems Engineering Plan (SEP) Preparation Guide as put forth by the Office of the Secretary of Defense, Systems and Software Engineering Directorate.

2) Alignment with Program SEP
 • Government planning as detailed in the government SEP.

3) Contractor-Specific Planning
 • Planning associated with application of the contractor’s systems engineering processes as tailored to the program and at a level of detail necessary for the contractor to manage and execute the technical effort.

4) Plan Completeness
 • Referenced lower-level and subcontractor technical plans, for example in the areas of risk management, requirements management, or configuration management, as determined necessary by the contractor to plan and execute a total systems engineering effort.

5) Planning Flexibility
 • Other areas deemed necessary to execute systems engineering to meet the program’s contract, objectives, and overall technical and management approach.

11. DISTRIBUTION STATEMENT
DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

New DID Update Strengthens Alignment Between SEP and SEMP
Alignment via the Update of SEMP DID (DI-MGMT-81024)

Aligning future SE planning involves adjusting the DID focus with the SEP Prep Guide.
Future State

Path to a Seamlessly Aligned Set of SE Plans
October 2008

Source Transfer of Planning Information
Feedback Transfer of Planning Information
Benefits of SEP – SEMP Alignment

- Two good stand alone documents can be far better with alignment
 - Consistent planning
 - Reduction in duplication
 - Reasonable standardization
 - Continuity across plans
Way Forward

- Distribute Draft DI-MGMT-81024 for Industry and Government Comments
- Consider Piloting on Programs
- Revise and Release DI-MGMT-81024
- Change Contractor Guidance in Response to Updated DID
- Monitor Implementation and Feedback from Programs
Questions/Answers

Does this approach appear viable?

What improvements would you like to see?

What other recommendations would you make to achieve aligned planning?
Backup/Reference Material
<table>
<thead>
<tr>
<th>SEP Prep Guide</th>
<th>Program SEP Comments</th>
<th>Program SEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>Consistent with SEP Prep Guide</td>
<td>Consistent with program SEP</td>
</tr>
</tbody>
</table>
| 2. Program Requirements | Consistent with SEP Prep Guide | 1. SEMP covers SEP requirements
2. SEMP addresses design considerations in program plans and directives (section 8). Which are detailed plans. |
| 3. Technical Staffing and Organizational Planning | Consistent with SEP Prep Guide | 1. SEP and SEMP are consistent |
| 4. Technical Maturation and Planning | SEP Prep Guide emphasizes Requirements management and traceability while Program SEMP describes the SE process and RA/RM in context of the SE process. | 1. SEMP has a strong description of how the SE process is adapted to the program. |
| 6. Integration with Overall Program Management | Program SEP | Mostly not covered in the SEMP. Does provide a brief mention of the use of the IMP and IMS and application to Risk Management. This potentially deserves a stronger emphasis. For example there is not mention of the WBS. |

Section 8: Plans and Directives Process and Products – This section references more detailed plans.

Represent Gaps
Specific Findings

Requirements

<table>
<thead>
<tr>
<th>SEP</th>
<th>SEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output is management requirements</td>
<td>Executable process for how technical management is done on the program</td>
</tr>
<tr>
<td>Over-all architecture for program lifecycle</td>
<td>Defines the process to develop the requirements, not the actual requirements</td>
</tr>
<tr>
<td>Emphasizes program requirements specifics</td>
<td>Emphasis on SE Process for Analysis</td>
</tr>
<tr>
<td>• KPPs</td>
<td>Identification of participants in requirements process</td>
</tr>
<tr>
<td>• MOEs, e.g. Reliability or Maintainability</td>
<td>Methods for transforming abstract to real</td>
</tr>
<tr>
<td>• Spiral Outs</td>
<td>Built around WBS structure</td>
</tr>
<tr>
<td>• Capabilities</td>
<td>Integration of all subordinate plans</td>
</tr>
<tr>
<td>• Etc.</td>
<td></td>
</tr>
<tr>
<td>Defines lifecycle readiness of capabilities / requirement maturities</td>
<td></td>
</tr>
</tbody>
</table>
Specific Findings
Technical Staffing & Organizational Planning

SEP

Acquirer-centric
- Govt. IPT Structure
- OIPTs
- WIPTs
- Govt LSI IPTs

Associated High-Level Contractor IPTs

SEMP

Supplier-centric
- Contractor and Supplier IPT Structure

Program organizational structure
- Subordinate considerations to program plan

Partnerships

Critical Skills
<table>
<thead>
<tr>
<th>SEP</th>
<th>SEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Management / Data Management Activities</td>
<td>Specific configuration changes/updates to system</td>
</tr>
<tr>
<td>Responsible Entities</td>
<td>Interface management</td>
</tr>
<tr>
<td>Specification Tree</td>
<td>Supplier-specific change management processes</td>
</tr>
<tr>
<td>Use of Technical Baseline and Technology Readiness Assessments</td>
<td>Change review boards</td>
</tr>
<tr>
<td>Identification of Relevant DIDs</td>
<td></td>
</tr>
</tbody>
</table>
Specific Findings
Technical Review Planning

<table>
<thead>
<tr>
<th>SEP</th>
<th>SEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event-driven technical reviews</td>
<td>Consistency with IMP</td>
</tr>
<tr>
<td>Management of reviews</td>
<td>Events and Associated Reviews summary</td>
</tr>
<tr>
<td>Chairs, stakeholders</td>
<td>Review Planning may rely on</td>
</tr>
<tr>
<td>Facilitation of participation</td>
<td>content of superior documents</td>
</tr>
<tr>
<td>Past Accomplishments and Future Expectations</td>
<td>(e.g., Program Execution Plan)</td>
</tr>
</tbody>
</table>
Specific Findings

Integration with Program Management

SEP

- Integration with other planning
 - Acquisition Strategy
 - IMP/IMS
 - External Functions
 - Use of Technical Review Results (e.g., Baselines)

- Execution requirements for SE activities
 - Risk Management
 - T&E Integration
 - Verification & Validation Plan integration
 - TEMP Traceability to Performance Reqmts

SEMP

- Integration between program stakeholders
 - Suppliers
 - IPTs
 - Customer
 - Associate Contractors

- Integration of the engineering effort

- More detailed planning
 - Scheduling
 - Process integration
 - Subcontract management
 - Risk management
SE Planning Alignment Vision
Maturation Sequence

Govt. PM Office

Contractor

MS A

Develop SEP

RFP (MS A SEP)

Respond to RFP

Create initial SEMP with MS A SEP as an input

Evolve SEMP

MS B

Develop SEP

RFP (MS B SEP)

Respond to RFP

Align SEMP with MS B SEP

SEP-SEMP Coordination

Continues for MS C and Full Rate Production

Update as Necessary
New Concepts and Trends

11th Annual Systems Engineering Conference
October 20-23, 2008
Hyatt Regency Mission Bay
San Diego, CA
Theme: Technology – Tipping the Balance

Dr. Kenneth E. Nidiffer
Director of Strategic Plans for Government Programs
nidiffer@sei.cmu.edu
703.908.1117
Federally Funded Research and Development Center
Created in 1984
Sponsored by the U.S. Department of Defense
Locations in Pittsburgh, PA; Washington, DC; Frankfurt, Germany
Operated by Carnegie Mellon University
Overview

• Transformational Trends
 – Development
 – Acquisition
 – Human Element
 – Risk Management
 – Communications
• Ten Future Trends
• Wrap-up

“Perfect Storm” Event, October 1991
National Oceanic & Atmospheric Administration
Development: Need for Space, Air, Ground, Water, Underwater Software-Intensive Systems that are Interconnected

- Several million SLOC programs; “Hybrid” systems combining legacy re-use, COTS, new development
- Multi-contractor teams using different processes; dispersed engineering, development & operational locations
- New technologies create opportunities/challenges; products change/evolve, corporations mutate
- Business/operational needs change - often faster than full system capability can be implemented
- Skillset Shortfalls; Cost and schedule constraints
- Demands for increased integration, interoperability, system of system capabilities
- Enterprise perspectives/requirements; sustainment concerns

Development Complexity of Software-Intensive Systems is Increasing
The Acceleration of Innovation in the 21st Century: - Impacting Both Defense and Society

The Amount of New Technological Innovation is Doubling Every Two Years - Requires More Upfront SE/SW Engineering to Leverage Trends
Augustine’s Law: Growth of Software - Order of Magnitude Every 10 Years

In The Beginning

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Aircraft</th>
<th>LOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960’s</td>
<td>F-4A</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>F-15A</td>
<td>50,000</td>
</tr>
<tr>
<td>1970’s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980’s</td>
<td>F-16C</td>
<td>300K</td>
</tr>
<tr>
<td></td>
<td>F-22</td>
<td>1.7M</td>
</tr>
<tr>
<td>1990’s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000+</td>
<td>F-35</td>
<td>>6M</td>
</tr>
</tbody>
</table>
Need for increased functionality will be a forcing function to bring the fields of software and systems engineering closer together.
Moore's Law: The Number of Transistors That Can be Placed on an Integrated Circuit is Doubling Approximately Every Two Years

Integrated Circuit Complexity

Source: Intel
Increased Technological Rate of Adoption

<table>
<thead>
<tr>
<th>Technology</th>
<th>Years Since Invention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telephone</td>
<td>36</td>
</tr>
<tr>
<td>Television</td>
<td>26</td>
</tr>
<tr>
<td>Cell Phone</td>
<td>14</td>
</tr>
<tr>
<td>PC</td>
<td>56</td>
</tr>
<tr>
<td>VCR</td>
<td>50</td>
</tr>
<tr>
<td>Microwave</td>
<td>40</td>
</tr>
<tr>
<td>Internet</td>
<td>30</td>
</tr>
<tr>
<td>Radio</td>
<td>20</td>
</tr>
<tr>
<td>Electricity</td>
<td>10</td>
</tr>
<tr>
<td>Automobile</td>
<td>56</td>
</tr>
</tbody>
</table>

Source: Rich Kaplan, Microsoft
Acquisition: Life of a Program Manager in a System of Systems and/or Net-Centric Operation…
Acquisition: Effectively Managing Risk

A Key Challenge is How to Obtain a Better Alignment of Risk Among the Relevant Stakeholders
2005 study confirmed*:

- In advanced knowledge-based organizations, management’s desire for the flow of knowledge is greater than the desire to control boundaries
- Unlike the matrix organization, there is less impact on the dynamics of formal power and control
- Important to measure the system in terms of user performance

* Using Communities of Practice to Drive Organizational Performance and Innovation, 2005, APQ study

Ref: Jim Smith, (703) 908-8221, jds@sei.cmu.edu

From “Science and Technology to Support FORCEnet,” Raytheon TD-06-008. Used by permission.
Human Element

The ability of organizations to compete will increasing depend on the innovation of the human element
Society Drivers: Bimodal Demographics (Space Industry)

Reconstituting This Group

Graduate School Shortfall

Average Space Industry S&E Workforce Age Distribution

Trend: Industry/Gov’t Will Increasingly Focus on Attracting, Training and Retaining Systems Engineering Talent

Source: Lockheed Martin (0004305-001: AIAA SE Workforce Data. Frank Cappuccio VP & GM Skunk Works)
Objective is for Software and Systems Engineering to Become More Integrated Versus Separated

System Analysis

System Design

Software (SW) Requirements Analysis

Architectural SW Design

Detailed SW Design

Code and Unit Test

OSD Initiative: Integrated Software and Systems Engineering Curriculum
Human Element in the Work-Space Environment

Source: Doug Phair; Technology Evangelist; dphair@mitre.org; February 2008
Communication: Increased Capabilities in the Digital Spectrum Enables Improvements in Communication and Collaboration

* Friedman, Thomas L. “The World Is Flat”, Farrar, Straus and Giroux, 2005

Rule #4: The best companies are the best collaborators*

* Friedman, Thomas L. “The World Is Flat”, Farrar, Straus and Giroux, 2005
Higher-Maturity Approaches to Process Improvement Are Important and Synergistic Trends

Data-Driven (e.g., Six Sigma, Lean)

- Determine what your processes can do (Voice of Process)
 - Statistical Process Control
- Clarify what your customer wants (Voice of Customer)
 - Critical to Quality (CTQs)
- Identify and prioritize improvement opportunities
 - Causal analysis of data
- Determine where your customers/competitors are going (Voice of Business)
 - Design for Six Sigma

Model-Driven (e.g., CMM, CMMI)

- Determine the industry best practice
 - Benchmarking, models
- Compare your current practices to the model
 - Appraisal, education
- Identify and prioritize improvement opportunities
 - Implementation
 - Institutionalization
- Look for ways to optimize the processes

CMMI and Six Sigma, Siviy, et al, 2007, Addison Wesley
Systems and Software Engineering: Ten Trends

1. **Greater demands on systems and software engineers will stimulate growth in the field – nationally and internationally**

2. **Industry/Gov’t will increasingly focus on attracting, training and retaining systems and software engineering talent – short and long run – with emphasis on providing a Generation Y work environment**

3. **Increased reliance on systems and software engineering processes and technologies to effectively manage the acquisition/”green” space**

4. **The laws of Augustine’s and Moore will continue to hold and will continue to be a forcing function to bring the fields of software and systems engineering closer together**

5. **Improvements risk-reduction collaboration mechanisms will be significant enablers for increases in systems and software engineering communication and “decision velocity”**
Systems and Software Engineering: Ten Trends

6. Systems and software engineers will continually find ways to innovative to reduce complexity

7. Increased importance of modeling and simulation

8. Increased customer requests for system and software engineering support will occur earlier in life cycle

9. Shift of systems and software engineering focus from the platform to the networks and ground systems

10. Process improvement will continue to be important!
Recommended Readings

Friedman, Thomas L. “*The World Is Flat*”, Farrar, Straus and Giroux, 2005

Gates, William H. III “*Business @ The Speed of Thought – Using a Digital Nervous System*”, Time Warner Books, 1999

ESOH In Acquisition
OSD Expectations For Implementing DoDI 5000.02

National Defense Industrial Association
11th Annual Systems Engineering Conference
San Diego, California
October 21, 2008

Ms. Karen Gill (Booz Allen Hamilton) for
Ms. Patricia Huheey
Acquisition ESOH
Office of the Deputy Under Secretary of Defense
(Installations & Environment)
Outline

• Background on DUSD(I&E)
• Policy Objectives & Principles
• Policy & OSD Expectations
• Initiatives and Focus Areas
 – “ESOH in Acquisition – Integrating ESOH into Systems Engineering” Booklet
ESOH in Acquisition Leadership
Environment, Safety, and Occupational Health

USD(AT&L)
Hon. John Young

DUSD(Installations & Environment)
Mr. Wayne Arnie

ADUSD(Environment, Safety & Occupational Health)
Mr. Alex Beehler

Director, Environmental Management
Maureen Sullivan

Director, Environmental Readiness & Safety
Curtis Bowling

 Acquisition ESOH Lead
Patricia Huheey

DoD Acquisition ESOH IPT
Patricia Huheey

John Seibert

DSOC Integration Group
Joseph Angello, Jr., Co-chair
Curtis Bowling, Co-chair

DSOC Task Forces

Acquisition & Technology Programs Task Force
Mr. Chris Dipietto, Chair
Role in Acquisition

• DUSD(I&E) is the AT&L Advisor for ESOH issues
• Oversight of ACAT 1D, IAM, and AT&L Special Interest programs
• Focus on DoDI 5000.02 - ESOH in acquisition policy
• Identify OSD ESOH “expectations” in the Defense Acquisition Guidebook
• Provide guidance for policy implementation on the Acquisition Community Connection
• Provide ESOH input to CJCS 3170.01 series - JCIDS
Why Be Concerned With ESOH in Acquisition?

- ESOH considerations affect the operational effectiveness and sustainability of the system
 - There is a relationship between the natural and workforce infrastructures and the military mission
 - Compliance requirements and encroachment influence how DoD maintains and trains with the system
 - System design, operation, and maintenance parameters determine the installation and workforce needs to train and maintain the system
The essential principle of NIM is that air, land, and water resources are **assets that must be managed and sustained** for the values they provide to the military.

Natural infrastructure (NI) assets include:

- **Natural assets:** distinct ecological or physical components of natural infrastructure
- **Statutory assets:** legally defined entitlements to access and use products and services of natural infrastructure

Leveraging NI asset values to support the mission
Plan Ahead & Influence the System Design

• Identify system life-cycle ESOH risks early to influence design rather than address them afterwards as operational considerations

• System design is most effectively influenced through the system engineering process
 – Active participation in the IPTs is critical to success

• ESOH hazards and associated risks are best managed using a standard approach and structured process

• E, S, and OH inputs to systems engineering need to be optimized across the disciplines to meet cost and performance needs over the life cycle
Top Level Principles

• Address safety throughout the acquisition process
• Use a total systems approach to minimize or eliminate characteristics that produce environmental, safety or health hazards
• Use the system safety process in MIL-STD-882D to eliminate ESOH hazards where possible and manage ESOH risks where hazards cannot be eliminated
• Coordinate ESOH risks with the User and formally accept risks at designated management level
• Manage and document hazardous and toxic materials associated with the system and plan for safe disposal
Life Cycle ESOH Risks

• **ESOH risks may include:**
 – Hazardous and toxic materials and wastes
 – Environmental and occupational noise (e.g. litigation, lost productivity)
 – Personnel safety and occupational health (e.g. PPE, medical surveillance, lost work time, future VA benefits of injury/illness)
 – Regulatory compliance (e.g., pollution, record-keeping, non-compliance fines, litigation)
 – System component or software failures

• **Need to manage ESOH risks associated with:**
 – Routine operation and maintenance of the system
 – System failures
 – ESOH compliance requirements
DoD Acquisition Policies and Guidance

- DoD Directive (DoDD) 5000.01, *The Defense Acquisition System* (12 May 2003)
- DoD Instruction (DoDI) 5000.02, *Operation of the Defense Acquisition System* (12 May 2003)
- MIL-STD-882D, *DoD Standard Practice for System Safety*
- Acquisition Community Connection, ESOH Special Interest Area, https://acc.dau.mil/ESOH
Update Policy and Guidance

• In 2007 coordinated with the Services and provided ESOH input update of DoDI 5000.02
 – “Facts of life” changes only (plus AT&L inputs)
 – Incorporated the 3 USD(AT&L) ESOH-System Safety Memos since 2003 and new EO 13423
 – Moved main ESOH section to the new Enclosure 12 - Systems Engineering and updated ESOH paragraphs

• Provided updated ESOH section to the Defense Acquisition Guidebook to reflect the upcoming changes to DoDI 5000.02 (will come out with updated 5000.02)
Paragraph 3.8.2.2

Life-Cycle Sustainment Considerations

- Life-cycle sustainment considerations include supply; maintenance; transportation; sustaining engineering; data management; configuration management; manpower, personnel, training, habitability, survivability, environment, safety (including explosives safety), and occupational health; protection of critical program information and anti-tamper provisions; supportability; and interoperability.
Paragraph 3.8.3

Disposal

- At the end of its useful life, a system shall be demilitarized and disposed of in accordance with all legal and regulatory requirements and policy relating to safety (including explosives safety), security, and the environment.

- During the design process, PMs shall document hazardous materials contained in the system in the Programmatic Environment, Safety, and Occupational Health Evaluation (PESHE) (see paragraph E12.6.), and shall estimate and plan for the system’s demilitarization and safe disposal.
• The PM shall **integrate ESOH risk management** into the overall **systems engineering process** for **all** developmental and sustaining engineering activities. As part of risk reduction, the PM shall eliminate ESOH hazards where possible, and manage ESOH risks where hazards cannot be eliminated. **The PM shall use the methodology in MIL-STD-882D, DoD Standard Practice for System Safety.**

• PMs shall **report on the status of ESOH risks and acceptance decisions at technical reviews.**
• Acquisition program reviews and fielding decisions shall address the status of all high and serious risks, and applicable ESOH technology requirements.

• **Prior to exposing** people, equipment, or the environment to known system-related ESOH hazards, the PM shall document that the associated risks *have been accepted* by the following acceptance authorities: the CAE for high risks, PEO-level for serious risks, and the PM for medium and low risks. The user representative shall be part of this process throughout the life cycle and shall provide formal concurrence prior to all serious and high risk acceptance decisions.
E12.6.1 Programmatic ESOH Evaluation (PESHE)

- The PM for all programs, regardless of ACAT level, shall prepare a PESHE which incorporates the MIL-STD-882D process and includes the following:
 - identification of ESOH responsibilities
 - the strategy for integrating ESOH considerations into the systems engineering process
 - identification of ESOH risks and their status
 - a description of the method for tracking hazards throughout the life cycle of the system
 - identification of hazardous materials, wastes, and pollutants (discharges/emissions/noise) associated with the system and plans for their minimization and/or safe disposal
 - a compliance schedule covering all system related activities for the National Environmental Policy Act (NEPA) and Executive Order 12114
- The Acquisition Strategy shall incorporate a summary of the PESHE, including the NEPA/EO 12114 compliance schedule
E12.6.2 National Environmental Policy Act/Executive Order 12114

• The PM shall conduct and document NEPA/E.O. 12114 analyses for which the PM is the action proponent
• The PM shall **provide system-specific analyses and data to support other organizations’ NEPA and EO 12114 analyses**
• The CAE (or for joint programs, the CAE of the Lead Executive Component) or designee, is the approval authority for system-related NEPA and E.O. 12114 documentation
• PMs will support system-related Class A and B mishap investigations by providing analyses of hazards that contributed to the mishap and recommendations for materiel risk mitigation measures, especially those that minimize human errors.
MIL-STD-882D Eight Mandatory Steps

1. **Document the system safety approach** – Document the Government and Contractors’ approach to ESOH risk management

2. **Identify hazards** – Conduct hazard analyses of ever-increasing fidelity as the system design matures

3. **Assess the risk** – For each hazard, determine the associated level of risk

4. **Identify risk mitigation measures** – For each identified hazard, propose alternatives/controls to eliminate the hazard or reduce the risk of the hazard to an acceptable level

5. **Reduce risk to an acceptable level** – For each hazard, select the risk mitigation measure(s) to be used to eliminate the hazard or reduce the risk

6. **Verify risk reduction** – For each hazard, verify that the hazard has been eliminated or the risk mitigation measure(s) has reduced the risk of the hazard

7. **Review hazards and accept risk by appropriate authority**

8. **Track hazards, their closures, and residual risk** – Maintain a tracking system to document hazards, mitigation measures, and hazard status throughout the life cycle
MIL-STD-882D Order of Precedence

Most to Least Preferred Risk Mitigation Measures

<table>
<thead>
<tr>
<th></th>
<th>Eliminate hazards through design selection</th>
<th>Incorporate safety devices</th>
<th>Provide warning devices</th>
<th>Develop procedures and training</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>If unable to eliminate an identified hazard, reduce the associated risk through design selection.</td>
<td>If unable to eliminate the hazard through design selection, reduce the risk using protective safety features or device.</td>
<td>If safety devices do not adequately lower the risk of the hazard, include a detection and warning system to alert personnel to the particular hazard.</td>
<td>Where it’s impractical to eliminate hazards through design selection or to reduce associated risk to an acceptable level with safety and warning devices, incorporate special procedures and training. Procedures may include the use of personal protective equipment. Note: For catastrophic or critical severity categories, avoid using warning, caution, or other written advisory as the only risk reduction method.</td>
</tr>
</tbody>
</table>

“System Safety in Systems Engineering” DAU CLE009

- Roadmap for using the MIL-STD-882D System Safety methodology to integrate ESOH considerations into the SE process during each life cycle phase
- Maps System Safety analyses into the SE “V” model
- Never been done before by either the System Safety or SE communities—fundamental breakthrough in defining how the communities are supposed to work together

- Results to Date:
 - Available online April 2005
 - 3054 graduates as of OCT08
System Safety - ESOH Management
Evaluation Criteria for DoD Acquisition

• Tool to assess SE technical discipline in the integration of ESOH using System Safety methodology
 – Technical and Program Reviews (self assessment)
 – Milestone Review Process (oversight assessment)
• Four key areas for evaluation
 – Planning
 – Requirements Analysis
 – Hazard analysis
 – Resources
System Safety - ESOH Management
Evaluation Criteria for DoD Acquisition

• Assessment criteria for each area for each life cycle phase
 – Weighted summation of four ratings to overall rating for each life cycle phase
• Incorporated into the next Defense Acquisition Program Support (DAPS) SE Assessment Methodology
• Available at Acquisition Community Connection https://acc.dau.mil/ESOH
Integrating ESOH Into SE Booklet

• Builds on CLE009 and depicts when ESOH activities should be performed to influence system design throughout the systems engineering process

• System Safety-ESOH Mgt. Evaluation Criteria are included
Trish Huheey
ODUSD(I&E)
ESOH in Acquisition Lead
(703) 604-1846
patricia.huheey@osd.mil
BACKUP
NI Asset Valuation

• Tenet: To make good decisions about managing assets, it helps to know something about their value!

• Corollary: Value depends on actual or potential use. Therefore, the process of identifying NI asset values can uncover innovative opportunities to use NI assets to support the mission.
 – *NI asset valuation is fundamentally about leveraging NI asset values to support the mission.*

• NI asset valuation is a set of approaches and techniques used to assess values of NI.
Update on Survey on Modeling and Simulation Support for the Systems Engineering of Systems of Systems

Judith Dahmann
Jim Hollenbach
Systems Engineering for Systems of Systems

 - Characterizes SoS in the DoD Today
 - Identifies core elements of SoS SE
 - Discusses application of SE processes to SoS SE core elements
 - Highlights ‘emerging principles’
 - Briefly addresses M&S

- Requested M&S Committee provide input on use of M&S to support SE for SoS

- Purpose of this presentation is to
 - Summarize the response to date
 - Outline plans for next steps
 - Solicit additional input from community
How does the SoS SE Guide address M&S?

- Initial .9 Version included M&S throughout the draft.
- The practitioner reviews indicate limited use of M&S.
 - Main place where M&S was cited is in the emulation of systems not otherwise available for testing.
- Consequently the 1.0 Working Draft limited M&S to this area.
- Comments on the draft identified more uses of M&S.
- The final 1.0 Version has an M&S section and added places where M&S is discussed.
Specific Request

• For each of the seven core elements of SoS systems engineering (SE) listed on the following pages, please share your views on:
 - The potential for applying modeling and simulation, including why M&S has potential value
 - Your experience using M&S for this SoS SE element, including the context of the application, the ways M&S was applied, the products produced, how they were used, and the value added by M&S
 - The enablers for use of M&S in this element, including what attributes made successful use of M&S possible (in cases where it was applied) and barriers that inhibited use of M&S (in cases where the potential is not being realized).
Timeline

- Pre-Release version of SoS SEG released in May 2008
- Dahmann briefed NDIA M&S Committee at June 2008 meeting
- June letter from Kristen Baldwin (then Acting Director for Systems and Software Engineering) requesting committee input
- Survey was sent out by Hollenbach in early July
- Responses were received in September
- Next steps outlined here

How did we get here?
Summary of Responses

- 19 Responses from 14 organizations
- 10 volunteers to help to synthesize the report on survey results
- Responses were of several types
 - Views and specific experiences
 - Perspective on issues
 - Views based on M&S for SE
 - Organizational experience
- 8 responses include descriptions of specific activities which are candidates for follow-up
Responses Overview

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Indiv or Org input?</th>
<th>Response Type</th>
<th>Example</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC Favio Lopez</td>
<td>3CE</td>
<td>Org</td>
<td>Views and specific experiences</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>David Dubuque</td>
<td>Aegis Technologies</td>
<td>Indiv</td>
<td>Perspective on issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danny Thomas</td>
<td>Aegis Technologies</td>
<td>Indiv</td>
<td>Perspective on issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robert Upchurch</td>
<td>Aegis Technologies</td>
<td>Org</td>
<td>Perspective on issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hugh Griffis</td>
<td>Air Force Aeronautical Sys Ctr (ASC/END)</td>
<td>Org</td>
<td>Organizational experience</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Terry Christian</td>
<td>Air Force Research Lab (AFRL/XPT)</td>
<td>Indiv</td>
<td>Organizational experience</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin Chen</td>
<td>Australia DSTO (Maritime Ops)</td>
<td>Indiv</td>
<td>Views based on M&S for SE</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>William Tucker</td>
<td>Boeing Company</td>
<td>Org</td>
<td>Views and specific experiences</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Frank Grange</td>
<td>Lockheed Martin</td>
<td>Indiv</td>
<td>Views and specific experiences</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Steve Hall</td>
<td>Lockheed Martin</td>
<td>Indiv</td>
<td>Views and specific experiences</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Chett Harris</td>
<td>Lockheed Martin (IS&GS)</td>
<td>Indiv</td>
<td>Perspective on issues</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Koury, Polzer, et. al.</td>
<td>Lockheed Martin</td>
<td>Indiv but…</td>
<td>Views and specific experiences</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lan-Than McGough</td>
<td>Marine Corps Systems Command</td>
<td>Org</td>
<td>Views and specific experiences</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dave Prochnow</td>
<td>MITRE</td>
<td>Indiv</td>
<td>Views and specific experiences</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>George Hazelrig</td>
<td>National Science Foundation</td>
<td>Indiv</td>
<td>Views based on M&S for SE</td>
<td></td>
<td>~</td>
</tr>
<tr>
<td>Steve Lyda</td>
<td>Naval Air Systems Command (Air 4.7)</td>
<td>Indiv</td>
<td>Views based on M&S for SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kenneth Small</td>
<td>Naval Surface Warfare Cntr Dahlgren</td>
<td>Indiv</td>
<td>Perspective on issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomas Haley</td>
<td>Naval Undersea Warfare Center</td>
<td>Indiv</td>
<td>Views based on M&S for SE</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Emily Andrew</td>
<td>Raytheon</td>
<td>Org</td>
<td>Views and specific experiences</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Government, industry, and FFRDC responses
Proposed Next Steps

- Convene team of volunteers to begin synthesis processes
 - Evening meeting during SE Conference to get started (Wed 5:30-6:30 pm in this room)
- Target February M&S Committee meeting in DC for brief-out of draft results
- Follow-up with
 - Written report
 - More in-depth look at specific activities which could serve as examples

Added inputs are welcome
Need these as soon as possible
Execution of the Acquisition M&S Master Plan Progress Report

NDIA Systems Engineering Conference
San Diego, California
20-23 October 2008

James W. Hollenbach
ODUSD(A&T)/SSE/DTE Support
Simulation Strategies, Inc.
jimh@simstrat.com, 727.824.0931
Outline

- AMSMP Development (Review)
- AMSMP Execution
 - Funding approach
 - Progress overview
- Future Plans
- Q&A/Status of Individual Actions
Acquisition M&S Governance Structure

Industry
- SISO, OMG, etc.
- INCOSE
- NDIA Sys Eng Division
- SMAS, SE DSIG, etc.
- INCOSE MBSE WG
- NDIA M&S Committee

DoD Acquisition
- Chair: Mr. Gordon Kranz
 ODUSD(A&T)/SSE
- Systems Engineering Forum
 Feb 04
- Acquisition M&S Working Group
 Chair: Ms Philomena Zimmerman
 PM FCS (BCT) Associate Director, Modeling and Simulation
 Feb 05

DoD M&S
- Mr. DiPetto
 Acquisition Member: ODUSD(A&T)/SSE/DTE
- M&S SC
- M&S IPT
 Col Sean McAllum, USAF
 Acquisition Member: ODUSD(A&T)/SSE/DTE

AMSWG is anchored in acquisition community and linked to industry and the DoD M&S community
Purpose

“Improve M&S support to the DoD acquisition process…”

Vision

“Optimally employ responsive, trustworthy, and cost-effective M&S capabilities to support defining, developing, testing, producing and sustaining America's capabilities that support the spectrum of DoD missions.”
Acquisition M&S

- **Definition:** M&S used to help define, design, develop, test, produce, operate, and sustain defense systems and systems-of-systems.

- **Scope:** Across the acquisition life cycle.

![Diagram illustrating the acquisition life cycle with various stages including Concept Refinement, Technology Development, System Dev/Demonstration, Production, and O&S. The diagram highlights the feedback loop and recursive processes involving user requirements, system requirements, component design, and demonstration.']
Potential M&S Benefits

- M&S can improve design (designs are models), integration, and evaluation
 - Accurately track complex relationships and micro-level interactions
 - Present macro-level measures of merit to decision makers
 - Earlier, more accurate understanding of a system, lowering risk
- Means to deal with the challenges of acquiring capabilities/systems of systems, with attendant dramatic increases in trade space and complexity
 - Track the many more entities, variables, interactions, etc.
 - Provide a shared understanding across vast development enterprises
- M&S can speed the design-evaluation cycle, saving time and money
- Provides a more defendable analytical underpinning for decisions
- Credible M&S surrogates for systems and forces can cost-effectively…
 - flesh-out the battlespace for live tests of individual systems
 - provide the only practical way to assess SoS capabilities as they evolve
AMSMP Strategy

- Not try to do the job of program/capability managers; rather, seek to empower them by
 - Removing systemic obstacles in their path
 - Identifying new options for approaching their tasks
- Foster widely-needed M&S capabilities that are beyond the reach of individual programs
- Address M&S issues and actions necessary to enable acquisition of joint capabilities (systems of systems)
- Lay out tasks as a Work Breakdown Structure (WBS)
 - Discrete tasks with identified leads and explicit deliverables
 - Easier to resource, schedule, and manage
 - Each contributes to better M&S support to acquisition
Acquisition M&S Master Plan

Development Process

(Top-down)

1. Desired Acqn Environment per CJCSI 3170 & DoDD 5000.1
2. Identify Needed System Engineering Capabilities
3. Identify Needed M&S Capabilities
4. Assess Current Issues/Needs (e.g., SoS efforts)
5. Assess Recommendations fm Prior M&S in Acqn Studies
6. Identify M&S Capability Gaps
7. Identify Actions Needed to Address the Gaps
8. Identify Actions of Others (e.g., M&S CO, NII, NIST)
9. Determine & Prioritize What Acqn. Community Must Do
10. Acquisition M&S Master Plan

(Bottom-up)
Assessment Highlights

- Widespread use of M&S in acquisition, but usually stove-piped
- Many M&S representation gaps and deficiencies
- Acquisition staffs mostly uninformed about M&S capabilities and limitations
- No requirement to document planned M&S support to acquisition
- No effective business model for developing, using, and maintaining broadly-needed M&S capabilities
- Weak contractual guidelines for M&S and data needs
- Lack of agreed standards for sharing info and interoperating M&S tools
- Hard to discover reusable M&S tools and data, insufficient info to evaluate reuse candidates, and lack of reuse incentives = little reuse
- Virtual ranges (Live-Virtual-Constructive simulation environments) aren’t readily available
- VV&A often poor or non-existent; weak documentation & examination
Acquisition M&S Master Plan Structure

- Foreword
- Introduction
 - Purpose
 - Vision
 - Scope
- Objectives (5)
- Actions (40)
 - Action
 - Rationale (why it’s needed)
 - Discussion (implementation guidance)
 - Lead & supporting organizations
 - Products (what is expected)
 - Completion goal (year)
- Execution Management

http://www.acq.osd.mil/sse/as/guidance.html
Five Objectives, 40 Actions

<table>
<thead>
<tr>
<th>Objective 1</th>
<th>Objective 2</th>
<th>Objective 3</th>
<th>Objective 4</th>
<th>Objective 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide necessary policy and guidance</td>
<td>Enhance the technical framework for M&S</td>
<td>Improve model and simulation capabilities</td>
<td>Improve model and simulation use</td>
<td>Shape the workforce</td>
</tr>
</tbody>
</table>

Objective 1
- 1-1 M&S management
- 1-2 Model-based systems engineering & collaborative environments
- 1-3 M&S in testing
- 1-4 M&S planning documentation
- 1-5 RFP & contract language
- 1-6 Information Assurance

Objective 2
- 2-1 Product development metamodel
- 2-2 Commercial SE standards
- 2-3 Distributed simulation standards
- 2-4 DoDAF utility
 - a) DoDAF 2.0 Systems Engineering Overlay
 - b) Standards for depiction & interchange
- 2-5 Metadata template for reusable resources

Objective 3
- 3-1 Acquisition inputs to DoD M&S priorities
- 3-2 Best practices for model/sim development
- 3-3 Distributed LVC environments
 - a) Standards
 - b) Sim/lab/range compliance
 - c) Event services
- 3-4 Central funding of high-priority, broadly-needed models & sims
 - a) Prioritize needs
 - b) Pilot projects
 - c) Expansion as warranted

Objective 4
- 4-1 Help defining M&S strategy
- 4-2 M&S planning & employment best practices
- 4-3 Foster reuse
 - a) Business model
 - b) Responsibilities
 - c) Resource discovery
- 4-4 Info availability
 - a) Scenarios
 - b) Systems
 - c) Threats
 - d) Environment
- 4-5 VV&A
 - a) Documentation
 - b) Risk-based
 - c) Examination
- 4-6 COTS SE tools
- 4-7 M&S in acqn benefit metrics

Objective 5
- 5-1 Definition of required M&S competencies
- 5-2 Harvesting of commercial M&S lessons
- 5-3 Assemble Body of Knowledge for Acqn M&S
- 5-4 M&S education & training
 - a) DAU, DAG & on-line CLMs
 - b) Conferences, workshops & assist visits
- 5-5 MSIAC utility

Key
- Broader than Acqn
- Partially broader
Outline

- AMSMP Development (Review)
- AMSMP Execution
 - Funding approach
 - Progress overview
- Future Plans
- Q&A/Status of Individual Actions
Funding Approach

Prioritized options to accomplish AMSMP actions

1. Accomplish via sweat equity
 - e.g., OUAD(A&T)/SSE M&S Cell (resource limited)

2. Compete for M&S Steering Committee funds (if > acqn)
 - only DoD-wide M&S Program Element

3. Compete for OSD funding “targets of opportunity”
 - e.g., study funds, end-of-year sweep

4. Submit as SBIR topics (just beginning)

5. Team with other organizations
 - e.g., NII & NAVAIR on Information Assurance (Action 1-6)

6. POM initiative (none so far, but under discussion)
Some Recent Funding Successes (1 of 4)

- Successfully competed for M&S SC funds for these projects, currently under way with SSE/DT&E oversight

 - **07-1-001f Integrated Natural Environment Authoritative Representation Process (AMSMP Action 4-4d)**
 Deliverable: Environmental Scenario Generator that provides better and more rapid generation of weather, space, and terrain representations
 Program Manager: Col Mark Zettlemoyer, USAF (MSCA)
 Performer: SAIC
 $2.3M

 - **07-1-002f M&S Resource Reuse Business Model (AMSMP Action 4-3a)**
 Deliverable: Recommended business model (including policy, incentive structure, and procedures) for the reuse of M&S resources and a campaign plan for implementation
 Program Manager: Mr. Chris DiPetto (was Lt Col White)
 Performer: Center for Naval Analysis (Dr. Dennis Shea, et. al.)
 $800K
Some Recent Funding Successes (2 of 4)

- **07-1-004f Educating the M&S Workforce** (AMSMP Actions 5-1 and 5-3)
 Deliverables:
 - Required workforce M&S competencies
 - Learning architecture to define content, instructional delivery methods, and scope
 Program Manager: ODASN(RDA)/CHENG (W. Zimmerman)
 Performer: Naval Postgraduate School, other academic partners, $3.2M

- **07-1-005f VV&A Standardization** (AMSMP Action 4-5a)
 Deliverables:
 1. VV&A standardized documentation template
 2. VV&A documentation tool to assist users
 3. Policy and guidance updates
 PM: Director, Navy Modeling and Simulation Office (K. Charlow)
 Performer: SPAWAR
 $550K
Some Recent Funding Successes (3 of 4)

- **060-TR-01 Live Virtual Constructive Architecture Roadmap** (AMSMP Actions 2-3 and 3-3a)
 Deliverables:
 - Functional requirements for Live-Virtual-Constructive simulation environments
 - Capabilities & limitations of various distributed simulation architectures in use across DoD (DIS, ALSP, HLA, TENA, CTIA)
 - Comparative analyses of the architectures, middleware, business models, and standards management
 - Analysis of alternatives
 - Recommended roadmap
 Oversight: P&R and DUSD (A&T)/SSE/DT&E
 Program Manager: JFCOM (Mr. Ken Goad)
 Performer: JFCOM, IDA, JHU APL, PEO-STRI
 $1.4M
Some Recent Funding Successes (4 of 4)

- Successfully competed for OSD Study Funds for:
 - Study on Best Practices for M&S Tool Development (AMSMP Action 3-2)
 - Deliverables:
 - Bibliography identifying sound practices
 - Draft and final version of best practices for M&S tool development
 - Program Manager: Col Sean McAllum, USF, ODUSD(A&T)/SSE/DT&E
 - Performer: JHU APL
 - $350K

 - Study on Management of Broadly-needed M&S tools (AMSMP Action 3-4)
 - Deliverables:
 - Best practices for managing broadly needed M&S tools
 - Recommended actions to improve DoD management of such tools
 - Program Manager: Col Sean McAllum, USF, ODUSD(A&T)/SSE/DT&E
 - Performer: JHU APL
 - $500K
Execution Progress Overview

Objective 1
Provide necessary policy and guidance

1-1 M&S management
1-2 Model-based systems engineering & collaborative environments
1-3 M&S in testing
1-4 M&S planning documentation
1-5 RFP & contract language
1-6 Information assurance

Objective 2
Enhance the technical framework for M&S

2-1 Product development metamodel
2-2 Commercial SE standards
2-3 Distributed simulation standards
2-4 DoDAF utility
 a) DoDAF 2.0 Systems Engineering Overlay
 b) Standards for depiction & interchange
2-5 Metadata template for reusable resources

Objective 3
Improve model and simulation capabilities

3-1 Acquisition inputs to DoD M&S priorities
3-2 Best practices for model/sim development
3-3 Distributed LVC environments
 a) Standards
 b) Sim/lab/range compliance
 c) Event services
3-4 Central funding of high-priority, broadly-needed models & sims
 a) Prioritize needs
 b) Pilot projects
 c) Expansion as warranted

Objective 4
Improve model and simulation use

4-1 Help defining M&S strategy
4-2 M&S planning & employment best practices
4-3 Foster reuse
 a) Business model
 b) Responsibilities
 c) Resource discovery
4-4 Info availability
 a) Scenarios
 b) Systems
 c) Threats
 d) Environment
4-5 VV&A
 a) Documentation
 b) Risk-based
 c) Examination
4-6 COTS SE tools
4-7 M&S in acqn benefit metrics

Objective 5
Shape the workforce

5-1 Definition of required M&S competencies
5-2 Harvesting of commercial M&S lessons
5-3 Assemble Body of Knowledge for Acqn M&S
5-4 M&S education & training
 a) DAU, DAG & on-line CLMs
 b) Conferences, workshops & assist visits
5-5 MSIAC utility
Outline

- AMSMP Development (Review)
- AMSMP Execution
 - Funding approach
 - Progress overview
- Future Plans
- Q&A/Status of Individual Actions
Future Plans (FY09/10)

- Continue cooperatively executing the AMSMP
- Update AMSMP to reflect accomplishments, fact of life changes, and newly-identified needs (e.g., Virtual Battlespace Center for OSD acqn decisions). Make vision more specific.
- Ensure programs know about and can access deliverables
- Provide direct assistance to programs
 - At the request of SSE/Assessment and Support, have already conducted M&S review of Joint Light Tactical Vehicle and FCS
- Continue to educate and learn via outreach
 - Conferences and workshops, both defense & commercial
- Support development of useful standards
 - SISO, W3C Data Semantics WG, OMG, etc.
- Pursue additional resources (both people and $)
Outline

- AMSMP Development (Review)
- AMSMP Execution
 - Funding approach
 - Progress overview
- Future Plans
- Q&A/Status of Individual Actions
 - Will gladly discuss individual actions of interest
AMSMP Execution Progress Overview

Objective 1
- **Provide necessary policy and guidance**
 - 1-1 M&S management
 - 1-2 Model-based systems engineering & collaborative environments
 - 1-3 M&S in testing
 - 1-4 M&S planning documentation
 - 1-5 RFP & contract language
 - 1-6 Information assurance

Objective 2
- **Enhance the technical framework for M&S**
 - 2-1 Product development metamodel
 - 2-2 Commercial SE standards
 - 2-3 Distributed simulation standards
 - 2-4 DoDAF utility
 - a) DoDAF 2.0 Systems Engineering Overlay
 - b) Standards for depiction & interchange
 - 2-5 Metadata template for reusable resources

Objective 3
- **Improve model and simulation capabilities**
 - 3-1 Acquisition inputs to DoD M&S priorities
 - 3-2 Best practices for model/sim development
 - 3-3 Distributed LVC environments
 - a) Standards
 - b) Sim/lab/range compliance
 - c) Event services
 - 3-4 Central funding of high-priority, broadly-needed models & sims
 - a) Prioritize needs
 - b) Pilot projects
 - c) Expansion as warranted

Objective 4
- **Improve model and simulation use**
 - 4-1 Help defining M&S strategy
 - 4-2 M&S planning & employment best practices
 - 4-3 Foster reuse
 - a) Business model
 - b) Responsibilities
 - c) Resource discovery
 - 4-4 Info availability
 - a) Scenarios
 - b) Systems
 - c) Threats
 - d) Environment
 - 4-5 VV&A
 - a) Documentation
 - b) Risk-based
 - c) Examination
 - 4-6 COTS SE tools
 - 4-7 M&S in acqn benefit metrics

Objective 5
- **Shape the workforce**
 - 5-1 Definition of required M&S competencies
 - 5-2 Harvesting of commercial M&S lessons
 - 5-3 Assemble Body of Knowledge for Acqn M&S
 - 5-4 M&S education & training
 - a) DAU, DAG & on-line CLMs
 - b) Conferences, workshops & assist visits
 - 5-5 MSIAC utility

Separate presentation
Status of Individual Actions

Caveat: Did not rate down progress for lateness, unless stalled
Objective 1: Provide Necessary Policy & Guidance

1-1. Provide effective, persistent DoD-wide M&S management to address cross-cutting M&S issues, coordinate actions

Lead: OUSD(AT&L) **Support:** OUSD(AT&L)/DS(SSE), OUSD(P&R), OUSD(C)/PA&E, etc.

Products: Revised DoDD 5000.59 (M&S Management), revised senior leadership management; and improved policies for M&S management. revised senior leadership management; and improved policies for M&S management.

Completion goal: 2006

- **New DoD M&S management structure in place; effectiveness questioned**
- **New DoD Directive finally released Aug 07, with promise of a follow-on DoDI to define key responsibilities and processes. SOP now proposed as substitute.**
- **No acquisition community leadership role on M&S SC (Training & Analysis do)**
- **Current project selection process does not fund only cross-cutting efforts, misusing M&S PE**

Next Steps:
- **Continue to argue for an SSE leadership role on M&S SC**
- **Advocate within M&S governance structure for a DoDI on M&S management**
- **Continue to propose an alternative approach to “C&CC Business Plan”**
Objective 1: Provide Necessary Policy & Guidance

1-2. Promote model-based systems engineering (MBSE) and M&S-enabled collaborative environments, at both the program and joint capability level

Lead: OUSD(AT&L)/DS(SSE); Support: Components

Products: Revised guidance in DAG

Completion goal: 2007

- Current DAG mentions collaborative environments 14 times, simulation-based testing once, SBA twice, and MBSE not at all.
- Programs/companies often claim collaborative environments, but only partial
- MBSE a prominent part of INCOSE’s SE Vision 2020
- Increasing industry use of MBSE concept & tools
- SSE submitted new DAG language May 07, but DAG revision stalled

Next steps:
- Continue advocacy for submitted DAG language; revise submittal if rejected
- Investigate possibility of a CLM on MBSE
Objective 1: Provide Necessary Policy & Guidance

1-3. Establish policy and guidance on appropriate use of M&S to plan tests, to complement system live tests, and to evaluate joint capabilities

Co-leads: OUSD(AT&L)/DS, ODOT&E; Support: Components

Products: Revised policy and guidance in DoDI 5000.2 and DAG

Completion goal: 2007

- DoDI 5000.2 is excellent at the program level, but not at the capability level
- Better discussion in SSE’s latest DAG submission, but need more specificity
- JMETC launched, but many challenges ahead, including policy
- Services are getting more active (e.g., NAVAIR M&S Enterprise Initiative)

Next steps:
- NDIA M&S Cmte participate in DT&E Cmte effort; check for progress
- Track JMETC policy development, respond appropriately
- Continue working with NAVAIR M&S Enterprise to develop guidance
- Draft expanded policy and guidance, vet with the various stakeholders
- Submit additional changes to DAG (both T&E and M&S portions)
Obj. 1: Provide Necessary Policy & Guidance (cont.)

1-4. Establish policy to require documented M&S planning at the joint capability & program levels as part of the Systems Engineering Plan, T&E Strategy and T&E Master Plan

- **Co-leads:** OUSD(AT&L)/DS(SSE), ODOT&E; **Support:** Components
- **Products:** Revised policy and guidance in DoDI 5000.2, DAG, and DOT&E TEMP Planning Guidance
- **Completion goal:** 2007

- AMSWG (SSE) submitted revised language to DoD 5000.2, DAG language and SEP Preparation Guide
- Partial acceptance of SEP language; DoDI 5000.2 and DAG updates stalled
- No action thus far regarding TEMP Planning Guidance

Next steps:
- **Continue working with NAVAIR M&S Enterprise to develop guidance**
- **Draft/submit language for TEMP Planning Guidance**
Obj. 1: Provide Necessary Policy & Guidance (cont.)

1-5. Establish M&S-related guidelines for solicitations, source selections, and contracting.

Lead: OUSD(AT&L)/DS(SSE); **Support:** OUSD(AT&L)/DPAP, ODOT&E, Components

Products: Sample language in DoD publications (e.g., DAG, SEP Preparation Guide, Contracting for Systems Engineering Guidebook) regarding M&S requirements, data rights, and the responsibilities and liabilities of parties regarding sharing and reuse

Completion goal: 2007

- Solicited inputs from AMSWG members and industry (through NDIA M&S Cmte)
- AMSWG (SSE) submitted DAG language regarding source-selection criteria
- Presentation at Oct 07 NDIA Systems Engineering Conference
- Action completion is overdue (2007) due to M&S Cell resource constraints

Next steps:
- Further refinement and vetting of proposed guidance
- Synthesize best language & submit to DAG (update), SEP Preparation Guide, and Contracting for Systems Engineering Guidebook
Obj. 1: Provide Necessary Policy & Guidance (cont.)

1-6. Ensure practical guidelines for information assurance certification and accreditation of M&S federated networks falling under multiple Designated Accreditation Authorities (DAAs)

Lead: OASD(NII); **Support:** OUSD(AT&L)/DS(SSE), OUSD(I), NSA

Products: Proven, practical guidelines published in DAG and DoD 8500.2-H, per DoDI 8500.2 “Information Assurance Implementation,” Feb 6, 2003

Completion goal: 2007

- NII has published DoDI 8500.2, but AMSWG questions adequacy
- AMSWG-NII discussions held in 2007; NAVAIR procedures identified as a candidate to provide the additional specificity needed
- Awaiting delivery of NAVAIR procedures for (a) NII evaluation of compliance with 8500.2. (b) NII evaluation of suitability for revising 8500.2, and (c) AMSWG evaluation of suitability for inclusion in DAG

Next steps:
- Follow-up with NAVAIR to ensure submission of their procedures
- Conduct three evaluations mentioned above
- Draft, vet, and submit DAG language
Objective 2: Enhance the Technical Framework for M&S

2-1. Develop a product development information metamodel & associated metadata extensions to the DoD Discovery Metadata Specification

Lead: OUSD(AT&L)/DS(SSE); Support: OASD(NII), Components
Products: Revised DDMS; revised guidance in DAG.
Completion goal: 2008

- **JSF has developed a metamodel specification and provided it to M&S CO**
- **We requested, and M&S CO provided, Scrudder assistance to work with JSF to evolve/refine its metamodel**
- **Working group has decided key issues and expects to publish a revised version shortly**

Next steps:

- **JSF to complete revised metadata specification**
- **Coordinate with M&S CO to vet more broadly (likely PA&E interest) and make this a DoD or (preferably) commercial standard**
- **Submit into DoD Standardization Program process**
Objective 2: Enhance the Technical Framework for M&S

2-2. Support development of open commercial and non-proprietary standards for (model-based) systems engineering, such as OMG’s Systems Modeling Language (SysML) and ISO Standard 10303 AP-233

Co-leads: OUSD(AT&L)/DS(SSE); DoD CIO Support: OASD(NII), DLA, OUSD(AT&L), Products: Standards suitable for use by DoD

• Action is complete for SysML and AP-233, but DoD awareness is lacking
• SysML v1.0 issued as an “available standard;” v 1.1 minor revision late 2008
• Increasing usage & teaching of SysML; major subject at INCOSE, NDIA
• Navy M&S Standards Steering Group has proposed SysML as a standard
• AP-233 SE data interchange standards being released incrementally
• COTS System Engineering tools are incorporating SysML and AP-233
• Nothing yet submitted to DoD Standardization Program and DISR

Next steps:
• Track SysML and AP-233 implementations, publicize results
• Investigate DoD Standardization Program process; submit SysML and AP-233
• Identify any needs for additional standards
Objective 2: Enhance the Technical Framework for M&S

2-3. Establish a forum to clarify the characteristics and application of various distributed simulation standards (ALSP, DIS, HLA, SI3, TENA, etc.) and examine opportunities for convergence

Lead: OUSD(AT&L) **Support:** OUSD(AT&L)/TRMC & DS(SSE), ODOT&E, Components

Products: (1) Information on strengths & weaknesses of the various standards; (2) agreement on policy and/or guidance on the use of distributed simulation standards; (3) a way ahead regarding distributed simulation standards

- **Completion goal:** 2007

- **M&S SC-funded LVC Architecture Roadmap in 2007, due out late 2008**
- **SE Forum is interested, has taken one briefing**
- **M&S Cell (Hollenbach) participating in this project, tracking progress and coordinating related M&S SC actions (HLA Way Ahead)**

Next steps:
- **Continue to participate; await final report**
- **Help shape M&S SC response**
Obj. 2: Enhance the Technical Framework for M&S (cont.)

2-4. Improve the utility of the DoD Architecture Framework (DoDAF) for acquisition

2-4(a) Develop Systems Engineering Overlay (profile) for DoDAF v2.0

Lead: OUSD(AT&L)/DS; **Support:** OASD(NII), Components

Products: Acquisition Overlay for DoDAF v2.0

Completion goal: 2006

2-4(b) Support development of open commercial standards for the depiction and interchange of DoDAF-compliant architectures

Lead: OASD(NII) **Support:** OUSD(AT&L)/DS(SSE)

Products: Published standards suitable for adoption by DoD in DoDAF 2.0; revised guidance in DAG

Completion goal: 2007

- 2-4(a): DoDAF Overlay concept has been dropped, so this action is OBE
- 2-4(b): OMG’s UPDM (UML Profile for DoDAF/MODAF) nearly finalized, NII has embraced UPDM as an element of DoDAF 2.0 development
- SE Forum considering the value and impact of DoDAF
- ASD(NII) is attempting to make DoDAF v2.0 more useful for acquisition
- Acquisition Community participation in DoDAF WG curtailed

Next steps:

- **Increase involvement in DoDAF WG**
- **Submit UPDM to DoD Standardization Program / DISR Online**
- **Advocate use of UPDM for architecture data exchange**
Obj. 2: Enhance the Technical Framework for M&S (cont.)

2-5. Establish a standard template of key characteristics (metadata) to describe (discover) reusable M&S resources

Lead: OUSD(AT&L) **Support:** OUSD(AT&L)/DS(SSE) & TRMC, OASD(NII), ODOT&E, Components

Products: Published standard template; usage guidance in DAG

Completion goal: 2007

- M&S CO M&S COI Discovery Metadata project addresses this
- M&S Cell has coordinated with M&S CO to ensure no cross-threads with Action 2-1 (Product Development Metadata Specification)
- Version 1.0 published, being evaluated by users (e.g., MSRR, JDS, JRSG) who are providing feedback to refine it

Next steps:
- **Draft, vet and submit DAG entry when final product is available**
Objective 3: Improve Model & Simulation Capabilities

3-1. Establish a process to ensure acquisition needs are reflected in DoD M&S priorities

Lead: OUSD(AT&L) **Support:** OUSD(AT&L)/DS(SSE), ODOT&E, DOD CIO, Components

Products: A method to capture and prioritize acquisition needs.

Completion goal: 2007

- AMSWG has successfully obtained M&S SC funding for several projects
- AMSWG has started an effort to pursue SBIR opportunities
- AMSWG till does not have an effective voice in other venues that affect M&S capability, such as other S&T and DARPA

Next steps:
- Continue to pursue M&S SC and SBIR funding opportunities
- Investigate DoD S&T planning process to identify entry points
- Build list of acquisition M&S S&T needs
Objective 3: Improve Model & Simulation Capabilities

3-2. Define and foster best practices for efficient development and evolution of credible M&S tools, incorporating user-defined requirements, a systems engineering approach, and appropriate verification & validation

Lead: OUSD(AT&L); **Support:** OUSD(AT&L)/DS(SSE), ODOT&E, DOD CIO, Components

Products: Best practices publication, available via MSIAC, DTIC, etc.; DAG guidance to use

Completion goal: 2008

- Have obtained OSD study funds for the definition portion of this task
- SOW written
- Contracting with JHU APL to develop this best practice

Next steps:
- Assess JHU APL deliverable
- Foster its use (via Action 5-4)
Enable readily-available distributed live-virtual-constructive environments, leveraging related initiatives

3-3(a) Establish DoD-wide standards for distributed environments

Lead: OUSD(AT&L); Support: OUSD(AT&L)/TRMC & DS(SSE); ODOT&E; DOD CIO, Components
Products: Published standard; DODI (# TBD) policy to use
Completion goal: 2008

3-3(b) Make candidate simulations, labs and ranges compliant with these standards

Lead: Components; Support: OUSD(AT&L)/DS(SSE) & TRMC, ODOT&E
Products: A larger collection of simulations, labs, and ranges ready to be employed in distributed events
Completion goal: 2010

3-3(c) Ensure availability of services to help plan and conduct events

Lead: Components; Support: OUSD(AT&L), OUSD(AT&L)/TRMC, DISA
Products: Fee-based technical services to help users (e.g., PMs, Capability Managers, OTAs) plan and conduct distributed events
Completion goal: 2009

- LVC Architecture Roadmap and JFCOM Joint Composable Object Model projects underway
- Virtual Battlespace Center Defense Science Board Task Force in work
- No funding yet available to do the rest

Next steps:
- Await LVC Architecture Roadmap, support implementation as appropriate
- Pursue POM initiative
Obj 3: Improve Model & Simulation Capabilities (cont.)

3-4. Centrally fund and manage the development of high-priority, broadly-needed M&S tools

3-4(a) Identify and prioritize broadly-needed M&S tools
 Lead: OUSD(AT&L); Support: OUSD(AT&L)/(SSE); ODOT&E, DOD CIO, Components
 Products: Prioritized list of common M&S tool needs
 Completion goal: 2007

3-4(b) Conduct one or more pilot projects to develop new M&S tools or update existing ones to meet these needs
 Lead: OUSD(AT&L); Support: OUSD(AT&L)/DS(SSE), Components
 Products: Proof of concept for managing the development/evolution of M&S tools to meet broadly-shared needs
 Completion goal: 2008

3-4(c) Expand the scope of central M&S tool management as warranted by pilot project results and the list of common M&S needs
 Lead: OUSD(AT&L); Support: OUSD(AT&L)/DS(SSE), ODOT&E, Components
 Products: Capability to provide broadly-needed M&S tools in a more responsive and cost-effective way.
 Completion goal: 2011

- AMSWG submitted 3-4(b) pilot proposal to M&S SC, but it wasn’t funded
- Funding obtained to have JHU APL identify best practices for managing broadly needed M&S tools and recommend DoD actions

Next steps:
- Assess JHU APL deliverables, pursue actions as appropriate
Objective 4: Improve Model & Simulation Use

4-1. Provide potential acquisition M&S users the knowledge needed to formulate an effective M&S strategy via ready access to M&S expertise and information about M&S capabilities and gaps, reusable resources, lessons-learned, etc.

Lead: OUSD(AT&L) **Support:** OUSD(AT&L)/DS(SSE)

Products: Revised guidance in DAG; improved knowledge base in MSIAC; assist visits (e.g., by OUSD(AT&L)/DS(SSE))

Completion goal: 2008

- **Revised guidance submitted to DAG**
- **SSE M&S Cell assisting as able, but resource limited, not widely advertised**
- **Navy coming on line, but no action from other Components**
- **5-1 Education project Identified M&S Bodies of Knowledge that offer useful information**

Next steps:
- **Advertise and expand assist visits. SSE has made this a 2008 priority.**
- **Based on our experience, promote similar efforts by other Components**
- **Improve MSIAC expertise regarding M&S in acquisition (Action 5-5)**
Objective 4: Improve Model & Simulation Use

4-2. Define and disseminate best practices for disciplined M&S planning & employment

Lead: OUSD(AT&L)/DS(SSE), **Support:** OUSD(AT&L), Components
Product: Revised best practices guidance in DAG and MSIAC
Completion goal: 2007

- High-level discussion included in “M&S for Systems Engineering” CLM
- Expanded discussion submitted in recent DAG revision
- M&S Planning and Employment Best Practices solicitation completed Apr 07
- NAVAIR M&S Enterprise is developing recommendations
- Action completion is overdue (2007) due to M&S Cell resource constraints

Next steps:
- **Continue working with NAVAIR M&S Enterprise to develop guidance**
- **Synthesize best practice, conduct AMSWG & NDIA reviews**
4-3. Facilitate the sharing of reusable resources

4-3(a) Establish a DoD-wide business model for compensating providers of reusable M&S resources (e.g., information, software, services)

Lead: OUSD(AT&L); **Support:** OUSD(AT&L)/DS(SSE), OUSD(P&R), OUSD(C)/PA&E, Components

Product: Documented business model; revised policy and/or guidance in DoD 5000 series & DAG

Completion goal: 2007

- **M&S SC-funded M&S Resource Reuse Business Model study underway, will report out late 2008**
- **Study will identify key issues and recommend significant changes**
- **LVCAR will also address business model issues**
- **An effective business model is not yet established**

Next steps:

- **No further action needed yet; awaiting study outcome**
- **LVC Architecture Roadmap may have an impact**
- **Take action to implement study & LVCAR recommendations as appropriate**
Obj. 4: Improve Model & Simulation Use (cont.)

4-3. Facilitate the sharing of reusable resources

4-3(b) Establish DoD policy and/or guidance regarding responsibilities to share, protect and properly use M&S information, tools, and data

Co-Leads: OASD(NII), OUSD(AT&L), USD(I); Support: OUSD(AT&L)/DS(SSE) & DPAP, OUSD(P&R), OUSD(C)/PA&E, Components

Product: Revised policy and/or guidance in various issuances (e.g., DoD 5000 series, DAG, contracting guidance)

Completion goal: 2008

- Drafted and submitted DAG language, but not yet included in DAG
- M&S Resource Reuse Business Model project may make recommendations on this subject

Next steps:
- Receive Business Model study report, take action as appropriate
- Draft language for contracting guide
- (DODI 5000.2 change may not be needed)
Obj. 4: Improve Model & Simulation Use (cont.)

4-3. Facilitate the sharing of reusable resources

4-3(c) Enhance the means (e.g., directory service, registries, bulletin boards) to discover the existence of reusable resources required for M&S and contact information

Lead: OUSD(AT&L) Support: OUSD(AT&L)/DS(SSE), OUSD(P&R), OUSD(C)/PA&E, Components

Product: A better way to discover reusable resources. Re-orientation and integration of various DoD M&S resources repositories.

Completion goal: 2007

- DDR&E-directed M&S CO project to develop a “M&S Resource Catalog” is underway
- We see a viable business model as a prerequisite

Next steps:
- Track M&S CO project, support as able
4-4. Define the types of information DoD organizations shall make available to others with a clearance and valid need to know and the processes to obtain them (per reuse business model). The process to obtain information should include an efficient mechanism for industry to request government data with specific "need to know" outside a specific contract environment.

4-4(a) Scenario data

Lead: OUSD(AT&L)
Support: OCJCS(J8), OUSD(C)/PA&E, DIA, Components
Product: Approved scenarios and process to obtain
Completion goal: 2007

4-4(b) System-related data

Lead: OUSD(AT&L)/DS(SSE);
Support: ODOT&E, Components
Product: Process to obtain authoritative system data (characteristics and performance, interactions, interfaces, logistic support, etc.) documented in the DAG and appropriate OASD (NII) policy documents.
Completion goal: 2008

4-4(c) Threat data

Lead: DIA;
Support: OUSD(AT&L); OUSD(AT&L)/DS(SSE), ODOT&E, and Components
Product: Authoritative threat data and process to obtain
Completion goal: 2007

4-4(d) Natural environment data

Lead: DoD Natural Environment MSEAs (MSCAs);
Support: OUSD(AT&L), OUSD(AT&L)/DS(SSE), Components
Product: Authoritative natural environment data and process to obtain
Completion goal: 2007
Action 4-4 Assessment

- Acquisition Support Division of DIA has briefed AMSWG and NDIA M&S Cmte on its support to acquisition programs
- MSIC has briefed NDIA M&S Cmte on TMAP program and provided instructions on how to request TMAP models
- Draft DAG language discusses threat data sources and traceability
- No method exists “for industry to request government data with specific ‘need to know’ outside a specific contract environment”
- M&S SC-funded Environmental Scenario Generator project underway
- No progress in sharing U.S. system data
- Joint Rapid Scenario Generation (JRSG) and Joint Data Alternatives (JDA) projects advertise they will address all the Action 4-4 info needs; time will tell

Next steps:

- Monitor JRSG and JDA projects as resources permit
- Investigate data sharing polices of OSD, JCS, and other Components
- Investigate JSC, PAE, & Service scenario data availability & access
- Draft additional DAG language on all data types (interim prior to JRSG /JDA)
- Continue to build on Nov 07 PA&E-Boeing-NDIA M&S Cmte discussion
- Examine benefits of establishing a DoD Virtual Battlespace Center
4-5. Foster cost-effective VV&A

4-5(a) Require DoD-wide standardized documentation of VV&A

Lead: OUSD(AT&L); Support: OUSD(AT&L)/DS(SSE), ODOT&E, Components

Products: Revised policy in DODI 5000.2 and 5000.61; revised guidance in DAG

Completion goal: 2007

- AMSWG-sponsored, M&S CO-funded project completed
- Documentation has been established as a MILSPEC 3022; commercial (SISO) standard to follow
- Tool to manage documentation is in beta testing
- AMSWG concern that draft M&S SC’s “DoD M&S Strategic Vision” call for “practical verification, validation, and accreditation guidelines that vary by application area” (emphasis added) will undermine VV&A.
- PA&E resisting this requirement in DoDI 5000.61 revision

Next steps:
- Publicize standard and supporting tool
- Fight to have DoDI 5000.61 to maintain a consistent DoD policy and require documentation per MILSPEC
- Establish a commercial standard under SISO
4-5. Foster cost-effective VV&A

4-5(b) Develop risk-based methodology and associated guidelines for VV&A expenditures

Lead: OUSD(AT&L); **Support:** OUSD(AT&L)/DS(SSE), Components

Products: Updated DoDI 5000.61; revised policy and guidance in DoDI 5000.2 and DAG

Completion goal: 2007

- **M&S CO project underway, with promise it will address this issue**
- **NAVAIR M&S Enterprise developing M&S VV&A and risk management guidance**

Next steps:
- **Assess M&S Enterprise guidance**
- **Obtain update on M&S CO progress developing risk-based VV&A guidelines, support and take action as necessary**
4-5(c) Examine a program’s VV&A when M&S informs major acquisition decisions and unambiguously state the purpose, key assumptions and significant limitations of each model/simulation when results are presented.

Lead: OUSD(AT&L)/DS(SSE) **Support:** DoD Components
Products: Guidance & training for oversight personnel; updates to DAG Chaps 4, 9
Completion goal: 2007

- Submitted DAG language on VV&A examination, but DAG update stalled
- SSE M&S Cell has given initial briefing to OUSD(A&T)/SSE/AS
- Navy may be addressing this; no other Component activities underway

Next steps:
- Broaden teaching on VV&A examination
- M&S Cell support SSE/AS to accomplish this during OSD program reviews
- Other AMSWG members take action within their Components
4-6. Assess the use of COTS systems engineering tools (modeling environments) for collaborative architecture development

Lead: OUSD(AT&L)/DS(SSE); **Support:** OASD(NII), Components

Products: Revised guidance in DAG; enhanced M&S body of knowledge for dissemination

Completion goal: 2007

- SysML and AP-233 already proving utility in COTS tools (market success)
- UPDM nearing finalization, can help with CADM and DARS weaknesses
- NIST “Systems Engineering Tool Interoperability Plug-fest” underway
- No inter-program use of COTS tools for architecture development thus far

Next steps:

- **Investigate use of SE tools for collaborative architecture development**
- **Propose as a SBIR topic**
4-7. Define and capture meaningful metrics for M&S utility in acquisition

Co-Leads: OUSD(AT&L), Dept. of the Navy **Support:** OUSD(AT&L)/DS(SSE), Components

Products: Metric definitions in DAG; methods to capture and submit data in DAG; data from individual projects in MSIAC, Body of Knowledge, etc.

Completion goal: 2007

- One of the top 5 acquisition M&S projects for M&S SC FY08 funding, but didn't make the cut
- **AEgis Technologies conducted a study for M&S CO, but results not yet released**

Next steps:
- **Assess adequacy of M&S CO/AEgis Technologies’ product**
- **Take further action as appropriate**
Objective 5: Shape the Workforce

5-1. Define required M&S competencies for the acquisition workforce

Co-Leads: DAU and OUSD(AT&L)/DS(SSE); Support: OUSD(P&R), OUSD(AT&L)/DDRE, OUSD(C)/PA&E, Components

Product: Identified lead FIPT; workforce qualification requirements; management process & structure

Completion goal: 2008

- “Educating the M&S Workforce” project underway with Navy and M&S SC funding
- Academic institutions have begun to leverage this work
- Participated in beta version of GMU course “M&S in Acquisition Lifecycle”

Next steps:
- Receive final deliverables from M&S SC-funded project
- Monitor and assess effectiveness of emerging courses (e.g., GMU)
- Otherwise support implementation as appropriate
Objective 5: Shape the Workforce

5-2. Harvest lessons from commercial sector activities in the use of M&S to support product development

Lead: OUSD(AT&L)/DS(SSE); **Support:** OUSD(AT&L), Components

Products: Annual update to best practices in DAG and lessons from industry that should be considered by PMs in planning for M&S

Completion goal: Recurring; initial in 2007

- SSE participating in conferences, workshops, and literature review involving commercial industry use of M&S, capturing relevant points
- Increasing industry adoption of “Simulation-Based Design (SBD)”
- Action complete, but follow-on expansion needed

Next steps:

- Collect and consolidate findings, feed into Action 5-3 BoK
- Submit as SBIR topic
Objective 5: Shape the Workforce

5-3. Assemble and evolve the M&S Body of Knowledge (information set) relevant to acquisition

Lead: OUSD(AT&L); **Support:** OUSD(AT&L)/DS(SSE), Components

Product: Information base available to potential M&S users (e.g., PMs, CMs, OTAs); source material for education and training

Completion goal: Recurring; initial in 2006

- Action completed in 2007 as part of ongoing education project
- Several BoKs have been discovered
- Education project has synthesized a consolidated BoK, as has SimSummit
- Knowledge is still being developed (e.g., best practices)

Next steps:
- Harmonize with SimSummit BoK?
- Establish an effective configuration management process
- Make additional inputs as they are discovered or become available
5-4. Educate and train the workforce to achieve required M&S competencies

5-4(a) Provide M&S knowledge via an expanded set of DAU courses, the Defense Acquisition Guide, and on-line CLMs

Lead: DAU; Support: OUSD(AT&L), OUSD(AT&L)/DS(SSE), Components

Product: Expanded set of DAU courses, improved M&S guidance in the Defense Acquisition Guide, on line Continuous Learning Modules; a better educated workforce

Completion goal: 2009

- CLM on “M&S for Systems Engineering” released, has >3900 graduates
- CLM on “M&S for Test & Evaluation” released, has >1600 graduates
- Universities and NPS are responding to “Educating the Workforce” findings and recommendations
- No change to DAU courses so far, but education project will be a catalyst

Next steps:
- Participate in prototype GMU course “M&S in the Acqn Lifecycle”
- Implement additional CLMs (Education Project expects to recommend ~10) as feasible
- Investigate status of DAG inputs
5-4. Educate and train the workforce to achieve required M&S competencies

5-4(b) Provide M&S knowledge via conferences, workshops, and assist visits

Lead: OUSD(AT&L)/DS(SSE); **Support:** OUSD(AT&L), DAU, Components

Product: Annual outreach program; a better educated and trained workforce

Completion goal: Recurring; initial in 2006

- Initial Outreach Plan approved by AMSWG; includes M&S tutorial for AS staff, DMSC, NDIA, and SISO presentations
- Add’l materials (e.g., best practices) in work
- Resource constrained

Next steps:
- Advertise and expand assist visits
- Hold workshops once recommended practices are in hand
5-5. Improve the knowledge and expertise available through the MSIAC to make it of greater utility to the acquisition community

Lead: OUSD(AT&L); **Support:** OUSD(AT&L)/DS(SSE), OUSD(P&R), OUSD(C)/PA&E, Components

Product: Plan of action with coordinated MSIAC CONOPS & staffing requirement; list of knowledge shortfalls that MSIAC will take on; success criteria & process to bring MSIAC up to criteria

Completion goal: 2008

- **Only preliminary conversations with MSIAC contractor thus far**
- **No plan of action by MSIAC; they want AMSWG to tell them what to do**

Next steps:
- **Develop a plan of action to improve the M&S Information Analysis Center's usefulness to the acquisition community**
Backup Material
AMSWG Membership (1 of 2)

<table>
<thead>
<tr>
<th>Organization</th>
<th>SE Forum Principal</th>
<th>Organization</th>
<th>AMSWG Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODUSD (A&T) SSE</td>
<td>Ms. Kristin Baldwin, Chair</td>
<td>ODUSD (A&T) SSE/DT&E</td>
<td>Michael Truelove</td>
</tr>
<tr>
<td>Army</td>
<td>Mr. Doug Wiltsie</td>
<td>ASA(ALT)</td>
<td>John Gillis</td>
</tr>
<tr>
<td>Navy</td>
<td>Mr. Carl Siel</td>
<td>ASN(RDA) CHENG MARCORSYSCOM</td>
<td>Bill Zimmerman</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lan-Thanh McGough</td>
</tr>
<tr>
<td>Air Force</td>
<td>Mr. Terry Jaggers</td>
<td>SAF/AQR</td>
<td>Maj Carol Beverly</td>
</tr>
<tr>
<td>Joint Staff J-8</td>
<td>Mr. Rick Westermeyer</td>
<td>JTAMDO</td>
<td>Jim Gill</td>
</tr>
<tr>
<td>PA&E</td>
<td></td>
<td>CAIG</td>
<td></td>
</tr>
<tr>
<td>DOT&E</td>
<td>Dr. Ernest Seglie</td>
<td>DOT&E</td>
<td>Bob Butterworth</td>
</tr>
<tr>
<td>OSD (AT&L) DDR&E</td>
<td></td>
<td>M&S CO</td>
<td>Jim Anthony</td>
</tr>
<tr>
<td>OSD (AT&L) AR&A</td>
<td>Mr. Phil Rodgers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USJFCOM</td>
<td>Mr. Steve Derganc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USD(P&R)(R&T)/JAEC</td>
<td></td>
<td>R&T/JAEC</td>
<td>Bob Halayko</td>
</tr>
<tr>
<td>OUSD(AT&L)(TRMC)</td>
<td></td>
<td>TRMC</td>
<td>George Rumford</td>
</tr>
<tr>
<td>DAU</td>
<td>Dr. Jim McMichael</td>
<td>DAU SE</td>
<td>George Prosnik</td>
</tr>
<tr>
<td>MDA</td>
<td>Mr. Dennis Mays</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AMSWG Membership (2 of 2)

<table>
<thead>
<tr>
<th>Organization</th>
<th>SE Forum Principal</th>
<th>Organization</th>
<th>AMSWG Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGA</td>
<td>Dr. Tom Holzer</td>
<td>NGA</td>
<td>(John Placanica-Inact)</td>
</tr>
<tr>
<td>NASA</td>
<td>Mr. Stephen Kapurch</td>
<td>NASA/ESMD</td>
<td>(Mark Prill-Inact)</td>
</tr>
<tr>
<td>NSA</td>
<td>Mr. Kelly Miller</td>
<td>NSA</td>
<td>Craig Holcomb</td>
</tr>
<tr>
<td>DCMA</td>
<td>Ms Rebecca Davies</td>
<td>DCMA</td>
<td>Larry Cianciolo</td>
</tr>
<tr>
<td>SOCOM</td>
<td>Dr. Dale Uhler</td>
<td>SOCOM</td>
<td>Art Gibson</td>
</tr>
<tr>
<td>NII</td>
<td>Mr. Mike Kern</td>
<td>ASD (NII) Acq.</td>
<td>Bill May</td>
</tr>
<tr>
<td>OSD (AT&L)L&MR</td>
<td></td>
<td>NSWC/CSS</td>
<td>(Marc Eadie-Inact)</td>
</tr>
<tr>
<td>OSD (AT&L) DP&AP</td>
<td>Shay Assad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISA</td>
<td>Mr. Gerald Doyle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSSO</td>
<td>Mr. Jay Parness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRO</td>
<td>Mr. Vernon Grapes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLA</td>
<td>Mr. David Falvey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDIA</td>
<td>Mr. Bob Rassa</td>
<td>NDIA M&S Com.</td>
<td>Jim Hollenbach</td>
</tr>
<tr>
<td>INCOSE</td>
<td>Mr. David Walden</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Decade of Studies on M&S Support to Acquisition

 Sponsor: DDR&E (Dr. Anita Jones); Chair: VADM T. Parker, USN (Ret.)

2. **Naval Research Advisory Committee Report on M&S, 1994**
 Sponsor: ASN(RDA); Chair: Dr. Delores Etter

3. **Collaborative Virtual Prototyping Assessment for Common Support Aircraft, 1995**
 Sponsor: Naval Air Systems Command; conducted by JHU APL and NSMC

4. **Collaborative Virtual Prototyping Sector Study, 1996**
 North American Technology & Industrial Base Organization; sponsor: NAVAIR

5. **Application of M&S to Acquisition of Major Weapon Systems, 1996**

6. **Effectiveness of M&S in Weapon System Acquisition, 1996**
 Sponsor: DTSE&E (Dr. Pat Sanders); conducted by SAIC (A. Patenaude)

 Naval Studies Board, National Research Council; sponsor: CNO

8. **A Road Map for Simulation Based Acquisition, 1998**
 Joint SBA Task Force (JHU APL lead); sponsor: Acquisition Council of EXCIMS
A Decade of Studies on M&S Support to Acquisition

 Defense Science Board Task Force (Co-chairs: L. Welch, T. Gold)

 National Research Council; sponsor: NASA

 Sponsor: DOT&E/LFT&E; conducted by Hicks & Associates (A. Hillegas)

 Defense Science Board Task Force (Chair: C. Fields)

 Military Operations Research Society (Chair: S. Starr)

 National Research Council; sponsor: DMSO

15. **M&S Support to the New DoD Acquisition Process**, 2004
 NDIA Systems Engineering Div. M&S Committee; sponsor: PD, USD(AT&L)DS

 Defense Science Board Task Force (Chair: W. Schneider)
Assessment of Current Issues/Needs

- Cooperative effort between AMSWG & NDIA M&S Committee

- AMSWG venue:
 - Air Force – Roe (Jan 05)
 - Army – Gillis, Wallace (Jan 05)
 - Navy – Vaughn (Feb 05)
 - Visits to NAWC/AD (ACETEF); Army RDECOM; AFMC (SIMAF, ICE)

- NDIA M&S Committee venue:
 - Joint SIAP Systems Engineering Organization (Aug 04)
 - Future Combat Systems (Sep 04)
 - Missile Defense Agency (Feb 05)
 - Lockheed Martin (Feb 05)
 - Raytheon (Apr 05)
 - Boeing (Apr 05)
 - Northrop Grumman (Jun 05)
 - BAE Systems (Aug 05)

- Affirmed many findings and recommendations from studies and provided new inputs as well
Top-Down Derivation/Traceability to Non-M&S Needs

Characteristics of Desired Acquisition Environment

Needed M&S Capabilities

Gaps

Needed Systems Engineering Capabilities

Annotated as AE1, AE2, … AEn

Annotated as SE1, SE2, … SEn

Annotated as MS1, MS2, … MSn

Annotated as G1, G2, … Gn

Annotated as A1, A2,…An

CJCSI 3170 & DoDD 5000.1
Joint concepts-centric capabilities identification process to allow joint forces to meet the full range of military operations and challenges…

Assess existing and proposed capabilities in light of their contribution to future joint allied and coalition operations. … Produce capability proposals that consider the full range of DOTMLPF solutions in order to advance joint warfighting in a unilateral and multinational context.

New solution sets…crafted to deliver technologically sound, testable, sustainable and affordable increments of militarily useful capability.

The FoS and SoS solutions may also require systems delivered by multiple sponsors/materiel developers.

The process to identify capability gaps and potential solutions must be supported by a robust analytical process.

JCIDS implements a capabilities-based approach that…requires a collaborative process that utilizes joint concepts and integrated architectures to identify prioritized capability gaps and integrated DOTMLPF and policy approaches to resolve those gaps.
The primary objective of Defense acquisition is to acquire quality products that satisfy user needs with measurable improvements to mission capability and operational support, in a timely manner, and at a fair and reasonable price.”

Governing policies:

- Flexibility, Responsiveness (time-phased capabilities, evolutionary acquisition), Innovation, Discipline, Streamlined Effective Management
- Armaments Cooperation; Collaboration; Competition; Cost and Affordability; Cost Realism; Cost Sharing; Financial Management; Independent OTAs; Information Assurance; Information Superiority; Integrated T&E; Intelligence Support; Interoperability; Knowledge-Based Acquisition; Legal Compliance; Performance-Based Acquisition; Performance-Based Logistics; Products Services and Technologies [seek most cost-effective solution over the system's life cycle], Professional Workforce, Program Information [complete, current, tailored]; Program Stability; R&D Protection; Safety; Small Business Participation; Software Intensive Systems; Streamlined Organizations; Systems Engineering; Technology Development and Transition; Total Systems Approach
- Oct 04 policy memo: Technical reviews … shall be event-driven
Necessary Systems Engineering Capabilities
(which M&S can affect; derived from Desired Acquisition Environment)

SE1. Early, continuing systems engineering from an SoS/FoS capabilities perspective; seamless transition from JCIDS to acquisition
(AE1-3,5,9-11,16,20,21,25,27)

SE2. Lifecycle-wide exploration of the maximum available trade space, including time-phased requirements and technology insertion
(AE1-5,7,10,11,13,16,19,23-27)

SE3. Collaboration among all stakeholders (multiple gov’t and contractor organizations) for key enterprise-level SE decisions
(AE6-8,10,18,22,25,27)

SE4. Rapid assessment of concept/design alternatives
(AE2,4,7,10,14,16,19,25,28)

SE5. Comprehensive, accurate, event-based assessment of technical baselines; avoidance of costly fixes for problems discovered late
(AE2-4,7,9,10,12-17,19,20,22,24-26,28)

SE6. Focused, effective & efficient testing; including at the capability level
(AE1,2,4,5,9-11,13,15,19-22,25)

SE7. Appropriate reuse of all resources – information, software tools, expertise, facilities, ranges, etc. – across programs & organizations
(AE4,14,15,19,24,25)
Needed M&S Capabilities (1 of 2)
(derived from Needed Systems Engineering Capabilities)

MS1. Model-based systems engineering/design (SE1,2,4,5)
(Emerging concept under INCOSE, OMG, etc.; growing suite of COTS tools)
- Modeling environments to analyze requirements, develop system and software architectures, and perform detailed design (e.g. CAD, S/W)

MS2. M&S-enabled collaborative engineering environments (SE1,2,3,4,5,6)
- Interoperable M&S, data management, & manufacturing
 - M&S as a communication means
- Full range of M&S assessments
 - Models, simulations, and distributed live-virtual-constructive simulation federations, with option to immerse warfighters
- Traceability for coherence and decision analysis

MS3. Model-Test-Fix-Model process across the life-cycle (SE4,5,6)
- Better test planning, more effective tests
- Increased M&S validity; credible surrogates; reuse savings
Needed M&S Capabilities (2 of 2)

MS4. M&S knowledge to formulate an effective acquisition strategy (SE2,3,4,5,7)
 ➢ Ready access to M&S expertise and information about capabilities and gaps, reusable resources, lessons-learned, etc.

MS5. Disciplined M&S planning & employment (SE2,4,5,7)
 ➢ Rigorous analysis of M&S requirements, alternatives, best course
 ➢ Efficient configuration/initialization, execution and post-run analysis
 ➢ Avoid inappropriate use; maximize cost-effective reuse across lifecycle

MS6. Efficient development/evolution of credible M&S tools (SE2,3,5,7)
 ➢ A systems engineering approach with appropriate V&V

MS7. Access to authoritative, understandable data needed for M&S representations (SE2,3,4,5,7)
 ➢ Reducing a major time and cost burden that inhibits M&S use

MS8. Inspection of M&S used to inform acquisition decisions (SE2,5,7)
 ➢ Examine capabilities and limitations (VV&A) of M&S
 ➢ During lead-up to program/technical reviews, OTRRs, DABs, etc.
Gaps

1. Management

G1. Robust but confused landscape of M&S activities; no clearly designated leadership or effective coordinating mechanism (MS1-8)
 - Current EXCIMS ineffective; little coordination for capabilities/SoS/FoS

G2. Inadequate constancy of purpose because time to fix problems >> tour length; “DoD has an attention deficit disorder” (MS2-7)

G3. Gov’t acquisition guidelines don’t promote M&S use or reuse (MS1-6)

G4. No DoD requirement for formal M&S planning to support acquisition (other than T&E) (MS1-5)

G5. No contractual guidelines regarding M&S and the data it needs (MS1-8)

G6. Gov’t typically doesn’t give contractors meaningful M&S guidance (MS1,2,6,8)

G7. Most DoD M&S takes a project, vice an enterprise, approach (MS2,3,6,7)

G8. No consensus on value of integrated architectures, nor responsibility for (MS1,2)

G9. Managing distributed collaboration is very hard (MS1-8)

G10. Public law precludes OT based solely on M&S, but no clear guidance on use for SoS/FoS T&E (MS2,3,5,6,8)
Gaps

2. Architecture/standards/technical framework

G11. No standard modeling notation (like UML v2.0) for capturing full range of information critical to system engineering (e.g., structure, behavior, requirements hierarchy/traceability, test cases, verification results) *(MS1,2,6,7)*

G12. No standard for interchanging systems engineering information (same examples as above) *(MS1,2,6,7)*

G13. No conceptual framework (like Open System Interconnect protocol stack) for data interchange *(MS1,2,3,6,7)*

G14. Lack of agreement on a common distributed simulation standard increases complexity and cost, limits simulation interoperability *(MS2,5,6)*

G15. DoDAF v1.0 is difficult to use for architecting due to lack of data-centricity and executability; some products of marginal value *(MS1,2,6,7)*

G16. Use of DoD-unique standards limits their user base, quality, COTS tool support, and opportunities for reuse *(MS1,2,5,6)*
Gaps

3. Model/simulation capabilities & use

G17. Many M&S tool gaps and deficiencies (MS1,2,3,5,7)
- What’s modeled (e.g., urban warfare, comm networks, threats, system sustainment)
- Fidelity, granularity, interoperability
- Only limited consensus on common models to be used across a domain

G18. No good way to develop and maintain widely-needed M&S tools that cut across programs (MS5,6)
- Not incorporating mods by other organizations into “street version,” etc.

G19. M&S developers, not M&S users, tend to drive M&S development (MS6)

G20. In general, architecture development (modeling) is lagging, not collaborative, and not exploiting COTS SE tools (modeling environments) (MS1,2)

G21. No readily-available distributed M&S infrastructure (e.g., JDEP) (MS2,5)

G22. Hard to get security certification for multi-organization (company/Service) distributed simulation (MS2,3,5,6)

G23. Hard to get approval and security certification for M&S involving multiple compartmented programs (SAPs) (MS2,3,5,6,7)
Gaps

4. Trustworthiness/VV&A

G24. Post-development model validation expensive and slow (MS2,3,5,8)

G25. VV&A often weak or non-existent; documentation inconsistent (MS2,3,5,8)
 - Plans to use M&S to avoid testing costs often rejected due to poor/no validation

G26. VV&A usually not enforced and also not examined during program reviews (MS2,3,5,6,8)

G27. Models and sims often not updated to reflect empirical evidence (e.g., test results) (MS2,3,5,8)
5. Sharing/reuse and protection of tools & information

G28. Little reuse; only 7% of models & sims used on >1 program \(\text{(MS2,5,6)}\)

G29. Concurrent engineering requires an integrated process, data sharing and a coherent tool set, but <20% of programs have such a collaborative environment \(\text{(MS2,7)}\)

G30. Hard to discover reusable resources (software, info, services) \(\text{(MS2,4,5,7)}\)
 - M&S repositories are not integrated, lack an effective search capability, and are mostly empty
 - MSIAC knowledge/expertise is lacking

G31. Insufficient info (metadata) to evaluate data/reuse candidates \(\text{(MS2,4,5,7)}\)

G32. Hard to obtain reusable resources \(\text{(MS2,4,5,7)}\)
 - Industry to gov’t: To protect proprietary info & competitive advantage
 - Gov’t to industry: Contractual liabilities associated with GFE/GFI
 - Gov’t to gov’t: Concerns about misuse; cost to deliver and guide

G33. No incentives to encourage reuse \(\text{(MS2,3,5,6)}\)
 - Negative incentives include cost to make reusable, workload assisting users, vulnerability to criticism

[plus approval and security certification gaps 22 & 23 listed under M&S use]
Gaps

6. Research/S&T/tech base

G34. Conceptual foundation of M&S weak (MS5,6)
 - E.g., theoretical understanding of modern warfare, human behavior, relating M&S at different granularities, dealing with uncertainty, agent-based modeling and generative analysis

G35. Little acquisition community input to DoD S&T management regarding needed M&S-related research (MS2,5,6)

7. Business model, metrics & ROI, funding and incentives

G36. No business model for how M&S capabilities should be developed, used and maintained (MS1-8)

G37. Metrics are critical to keep interest and funding up, but metrics regarding M&S use and cost-effectiveness are inadequate (MS1-8)
 - M&S funding difficult to identify; most embedded within other PEs

G38. Too little funding (MS2-7)
Gaps

8. Workforce Shaping

G39. Body of knowledge for M&S support to acquisition is deficient, not managed (MS1,2,4-6,8)

G40. Acqn community managers and staffs mostly uninformed about M&S capabilities and limitations (MS1-8)
 - Weak acquisition personnel understanding of commercial M&S activities (“We don’t get out enough”)
 - Not enough M&S experts (no career path [except Army], no formal education or training)

G41. M&S developers lack understanding of modeling best practices, abstraction techniques, context dependencies, etc. (MS3,6)

G42. M&S users often not adequately trained (MS1,2,4,5,8)

G43. Insufficient M&S education options (MS2,4,5,6,8)
Virtual Battlespace Center

Advanced M&S to Inform
OSD Acquisition Decisions

NDIA Systems Engineering Conference
San Diego, California
20-23 October 2008

James W. Hollenbach
ODUSD(A&T)/SSE/DTE Support
Simulation Strategies, Inc.
jimh@simstrat.com, 727.824.0931
Outline

• Observations
• Virtual Battlespace Center Concept
• Modeling and Simulation in the VBC
• Protecting Business-Sensitive Information
• Organization Options
• Influence on Other M&S
• DSB Task Force Study
1. Acquiring capabilities is a huge challenge

- **Expanded trade space = dramatic increase in complexity**
 - Many more entities, variables, interactions, etc.
 - Development enterprises become vast, distributed
 - Many more stakeholders, with much at stake

- **Need systems engineering above individual system level**
 - Complexity precludes intuitive design and analysis
 - Program to program negotiations impractical

- **Need to assess capabilities, not just individual systems**
 - Many more forces & systems, bigger battlespace, more events
 - Scarcity of equipment constrains lab integration & live tests
 - Range size, security needs, and safety also limit live testing
Observations (2 of 3)

2. M&S can improve the design, integration, test, and assessment of capabilities and systems of systems
 • Earlier, more accurate designs and assessments of designs, lowering risk
 • Accurately track complex relationships and micro-level interactions; present macro-level measures of merit to decision makers
 • Defendable analytical underpinning for decisions
 • Several SoS efforts (e.g., JSSEO, FCS) provide glimpses of M&S benefits

3. DoD prime contractors have built joint battlespace simulations to help develop new warfighting capability/system concepts and to collaborate with their government customers & industry partners
 • But these virtual battlespaces are neither authoritative nor coherent
 – Representations of blue systems they don’t build aren’t authoritative
 – They have different conceptual models of the battlespace and standards
 • Thus many of their intended benefits are negated
 – Inaccuracies can lead to bad business decisions
 – Government customers question their credibility
 – Collaboration with partners is hampered by incoherent representations
Observations (3 of 3)

4. The Services also have various SoS simulation efforts to support their system development activities, such as:
 - Army’s Cross-Command Collaboration Effort (3CE) and Modeling Architecture for Technology, Research and Experimentation (MATREX) Distributed Virtual Laboratory (DVL)
 - Air Force Integrated Collaborative Environment (AF-ICE)

5. OSD has no equivalent virtual battlespace…
 - to provide independent assessments of system concepts and designs
 - to plan and evaluate how individual systems function in a SoS
 - to assess capabilities as proposed and as evolutionary changes to a SoS occur

6. Hence corporate decisions are not as informed as they could be
Virtual Battlespace Center Concept

• Primary mission: Support OSD’s corporate-level acquisition responsibilities with advanced M&S
 – A persistent environment in which all DoD-level capability/ system of systems (SoS) design and analysis is conducted
 – A means to refine concepts and define requirements for both capabilities and individual systems
 – An objective view of how systems interoperate and perform

• Secondary mission: Support analysis of DoD investment decisions and operational plans

• VBC will have the most credible representations of every system, force, and activity in the battlespace

• To do so, VBC must provide security for business-sensitive information
VBC Modeling and Simulation

• **A wide range of M&S will be used in the VBC**
 – **Architecture modeling**
 • Design SoS topology, allocate functions, check completeness & efficiency
 • Using SE tools like System Architect, Core, Cradle
 – **Concept assessment modeling**
 • Comprehensive view of the entire trade-space to assess design decision impacts on key performance parameters (KPPs)
 • E.g., Georgia Tech’s Collaborative Visualization Environment (CoVE)
 – **Distributed simulation**
 • Any mix of live, virtual, and constructive (LVC) simulation; much constructive simulation will be other than real-time
 • Multiple standard federations will provide an 80% solution
 – **Recursive levels of granularity for models, simulations, and federations**
 • Based on hierarchically-integrated conceptual models (common in engineering, but thus far quite uncommon in M&S)
 – **Other M&S TBD**
Why Won’t JMETC Suffice?

- Joint Mission Environment Test Capability provides distributed simulation for operational testing of systems
 - Managed by the Testing in a Joint Environment Senior Steering Group

- Provides a sub-set of M&S capabilities needed by VBC
 - Doesn’t include architecture modeling or concept assessment modeling
 - Distributed simulation is limited to real-time (TENA-based)
 - Is focused on a single level of granularity (platform level)
 - Won’t adequately protect business-sensitive information
Need for Trustworthy Representations

• Corporate-level decisions arising from VBC analyses will determine:
 – what individual systems are procured or modernized;
 – the functional capabilities & interfaces each system must have;
 – the standards to which those systems must conform;
 – the schedule on which they must be developed or evolved; and
 – indirectly, the funding allocated to each

• The risk of an erroneous representation leading to an incorrect decision must be minimized
 – Decisions will be challenged unless the VBC representations and associated analyses are above reproach

• VBC must have credible, trustworthy representations
 – System data & algorithms must be traceable back to the most credible sources

• Program offices & their contractors should be tasked to supply validated representations of their systems
 – Requirements for these must first be carefully and unambiguously defined by the VBC
Protecting Business-Sensitive Information

• To get trustworthy representations, business sensitive information (e.g., intellectual property, programmatic info) must be protected
 – Contractors fear compromising IP, undermining business opportunities
 – Program offices are concerned their program or reputation will be harmed
 – VBC must assure representation resource owners that misuse or compromise will not occur

• Distributed simulation technology provides some protection of sensitive information via encapsulation, but it can still be compromised by repeated observation of a system’s behaviors
 – For instance, multi-sensor integration logic can be inferred from responses to various patterns of sensor inputs

• To prevent industrial espionage, VBC will have to tightly control access to its M&S representations
 – VBC personnel will operate the models and simulations, or
 – Other simulation owners participating in a distributed simulation will do so under non-disclosure agreements, with tightly limited data collection
Organization Options

- Capability/SoS management may be instituted under an evolved portfolio management concept or other organizational structure
 - VBC would support whatever organization emerges
- Candidate organizations to run the VBC include:
 - Existing OUSD(AT&L) office
 - Defense agency or field activity, either existing or new
 - System command of a DoD Component (objectivity concerns)
 - FFRDC or UARC
 - Contractor recused from any other system acquisition work
 - Fire-walled division of a contractor (objectivity concerns)
- Selection will require further study
Impact on Other M&S

• System assessment in the VBC would be a capstone event
 – The system’s performance and contribution to a desired DoD functional capability will be evaluated and its fate decided

• System owners will want their own virtual battlespace to be as close as possible to the VBC’s, so standards used in the VBC will foster alignment by the rest of acquisition M&S
 – Architectures, battlespace conceptual models, & FOMs can be matched
 – Government-owned, non-IP data used in VBC (e.g., scenarios, threats, natural environment) can be shared under CRADAs
 – “One-off versions” of owner-provided representations could be shared using abstraction means (e.g., neural nets, response surface equations)
 – VV&A practices to ensure the trustworthiness of VBC representations will foster more diligent VV&A in other virtual battlespaces

• Interoperability, reuse, and rapid, cost-effective composition of distributed simulation federations will all be enhanced
 – As a side benefit, we’ll achieve effective DoD M&S governance
 – Benefiting DoD’s mission, our warfighters, and the nation
Next Step: DSB Task Force Study

• A Defense Science Board Task Force is about to be convened to...
 – examine and refine the Virtual Battlespace Center concept
 – consider capability management approaches
 – develop a VBC concept of operations
 – identify and prioritize candidate M&S capabilities
 – recommend an organization to manage the VBC
 – verify or refute the VBC benefits asserted here

• Dr. Anita Jones and Dr. Ron Sega, both former DDR&E’s, will co-chair

• If the DSB TF makes a positive recommendation, this will set the stage for a VBC initiative under the next administration
Integration of Systems and Software Engineering:

Implications from Standards and Models Applied to DoD Acquisition Programs

NDIA 11th Annual Systems Engineering Conference
San Diego, Ca.
October 23, 2008

Donald J. Gantzer
Lisa Reuss
Systems Engineering Support Office
supporting
ODUSD(A&T) Systems and Software Engineering (SSE)
Assessments and Support

donald.gantzer.ctr@osd.mil
lisa.reuss.ctr@osd.mil
Agenda

- Introduction

- Overview comparison of Systems Engineering (SE) process standards and models

- Some observations from review of SE Plans (SEPs)

- Some findings from Program Support Reviews (PSRs)

- NDIA Summary of SE and Software issues in DoD

- Summary implications of SE processes in DoD Acquisition Programs

Disclaimer: The views and opinions presented here are the authors’ and do not necessarily represent DoD views.
Introduction

- DoD’s **Defense Acquisition Guidebook** (DAG) has applied SE standards in developing its SE chapter 4, tailored to DoD acquisition policies and guidance

- **ISO/IEC 15288 – System life cycle processes** was recently updated and is in concert with an update to **ISO 12207 – Software life cycle processes** (further “Harmonization” is ongoing)

- A DAG update is imminent with changes due to new DoD acquisition policies [e.g., DoDI 5000.2] that…
 - Emphasizing enhanced (i.e., early) Systems Engineering (SE)
 - Moving Milestone B acquisition decision point to post Preliminary Design Review [PDR]
 - Changes to SE processes per ISO/IEC 15288 revision

Note: Acronym definitions are in backup slides
A Generic SE Process

Note: Was applied to Air Force IT/CSE SE Case Studies; http://www.afit.edu/cse/

This simple process has been observed in some program SEPs.

It does not cover well the full SE life cycle, nor all activities of import.

Sources: DoD Mil Std 499A/B and the Defense Acquisition University [DAU] SE Fundamentals, 2001
System Life Cycle Processes - ISO/IEC 15288: 2008*

Agreement Processes
- Acquisition Process
- Supply Process

Project-Enabling* Processes
- Life Cycle Model Management Process
- Infrastructure Management Process
- Project Portfolio Management Process
- Human Resource Management Process
- Quality Management Process

Project Processes
- Project Planning Process
- Project Assessment and Control Process
- Decision Management Process
- Risk Management Process
- Configuration Management Process
- Information Management Process
- Measurement Process

Technical Processes
- Stakeholder Requirements Definition Process
- Requirements Analysis Process
- Architectural Design Process
- Implementation Process
- Integration Process
- Verification Process
- Transition Process
- Validation Process
- Operation Process
- Maintenance Process
- Disposal Process

*Changes highlighted in red

Source: http://www.iso.org/iso/iso_catalogue.htm (search ‘15288’).

Note: Also adopted by IEEE, http://standards.ieee.org/announcements/pr_15288.html
Simplified Application of the SE ‘V’ approach

[Note: new DAG revision release imminent; tailored approach adapting ISO 15288: 2008]

[Source: DoD DAU/DAG; Chapter 4 on SE; 11/04]
SE Standards Example Mapping

- Management (*see also other DAG chapters*)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Planning</td>
<td>Planning</td>
<td>Planning and integrating the technical/SE effort</td>
<td>Project Planning; Integrated Project Management (Mgt.). Acquisition Technical Mgt.</td>
<td>Technical Planning (*see #11 Program Management)</td>
</tr>
<tr>
<td>Project Assessment and Control</td>
<td>Assessment; Control</td>
<td>Control; Technical reviews</td>
<td>Project Monitoring and Control</td>
<td>Technical Assessment; Interface Mgmt.*</td>
</tr>
<tr>
<td>Measurement</td>
<td>Systems Analysis</td>
<td>Control</td>
<td>Measurement and Analysis</td>
<td>Decision Analysis*</td>
</tr>
<tr>
<td>Decision Management</td>
<td>Systems Analysis</td>
<td>Systems analysis</td>
<td>Decision Analysis and Resolution</td>
<td>Decision Analysis*</td>
</tr>
<tr>
<td>Risk Management</td>
<td>Systems Analysis</td>
<td>Systems analysis</td>
<td>Risk Management</td>
<td>Risk Management*</td>
</tr>
<tr>
<td>Configuration Management (CM)</td>
<td>Control</td>
<td>CM; integrated repository; System breakdown structure</td>
<td>CM; Requirements Management</td>
<td>CM; Requirements Management</td>
</tr>
<tr>
<td>Information Management</td>
<td></td>
<td>Integrated data package</td>
<td>Project Planning; Measurement and Analysis</td>
<td>Technical Data Management</td>
</tr>
<tr>
<td>Acquisition and Supply</td>
<td>Acquisition and Supply</td>
<td>Development strategies</td>
<td>Agreement Mgt. Acquisition Technical Mgt.</td>
<td>(*see other DAG chapters)</td>
</tr>
<tr>
<td>Project -Enabling processes</td>
<td>Environment and Enterprise Support</td>
<td>Product and process improvement; Quality Mgt.</td>
<td>Organizational Process set; Process & Product Quality Assurance; Organization Training</td>
<td>(*see other DAG chapters)</td>
</tr>
<tr>
<td>ISO/IEC 15288</td>
<td>EIA - 632</td>
<td>IEEE 1220</td>
<td>CMMI®-ACQ/L3</td>
<td>DAG/SE (#4)*</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Stakeholder Requirements Definition</td>
<td>Requirements Definition</td>
<td>Requirements analysis</td>
<td>Acquisition Requirements Development; Solicitation & Supplier Agreement Development</td>
<td>Stakeholder Requirements Definition*</td>
</tr>
<tr>
<td>Requirements Analysis</td>
<td>Systems Analysis</td>
<td>Requirements & Functional analysis; Systems Analysis; Modeling</td>
<td>Acquisition Requirements Development</td>
<td>Requirements Analysis*</td>
</tr>
<tr>
<td>Architectural Design</td>
<td>Solution Definition</td>
<td>Functional analysis; Synthesis; Modeling, Specifications/drawings</td>
<td>Technical Solution</td>
<td>Architecture Design</td>
</tr>
<tr>
<td>Implementation</td>
<td>Implementation</td>
<td>Prototyping; fabrication, assembly, production</td>
<td>Integrated Project Management</td>
<td>Implementation</td>
</tr>
<tr>
<td>Integration</td>
<td></td>
<td>Integrated data package; Integration</td>
<td>Integrated Project Mngt.</td>
<td>Integration</td>
</tr>
<tr>
<td>Verification</td>
<td>System Verification</td>
<td>Functional & Design verification; Technical reviews; Test</td>
<td>Acquisition Verification</td>
<td>Verification (*see #9 – Integrated Test & Evaluation)</td>
</tr>
<tr>
<td>Validation</td>
<td>Requirements & End Products Validation</td>
<td>Requirements validation; Test</td>
<td>Acquisition Validation</td>
<td>Validation (*see #9 – Integrated Test & Evaluation)</td>
</tr>
<tr>
<td>Transition</td>
<td>Transition to Use</td>
<td>Support stage</td>
<td></td>
<td>Transition</td>
</tr>
<tr>
<td>Operation; Maintenance; Disposal</td>
<td></td>
<td></td>
<td></td>
<td>*see other DAG (e.g., #5 Life Cycle Logistics)</td>
</tr>
</tbody>
</table>
Summary of SE Standards

- ISO/IEC 15288 is becoming the leading SE ‘Standard’
 - ISO/IEC 12207 [and others – e.g., 15939 re Measurement process] working for ‘harmony’
 - IEEE ‘adopts’ it with tailoring guidance; expect revision of IEEE 1220 [also for EIA-632]
 - INCOSE adopts/tailors it with much more detail
 - DoD’s DAU DAG applies it with acquisition-oriented tailoring
 - It is a standard and so is a very high level ‘What’ is best practice

- “reality is in the details”
 - the DAG, CMMI, and INCOSE all provide more details on what & how

Next – overview of DUSD(A&T) SSE (and NDIA) observations and finding regarding SEP reviews, PSRs analysis, workshop findings
USD(AT&L) Systems Engineering Plan (SEP) Policy*

- “Provide a context within which I can make decisions about individual programs.”
- “Achieve credibility and effectiveness in the acquisition and logistics support processes.”
- “Help drive good systems engineering practices back into the way we do business.”

Programs shall develop a Systems Engineering Plan (SEP) for Milestone Decision Authority (MDA) approval in conjunction with each Milestone review, and integrated with the Acquisition Strategy. This plan shall describe the program’s overall technical approach, including processes, resources, metrics, and applicable performance incentives. It shall also detail the timing, conduct, and success criteria of technical reviews.

Note: colors are authors

*Full policy can be found at http://www.acq.osd.mil/sse/policy.html
The SEP...

- Is the artifact of a program’s technical planning activities usually led by a SE Working Integrated Product Team [SE WIPT]
 - Captures government processes and planning
 - Establishes roles, responsibilities, and authorities of both government personnel and contractors within government processes
- Covers the life cycle from concept, acquisition, etc., through sustainment of the system/program
- Is the Program Manager’s technical management tool

Application of a quality technical planning process, by trained and experienced staff, leads to a good SEP
Technical Planning Focus Areas in SEPs

[there are variations per Milestone / Phase]

- **Program Requirements**
 - Capabilities, CONOPS, and key performance parameters/attributes
 - Statutory, Regulatory, Certification requirements
 - Technology development, design considerations
 - Data to monitor & compare to assumptions

- **Technical Staffing and Organizational Planning**
 - Lead/Chief SE & functional Leads
 - IPT Organization/Structure, staffing & skills, coordination
 - Integration with contractors & external organizations

- **Technical Baseline Management**
 - Technology maturity & risk
 - Technical Baseline management responsibility & control
 - Requirements traceability, verification & validation
 - Specifications & Work breakdown Schedule (WBS)

- **Technical Review Planning** [Event driven]
 - Technical review management (who chair, determines readiness & closure)
 - Entry and exit criteria
 - Stakeholder participation
 - Peer participation [e.g., *independent* Subject Matter Experts [SMEs]]

- **Integration with Overall Program Management**
 - Linkage to other program plans (e.g., Acquisition Strategy, Integrated Master Plan & Schedule, Test & Evaluation Management Plan (TEMP), production, sustainment/logistics plans or strategies, etc.)
 - Risk Management Plan
 - Contracting Considerations (e.g., SE incentives)

Source: ODUSD(A&T)SSE Systems Engineering Plan (SEP) Preparation Guide; 2008
Critical & Substantive Comments per SEP

Have seen little significant improvement in trend

Comments per SEP by Focus Area

Focus Area

- Requirements
- Org/Staffing
- Tech Baselines
- Tech Reviews
- Integration

Comments/SEP

Substantive
Critical

N=58
SEP References to SE Processes

*other CMM = CMMI-AM, SW-CMM

Note: N =40; sum >100% due to several listed in many SEPs
SEP Observations on SE Practices

- CMMs clearly dominate; but simplified “V” or 499B are still applied
 - some use the CMMI-Acquisition Module (CMMI-AM);
 - CMMI for Acquisition (CMMI-ACQ) is too new to see any application
- Some programs list many – but not clear which, if any, actually are applied
- ~ 20% not referencing any particular SE standard/model
- Practically no information on what/how standards/models were tailored
- Some programs are referencing (adopting?) the Prime/Integration contractor’s SE set of processes
- SEPs usually only show or discuss in detail: Requirements Management, Configuration Management, Risk Management, & Technical Review approaches (T&E is addressed in the TEMP)

Need to see more details on tailored integrated SE approach
SEP Review Summary Observations
(~ 100 SEPs reviewed across life cycle phases)

- Lack complete **requirements** ([e.g., regulatory, statutory, certifications] sources)
- Unclear understanding of **interfaces/coordination** with other programs/systems [i.e., System of Systems, Family of Systems (SoS/FoS)]
- Inadequate linking of Key Performance Parameters (**KPPs**), Attributes, Technical Performance Measurements (**TPMs**)
- Vague on design considerations and criteria/approach to **trades**
- Unclear, incomplete and inconsistent **organizational** roles/responsibilities/authorities of program functionals and IPTs; charters, chairs, members, products – link to WBS, EVMS, TPMs.
- Lack of clarity on approach, products, responsibilities for **CM** [i.e., Technical Baseline Management] – when does Government take control? CCB structure?
- Lack of complete and specific information on **Technical Reviews** – approach, chair, tailored entry/exit criteria, stakeholders/independent SMEs.
- Inadequate **Integrating SE** with other program plans/processes (e.g., Acquisition Strategy, IMS, EVM, Risk Management, production, sustainment/logistics)
- Lack of specifics as to **incentives/award fees** for good SE.
- Generic, not tailored, and vague **SE process** descriptions.
“Task analyses conducted by human and engineers provide qualitative data to support”

“Fifteen (15) trade studies are planned during the SDD phase. These trade studies are undefined at this time.”

“Integrity is not an issue on the {Program}, because the program was put on contract during acquisition reform.”

“The … Program Manager and Systems Engineer monitor integration activities to ensure that the KPPs and the KSAs are not achieved.”

“The … communications are intended to support both the internal communications capabilities and external interfaces between the {Program} and the rest of the world.”

“The {Program} technical reviews conducted during the PD and O&S phases are chaired by a competent person.”

Sources: extracts from various program SEPs
System Acquisition Issues Identified and Captured

Next a summary of recent issues identified as they relate to SE activities:

• SE and SWE issues from NDIA-SE Workshops

• Program Support Reviews systemic analysis findings from ODUSD(A&T)SSE/Assessments and Support

We will list and compare similarities across these findings and SEP observations as they relate to the SE processes
NDIA-SE Top 5 Systems Engineering Issues

• Key SE effective **practices inconsistently** applied across all phases of the LC

• **Insufficient SE** applied **early** in program life cycle, compromising foundation for initial requirements and architecture development

• **Requirements not always well-managed**, e.g., ineffective translation of needed capabilities into executable requirements to achieve program success

• Quantity and quality of **SE expertise insufficient** to meet demands of government and defense industry

• **Collaborative environments**, e.g., SE tools, **inadequate** to effectively execute SE at joint capability, system of systems (SoS)*, and system levels.

Significant note: issues relative to evolving acquisition strategies and environments were also a common theme. Although task group ultimately decided to capture these aspects as comments distributed across above 5 major issues, SoS issues are significant and in aggregate could be considered a “6th issue” added to this list.

* From NDIA-SE task group; 2006 Full report can be found at http://www.ndia.org
1. The impact of requirements upon software is **not consistently quantified and managed** in development or sustainment.

2. Fundamental system engineering **decisions** are made **without full participation of software engineering**.

3. Software **life-cycle planning** and management by acquirers and suppliers is **ineffective**.

4. The quantity and quality of **software engineering expertise** is **insufficient** to meet the demands of government and the defense industry.

5. Traditional **software verification techniques** are **costly and ineffective** for dealing with the scale and complexity of modern systems.

6. There is a **failure to assure correct, predictable, safe, secure execution of complex software** in distributed environments.

7. Inadequate **attention** is given to total life cycle issues for **COTS/NDI** impacts on lifecycle cost and risk.

Source: NDIA Top Software Issues Workshop; August 2006; DOUSD(A&T)SSE/SSA
Top 10 Emerging Systemic Issues

from ODUSD(A&T) Program Support Reviews; SSE Directorate, 8/07 (*specific to SE activities*)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **1. Management** | • IPT roles, responsibilities, authority, **poor communication**
• **Inexperienced staff**, lack of technical expertise |
| **2. Requirements** | • Creep/stability
• **Tangible, measurable, testable** |
| **3. Systems Engineering** | • Lack of a **rigorous approach**, technical expertise
• **Process compliance** |
| **4. Staffing** | • **Inadequate** Government program office staff |
| **5. Reliability** | • Ambitious growth curves, **unrealistic requirements**
• **Inadequate “test time”** for statistical calculations |
| **6. Acquisition Strategy** | • Competing budget priorities, **schedule-driven**
• Contracting issues, poor technical assumptions |
| **7. Schedule** | • **Realism, compression** |
| **8. Test Planning** | • Breadth, depth, resources |
| **9. Software** | • Architecture, design/development discipline
• **Staffing/skill** levels, organizational competency (process) |
| **10. Maintainability/Logistics** | • Sustainment costs not fully considered (short-sighted)
• Supportability considerations traded |

Major contributors to poor program performance
SE Issues Example Mapping – Management

(* SE processes with top issues – authors own)

<table>
<thead>
<tr>
<th>ISO/IEC 15288</th>
<th>SE issues</th>
<th>SW issues</th>
<th>PSR findings</th>
<th>SEP observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Planning*</td>
<td>Inconsistent SE practices; insufficient early SE</td>
<td>Ineffective life cycle planning, estimation</td>
<td>IPT roles/ responsibilities; non rigorous SE approach; compressed schedule driven; coupling IMP/IMS/WBS</td>
<td>Incomplete; inconsistent; unclear responsibilities</td>
</tr>
<tr>
<td>Project Assessment & Control*</td>
<td>Inadequate tools</td>
<td>Ineffective management</td>
<td>Poor communication</td>
<td>see others</td>
</tr>
<tr>
<td>Measurement</td>
<td></td>
<td>Requirements</td>
<td>Usually little specifics (e.g., TPM allocations to IPTs)</td>
<td></td>
</tr>
<tr>
<td>Decision Management</td>
<td>Key decisions made w/o SW participation</td>
<td></td>
<td>Little details on who & how (other than IPTs communicate)</td>
<td></td>
</tr>
<tr>
<td>Risk Management*</td>
<td>Inadequate re COTS/NDI</td>
<td>SE – SW integration</td>
<td>Lack of details, responsibility, risk mitigation</td>
<td></td>
</tr>
<tr>
<td>Configuration Management</td>
<td></td>
<td></td>
<td>All key baselines not clearly defined; nor when transition to Government</td>
<td></td>
</tr>
<tr>
<td>Info. Mgt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acquisition & Supply</td>
<td></td>
<td>Ineffective management</td>
<td>Lack of SE specific incentives/award fees (sometimes too much responsibility deferred to Prime)</td>
<td></td>
</tr>
<tr>
<td>Project-Enabling processes*</td>
<td>Insufficient SE skills; inadequate collaborative environment</td>
<td>Insufficient SW engr. expertise; process compliance</td>
<td>Inexperienced, inadequate staff</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISO 15288</th>
<th>SE issues</th>
<th>SW issues</th>
<th>PSR findings</th>
<th>SEP observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakeholder Requirements Definition</td>
<td>Not well managed or translated</td>
<td>Poor definitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirements Analysis*</td>
<td>Not well managed or translated</td>
<td>Not consistently quantified & managed</td>
<td>Unrealistic reliability goals; test time</td>
<td></td>
</tr>
<tr>
<td>Architectural Design</td>
<td>Poor technical assumptions; architecture design & development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verification</td>
<td>Costly & ineffective techniques for scale/complexity</td>
<td>Test planning breadth/depth/resources inadequate</td>
<td>(details would be from in TEMP reviews)</td>
<td></td>
</tr>
<tr>
<td>Validation</td>
<td>failure to assure proper execution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations; Maintenance; Disposal</td>
<td>Sustainment / supportability lightly considered</td>
<td>Lacks details on O&S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Projects with better Systems Engineering Capabilities deliver better Project Performance (cost, schedule, functionality)
Wrap Up

DoD and NDIA are already addressing some key issues, e.g.,

- SE technical planning guidance to program SE WIPTs
- Defense Acquisition Program Support (DAPS) Methodology update (for PSRs)
- SoS guide
- Engineering for System Assurance guide
- DT&E guide
- Updated DAG based on new DOD Acquisition Management Policy (DoDI 5000.2) and ISO 15288,
- Some SW Engineering focus areas (WBS, estimation,...)
- University affiliated SE research program
- DAU SE courses and Certification
Backups

- SE “V” for MS B: SD&D phase
- ISO/IEC -12207 Software life cycle process
- IEEE - 1220: SE Process
- EIA - 632: Processes for Engineering a System
- INCOSE SE Handbook – Planning Process example
- DoD’s Acquisition Life Cycle: Old vs New
- Early SE Initiation
- Acronyms
- References
- Links
ISO/IEC 12207:2008: Software life cycle processes (*changes in red)

<table>
<thead>
<tr>
<th>Technical Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakeholder Requirements Definition Process*</td>
</tr>
<tr>
<td>System Requirements Analysis Process*</td>
</tr>
<tr>
<td>System Architectural Design Process*</td>
</tr>
<tr>
<td>Implementation Process*</td>
</tr>
<tr>
<td>System Integration Process*</td>
</tr>
<tr>
<td>System Qualification Testing Process</td>
</tr>
<tr>
<td>SW Installation Process</td>
</tr>
<tr>
<td>SW Acceptance Support Process</td>
</tr>
<tr>
<td>SW Operation Process*</td>
</tr>
<tr>
<td>SW Maintenance Process*</td>
</tr>
<tr>
<td>SW Disposal Process*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SW Implementation Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW Implementation Process*</td>
</tr>
<tr>
<td>SW Requirements Analysis Process</td>
</tr>
<tr>
<td>SW Architectural Design Process</td>
</tr>
<tr>
<td>SW Detailed Design Process</td>
</tr>
<tr>
<td>SW Construction Process</td>
</tr>
<tr>
<td>SW Integration Process*</td>
</tr>
<tr>
<td>SW Qualification Process</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SW Support Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW Documentation Mgt.. Process</td>
</tr>
<tr>
<td>SW CM Process*</td>
</tr>
<tr>
<td>SW QA Process</td>
</tr>
<tr>
<td>SW Verification Process*</td>
</tr>
<tr>
<td>SW Validation Process*</td>
</tr>
<tr>
<td>SW Review Process</td>
</tr>
<tr>
<td>SW Audit Process</td>
</tr>
<tr>
<td>SW Problem Resolution Process</td>
</tr>
</tbody>
</table>

SW Reuse Processes:
- Domain Engineering
- Reuse Asset Mgt..
- Reuse Program Mgt..

Note: Agreement, Organizational Enabling, and Project processes are essentially the same as ISO/IEC 15288
* Implies SW similar to SE

Source: IEEE Std 12207-2008
Clause 4 - General Requirements

1. SE process
2. Policies & procedures for SE
3. Planning the technical effort:
4. Development strategies
5. Modeling & prototyping
6. Integrated repository: data, tools.
7. Integrated data package: HW, SW
8. Specification tree
9. Drawing tree
10. System breakdown structure
11. Integration of the SE effort: concurrent engr., Int. teams
12. Technical reviews
13. Quality management
14. Product and process improvement: re-engineering, self-assessment, Lessons

Note: Standard includes detailed flows for each activity; and an example SEMP table of contents

Clause 6 – The SE Process

1. Requirements Analysis
2. Requirements Validation
3. Functional Analysis
4. Functional Verification
5. Synthesis
6. Design Verification
7. Systems Analysis*
8. Control

* Requirements/Functional/Design trade studies & assessments

Source: IEEE 1220 – 2005

Technical Management
- Planning Process
- Assessment Process
- Control Process

Acquisition and Supply
- Supply Process
- Acquisition Process

CONOPS & Requirements

System Design
- Requirements Definition Process
- Solution Definition Process

Architectures/Designs

Product Realization
- Implementation Process
- Transition to Use Process

Products

Technical Support
- Systems Analysis Process
- Requirements Process
- Validation Process
- Verification Process
- Product Validation Process

Note: provides detailed activities and outcomes for each process

(Source: INCOSE SE Handbook v2)
Figure 5-2 Context Diagram for the Project Planning Process

Note: Handbook is based generally on ISO 15288: 2002; will be updated to be in sync with 2008 version

Source: INCOSE SE Handbook v3.1
DOD’s Acquisition Life Cycle: Old vs New

Old Life Cycle

User Needs & Technology Opportunities

- Process entry at Milestones A, B, or C
- Entrance criteria met before entering phase
- Evolutionary Acquisition or Single Step to Full Capability

Pre-Systems Acquisition

Technology Development

System Development & Demonstration

Production & Deployment

Operations & Support

= Decision Point
= Milestone Review

Materiel Development Decision precedes entry into any phase of the acquisition framework

New Life Cycle

User Needs

Technology Opportunities & Resources

- The Materiel Development Decision precedes entry into any phase of the acquisition framework
- Entrance criteria met before entering phase
- Evolutionary Acquisition or Single Step to Full Capability

Pre-Systems Acquisition

Materiel Solution Analysis

Technology Development

Engineering and Manufacturing Development & Demonstration

Production & Deployment

Operations & Support

= Decision Point
= Milestone Review

Source: DUSD(A&T) SSE
SE Provides a Technical Foundation for Acquisition (based on new DoD Acquisition Policy)

Systems Engineering is most effective when it is initiated early to start a program right!

Source: National Research Council

“Pre-Milestone A and Early-Phase Systems Engineering” Jan 2008
Acronyms/Definitions

- A&T – Acquisition and Technology [@ODUSD]
- ANSI – American National Standards Institute
- CMP – Configuration Management Plan
- DAG – Defense Acquisition Guidebook
- DAU – Defense Acquisition University
- DoD – U.S. Department of Defense
- DoDI – DoD Instruction
- EIA – Electronic Industries Alliance
- FRP – Full Rate Production
- GEIA – Government Electronics and Information Technology Association
- IEC – International Electrotechnical Commission
- IEEE – Institute for Electrical and Electronics Engineers
- INCOSE – International Council on Systems Engineering
- IOT&E – Integrated Operational Test & Evaluation
- IMP/IMS – Integrated Master Plan/Integrated Master Schedule
- ISO – International Standards Organization
- IOC – Initial Operating Capability
- IT – Information Technology
- LRIP – Low Rate Initial Production
- NDIA – National Defense Industries Association [SE division]
- PMI – Project Management Institute
- PSR – Program Support Review
- QA – Quality Assurance
- QMP – Quality Management Plan
- RMP – Risk Management Plan
- SE – Systems Engineering
- SEE – SE Effectiveness
- SEI – Software Engineering Institute [@Carnegie Mellon U.]
- SEMP – SE Management Plan
- SEP – Systems Engineering Plan
- SoS – System of Systems
- SSCI – Systems and Software Consortium
- SSA – Software Engineering and Systems Assurance
- SSE – Systems & Software Engineering Directorate [@ODUSD (A&T]
- SW – Software
- SWE – Software [SW] Engineering
Some SE Related Process References

- **CMMI® – ACQ**: SEI/CMU, 11/07
- **Defense Acquisition Guidebook**, Chapter 4 - Systems Engineering; Defense Acquisition University, 2004 (*soon to be updated*)
- **EIA/IS - 632: 1998** - Processes for Engineering a System
- **IEEE 1220: 2005** Application and Management of the Systems Engineering Process
- **INCOSE** Systems Engineering Handbook, v3.1; 8/2007
- **NDIA SE Effectiveness** (SEE) Study; 2008
- **Understanding and Leveraging a Supplier’s CMMI Efforts**; ODUSD(A&T)SSE, 2007
Other References and Links

Some References:
 (see particularly K. Crowder, D. Kitterman, T. Doran, R. Harwell, and S. Arnold articles)
- CMMI – Next Steps; Kristen Baldwin, ODUSD(A&T)SSE/SSA, CMMI technology
 Conference; November, 2007
- “Harmonization of Systems and Software Engineering Processes”, James W. Moore;
 Mitre; June, 2007, brief for ASQ-DC meeting
- Issue on Systems Engineering, **CROSSTALK**, STSC, October 2007

Links:
- CMMI: http://www.sei.cmu.edu/cmmi/
- INCOSE Guide to SE BoK: http://g2sebok.incose.org/
- NDIA-SE: http://www.ndia.org/Template.cfm?Section=Divisions [then select SE]
A CONTINUOUS PROCESS VIEW OF SYSTEMS ENGINEERING FOR THE SUSTAINMENT PHASE

By: Paul Ratke
US Air Force
Oklahoma City Air Logistics Center
The views and opinions presented here are the author’s. They are not necessarily representative of any official position of the US Government or any of it’s organizations.
What’s this about?

- The acquisition lifecycle framework shows sustainment as a small and somewhat linear part of the lifecycle.

- An alternative view is useful to aid understanding of the sustainment phase.
Where is this going?

- Why have alternative views?
- What are the current views?
- What is the alternative view?
- What do we do with it?
Why have alternative views?

- Different vantage points
- “Pre-sustainment” phases emphasized
- There is much to be gained
Why have alternative views?
(Different Vantage Points)

- People have:
 - Different backgrounds
 - Different situations
 - Different understanding

- Example:
 - Accident witnesses
Why have alternative views?
(Different Vantage Points)

What Did YOU See?
Why have alternative views?
(Different Vantage Points)

What Did YOU See?
Why have alternative views?
(Different Vantage Points)

What Did YOU See?
Why have alternative views?
(Different Vantage Points)

What Did YOU See?
Why have alternative views?
(Different Vantage Points)

- Look at all sides of the issue
- Different views ring with different people
 - Different backgrounds
 - Different situations
 - Different understanding
- Both of these can clarify the common view
Why have alternative views?
(Different Vantage Points)

Example: 2 x 3
- 1. Memorize it. = 6
- 2. Explain it as 2+2+2 or
- 3. Explain it as 3+3 or
- 4. Explain it as
Why have alternative views?
(Different Vantage Points)

- Systems Engineering is loaded with many view points
 - Role (Government, Contractor)
 - Mission
 - Etc
 - Etc
 - Etc
 -Position in Life Cycle!........
Why have alternative views?
(“Pre-Sustainment” Phases emphasized)

- LCSE, “Life-cycle”
- In vogue to say it
- Hard to grasp!
- Harder to do!!
- There are reasons to focus on early phases
- Where is SUSTAINMENT? – an example
Why have alternative views?
(“Pre-Sustainment” Phases emphasized)

- DAU SYS302
 - Capstone SE Leadership Course
 - 80 Hrs, Six Team Exercises – Nice Course
 - Entry into Acquisition
 - Requirements Development
 - Technical Organization
 - Technical Baselines and Earned Value
 - Technical Reviews
 - Transition to Production
Why have alternative views?
(“Pre-Sustainment” Phases emphasized)

- Reasons ---
- Start at the beginning
 - Hard to start at end, etc
- Concept, Design, Mfg – $1, $10, $100

- These are good reasons!
Why have alternative views?
(Much to be gained)

- $1, $10, $100 – Concept, Design, Mfg
 - What about cost in operation? – 1000?
 - Fuel, Parts, Mission loss
- Future program avoidance $!
 - Ability to Modify – ‘Modifiability’ as an ‘-ility’
 - B-58 & F-111 – avoid B-1?
 - KC-135 – avoid KC-next?
Where is this going?

- Why have alternative views?
- What are the current views?
- What is the alternative view?
- What do we do with it?
What are the current views?

DoD Decision Support Systems

- CJCS 3170.01 Series
- Joint Capabilities Integration & Development System (JCIDS)
 VCJCS/JROC
 Oversight
- MID 913 PPBS to PPBE
- Defense Acquisition System
 Milestone Decision Authority (MDA)
 Oversight
- DoD 5000 Series
- Planning, Programming, Budgeting & Execution (PPBE) Process
 DEPSECDEF
 Oversight

DAG, Chp 1
What are the current views?

Program Life-Cycle (Illustrative)

DAG, Chp 2
What are the current views?

DAG, Chp 5
What are the current views?
What are the current views?
Where is this going?

- Why have alternative views?
- What are the current views?
- What is the alternative view?
- What do we do with it?
What is the alternative view?

- Utility Curve view
- Utility is “the state of being useful”
- Consider all the operational “usefulness” as the system’s “Utility”
- Consider what the user needs to be the “Need”
What is the alternative view?
What is the alternative view?
What is the alternative view?

- DAG – Chp 5 indicates iterative monitoring
- SE not once and done
- When Utility does not match Need
 - Either- Effect a ‘non-material’ change
 - Or- Begin the modification process
- Need an iterative engine during sustainment
What is the alternative view?

Utility Curve Engine for Sustainment

- Is it Time to Iterate?
 - Yes
 - A
 - No
 - B

- Does Utility = Need?
 - Yes
 - A
 - No

- Is a Config Change Needed?
 - Yes
 - Initiate Modification
 - No

- Effect correction
Where is this going?

- Why have alternative views?
- What are the current views?
- What is the alternative view?
- What do we do with it?
What do we do with it?

- A different point of view?
- How are we answering these questions?
- What drives the cycle to start?
- Do we know the current ‘Need?’
- Do we know the current ‘Utility?’
- How complete are our answers to these?
What do we do with it?

- BIG QUESTION

- What can we do to improve our answers?
Where have we been?

- Why have alternative views?
- What are the current views?
- What is the alternative view? – Utility Curve
- What do we do with it?
QUESTIONS?
Progress Toward the Development of a Reliability Investment Cost Estimating Relationship

James A. Forbes, PhD, Deceased
E. Andrew Long
October 2008
Overview and Outline

- Background
- Development of model
 - Basic model
 - Intermediate model
 - Production/support cost model
- Summary and conclusions
- Next steps and future work
Work Sponsored by:

- Director of Operational Test and Evaluation
- Deputy Director, Assessments and Support, Systems and Software Engineering
- Deputy Under Secretary of Defense (Logistics and Materiel Readiness)

Although the support of the sponsors is gratefully acknowledged, positions expressed are those of LMI Government Consulting, and not official positions of the sponsors.
OBJECTIVE: Mathematical model that can be used to **predict the investment** in reliability required to achieve a given amount of **reliability improvement**

APPROACH: Four sub-models developed in three phases

Phase I
- **Empirical Research**
 - Investigate empirical relationships between reliability investment and life-cycle support costs

Phase II
- **A. Basic Model**
 - Develop investment/reliability improvement CER
- **B. Intermediate Model**
 - Develop model to determine effort and cost of reliability engineering process
 - Develop production and support cost model

Phase III
- **Detailed Model**
 - Develop model that includes detail on cost drivers and impacts of engineering quality
Phase I (Empirical Research)

- Developed a preliminary relationship between investment in reliability (normalized by average production unit cost) and achieved reliability improvement
- Also, found that:
 - Generally, programs significantly improved system reliability with investment, though
 - Under-investment in reliability may be large
 - Reliability goals, although established and articulated in operational requirements documents, do not appear to be driving either management or engineering effort
Phase IIA (Basic Model)

\[R^2 = .81 \]

\[\text{Investment} = \left(\frac{\text{Reliability Improvement Ratio}}{0.3659} \right) \times \text{APUC} \]

\[X_{\text{APUC}} \]

Phase I
- Phase II
- Phase III
- Intermediate Model
- Detailed Model

Empirical Research

Nov 06 Sep 07 Aug 08

- Nov 06
- Sep 07
- Aug 08

\[0.8 \]

\[0.6 \]

\[0.5 \]

\[0.4 \]

\[0.3 \]

\[0.2 \]

- 0

- 10

- 20

- 30

- 40

- 50

- 60

- 70

- 80

- 90

- 100

- 200

- 300

- 400

- 500

- 600

- 700

- 800

- 900

- 1000

- 2000
Phase IIB (Intermediate Model)
TAAF Period Equation Development

\[\frac{1}{M(\tau)} = \frac{1}{M_A} + \frac{1}{M_i} \left[\left(1 - \mu_d \right) + \frac{\mu_d}{1 + \tau} \right] \]
Based on math that underlies AMSAA’s MPM

\[\gamma(\tau) = \frac{1}{CV^2} \left[C_0 \tau + \mu_b \ln(1 + \tau) \right] \]
LMI cost extension to AMPM
Comparing LMI Model of TAAF Cost with AMSAA Data

- Using 25 data points from eight platforms, inferred non-dimensional TAAF time τ from the AMPM and M_F/M_I (neglect λ_A) ratio of each data point
- Determined LMI model cost for each τ
 - Calibrated model by adjusting two parameters
- Compared costs estimated by model with AMSAA costs
AMSAA Cost vs. Model Predicted Cost to Achieve a Given Reliability

Mean average deviation = 0.19
Approach to Design Phase Model

• Adopt A-mode, B-mode scheme from TAAF (and AMSAA) Model
 – Assumes process for identifying and removing B-modes is similar to TAAF
 – Engineering labor applied to PoF, HALT, durability, etc. plays role similar to test operation in TAAF

• Obtain improvement data from programs that implemented or are implementing proactive tasks (assumes will see only limited improvement if proactive tasks not performed)
Design Period Model Equation Development

\[\frac{1}{M(\tau)} = \frac{1}{M_A^2} \left(\frac{1}{M_0} \left[\left(1 + \frac{\mu_D}{\mu} \right) \frac{1}{1 + \tau} \right] \right) \]

\[\gamma(\tau) = \frac{1}{cV_{D}^2} \left[C_0^D \tau + \mu_B^D \ln(1 + \tau) \right] \]
Initial Calibration of Design Period Model

Mean Absolute Deviation 41%

13 data for EFV, 1 datum for AIM-9X, 1 datum for MGS Stryker

Used 4 values for “goodness” parameter
Support Cost Model (+)

- Investment (or lack of investment) in reliability improvement
- Realized reliability
- Platform dependability
- Number of platforms required to achieve required system dependability
- Per platform support cost
- System support cost
- System production cost

Platform Dependability = \frac{\text{Operational time + ready time}}{\text{Operational time + ready time + downtime}}

- Assume 20 hour operational + ready time.
- How large does a “flight” of n platforms need to be to assure at least one platform will be operational for 20 hours with a given confidence level?
- Intend to buy 20 flights.

Simplified UAV Example
LCC vs. Reliability Investment
Notional UAV Example
Summary and Conclusions

- Reasonably mature basic model, 17 data points, all of which were historical actuals
- Demonstrated that basic A-mode, B-mode premise of AMPM can be extended to cost estimating
 - TAAF period model well behaved, but limited by use of estimates rather than historical actuals
 - Design period model feasibility demonstrated, limited by use of estimates and number of data points
- Coupled basic model to LCC model
Next Steps and Future Work

• Continue adding additional data points to basic model

• In intermediate model
 – Replace TAAF period estimates with historical actuals and add additional platform types
 – For design period: more data points, more platform types, historical actuals

• Begin work on detailed model

• For all models, look for disconfirming evidence. Where do the models not work?
USAF Implementation of Recommendations from National Research Council “Pre-Milestone A and Early-Phase Systems Engineering” Study Committee

NDIA Systems Engineering Division
Annual Conference
San Diego, CA
23 October 2008

Jeff Loren
Engineering Policy Branch
SAF/AQRE (Alion Science & Technology)
703.588.7845
jeff.loren@pentagon.af.mil
“Pre-Milestone A and Early-Phase Systems Engineering: A Retrospective Review and Benefits for Future Air Force Systems Acquisition”

December 2007

http://books.nap.edu/catalog.php?record_id=12065
Findings and Recommendations

- **Finding #1**

 Attention to a few critical systems engineering processes and functions particularly during preparation for Milestones A and B is essential to ensuring that Air Force acquisition programs deliver products on time and on budget.

- **Recommendation #1**

 Air Force leadership should require that Milestones A and B be treated as critical milestones in every acquisition program and that … the “Pre-Milestone A/B Checklist” … be used to judge successful completion.
Findings and Recommendations

Finding #2

Creating a robust SE process requires experienced SEs with domain knowledge

Recommendation #2

Assess career field needs and develop a program to address
Implementation Approach - 2

- Established Program Systems Engineer (PSE) shred under SPRDE
- Active engagement with SPRDE FIPT to influence DAU STM courses
 - Subject matter focus has been realigned
 - Provide additional emphasis on technology transition techniques and tools
- Provided 70+ SMEs to support competency assessments
- “Science, Mathematics, & Research for Transformation” (SMART) –funded by OSD; managed by NPS and ASEE
 - Akin to an undergraduate co-op program
 - Also used to provide opportunities for graduate students
 - Trying to change to automatic hire after award of degree rather than having to compete
Update Apr 01 S&E Strategic Plan

Current & Future Requirements	Goal Areas
Recruitment and retention initiatives | Math
Education and training | Acquisition
Individual growth paths | Test
Awards and recognition | Sustainment

NRC STEM Study (kicked off Aug 08; 15-month duration)
- Determine STEM needs of 26 functionals
- Fold recommended implementation strategy into S&E Strategic Plan update

RAND S&E Study (SAF/AQXD initiated)
- Estimating changes in S&E skills for emerging technical needs
- Two time horizons: near term (5 years), mid-term (10-15+ years)
Findings and Recommendations

Finding #3

Government, FFRDCs, and industry all have important roles throughout the life cycle

Recommendation #3

Pre-A decisions should be supported by rigorous SE processes and analyses involving teams of acquirers, users, and industry
Implementation Approach – 3
Continuous Capability Planning

■ Informed Time-Phased Requirements Development (ITPRD)
 ■ Identify sponsoring MAJCOM personnel for collaborative requirements development
 ■ Insert acquisition (AFMC/AFSPC/AFRL) personnel into pre-MS/KDP-A/B process far enough in advance of the HPT to absorb context of program, execute SE processes, and affect content of KPP/KSAs and requirements that go into AoA planning and ICD/CDD/etc.

■ Life Cycle Risk Management
 ■ Comprehensive definition of risk and risk management; should begin at the earliest stages of capability/program planning (pre-MS/KDP-A capability planning effects), and continue throughout the total life cycle of the program

■ Modeling, Simulation, and Analysis
Implementation Approach – 3
Life Cycle Management

High-Confidence Criteria

- Strategy should document multiple, viable trade space options for cost, schedule, capability-based performance requirements and technology
- Strategy should support proper phasing/synchronization of requirements with on- and off-ramps
- Requirements prioritized and properly time phased (cost/schedule)
- Pre-M/S-B Risk Management plans complete, accurate, current and being followed
Implementation Approach – 3
Technology Development

- Technology Development and Transition Strategy
 - Extends the scope of quantitative criteria beyond TRLs
 - Includes broader processes and cross-command forums to improve the rigor of early SE and contribute to “doable” requirements
 - Increases the probability that highest-priority shortfalls/gaps are addressed
 - Results in closer alignment between technology investments and system / capability needs

- Transition Stage-Gating
 - Provides a CONOPS for total technology insertion into the Acquisition & Sustainment Plan
AF Tech Transition Office (TTO) continues support to JCTD, QRF, TTI and other Tech Transition programs.

Tech Transition Program Initiative funded in FY10 POM ($10M/yr)
- Hardware prototyping
- Bridge funding from Tech Demo to Program POM
- Enterprise interface management / configuration control

Developing R&D Strategic Framework to coordinate AF policy, programs and processes to transition technology through 6.1-6.8 to new program of record or change to existing program.
Finding #4

The organic development planning function that applied pre-A SE to a number of successful programs was allowed to lapse

Recommendation #4

A development planning function should be established in the military departments to coordinate the concept development and refinement phase of all acquisition programs to ensure that the capabilities ... as a whole are considered and that unifying strategies such as ... interoperability are addressed.
Secured FY10 POM funding ($37M/yr) for new PE for Requirements Analysis & Maturation (RAM) (“Development Planning”)

- Concept Development
- Requirements Analysis Support

- Establishing DP/RAM governance structure; single point of entry for MAJCOM DP requests

- Early SE Guide to be published 4Q CY08

- Institutionalize CCTD and ConSEP in policy
Implementation Approach – 4
RD&E Investment Framework

Transition Assistance -- filling the “Valley of Death”
Implementation Approach - 1

- Checklist identifies 20 items in 7 principal areas
- Coverage for 16 of 20 exists in current policy and guidance
- Conducted informal order-of-magnitude assessment of current compliance across practitioner community
- In process of identifying process owners and key linkages for each item needing action
Checklist – Concept Development

<table>
<thead>
<tr>
<th></th>
<th>CURRENT PROCESS</th>
<th>SUPPORTING DOCUMENTATION</th>
<th>PROCESS OWNER(S)</th>
<th>OPR(S)</th>
<th>KEY LINKAGE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Have at least two alternative concepts been evaluated?</td>
<td>AoA policy in AFI 10-601</td>
<td>PASEP (pre-AoA) • ASC process (post-AoA) • Early SE Guide</td>
<td>OAS, A2/5 • AQR, AFMC/EN</td>
<td>Center XRs • AoA and DP • ESE guide • SoS stds / practices</td>
</tr>
<tr>
<td>2</td>
<td>Can an initial capability be achieved within ~5 years from MS/KDP B? If not, can critical subsystems (or a key subset) be demonstrated within that timeframe?</td>
<td>New MAIS programs now require IOC within 5 years of MS A, per FY08 NDAA Section 811. No rqmt for non-MAIS programs.</td>
<td>Concept SEP (ConSEP) • Transition Plan • 5000.2 update (PDR ahead of MS B)</td>
<td>A2/5 for DP/RAM and attestation process</td>
<td>Center XRs • DT&E initiative • Risk Assessment • Cost estimating • Other enduring/ std processes • CCP Guide</td>
</tr>
<tr>
<td>3</td>
<td>Will high-risk new technologies have been matured prior to MS/KDP B? If not, is the risk mitigation plan adequate?</td>
<td>10 USC 2366a requires TRL ~6 (defined by AF Policy Memo) at MS B</td>
<td>Transition Plan • ConSEP • Competition & prototyping (Young memo, 5000.2 update)</td>
<td>A2/5 • DP efforts and process leading to acq strategies</td>
<td>Center XRs with AFRL • TD initiatives (RI3, TDTS) • CCP Guide</td>
</tr>
<tr>
<td>4</td>
<td>Have external interface complexities (incl. dependencies on other programs) been identified and minimized? Is there a plan to mitigate risks?</td>
<td>Part of JCIDS process; SoS SE guide</td>
<td>Concept Characterization & Technical Description (CCTD) • CCP process for developing options • SoS engr (in Early SE Guide)</td>
<td>AQR Guidance Memo mandates CCTD • A2/5 – process for developing option sets • AQR, AFMC/EN</td>
<td>Center XRs • Early SE Guide • CCP Guide • AFMC/EN SoS eng practices • All enduring processes incl analysis • TD (RI3)</td>
</tr>
</tbody>
</table>
Checklist – KPPs and CONOPS

<table>
<thead>
<tr>
<th></th>
<th>CURRENT PROCESS</th>
<th>SUPPORTING DOCUMENTATION</th>
<th>PROCESS OWNER(S)</th>
<th>OPR(S)</th>
<th>KEY LINKAGE(S)</th>
</tr>
</thead>
</table>
| 5 | At MS/KDP A, have KPPs been identified in clear, comprehensive, concise, understandable terms? | AFI 10-601 (JCIDS implementation) (at early stages, MOEs are more appropriate than solution-focused KPPs) | • ConSEP
• CCTD
• I-CDD (to support system reqmts refinement and PDR prior to MS B) | • AFMC/CC attestation point
• DP/RAM process | Center XRs
• Attestation initiative
• SE activities |
| 6 | At MS/KDP B, are major system-level requirements (including all KPPs) sufficiently well defined to provide a stable basis for system development? | AFI 10-601 (JCIDS implementation) (at early stages, MOEs are more appropriate than solution-focused KPPs) | • ConSEP
• CCTD
• CDD | AFMC/CC attestation process | SPM and center XRs
• DT&E initiative
• All enduring processes including analysis
• LCM |
| 7 | Has a CONOPS been developed showing that system operation can handle expected throughput and meet response time requirements? | | • ConSEP
• CCTD
• I-CDD | A2/5 DP/RAM process
SPM and center XRs | Analysis framework
SoS practices and standards
Early SE – all enduring processes |
Checklist – Cost & Schedule, Performance Assessment

COST & SCHEDULE SCOPING

<table>
<thead>
<tr>
<th>8</th>
<th>Are major cost and schedule drivers and risks explicitly identified, and is there a plan to track and reduce uncertainty?</th>
</tr>
</thead>
</table>
| **• Evaluated within JROC process per JROCM 06-261.**
• Part of Acq strategy | **Pre-A**
• ConSEP
• Transition Plan
• Pre-B
• SEP
• RMP | **A2/5 for DP/RAM**
• Individual process owners for risk & cost assessment | **SPM and center XRs depending on phase** | **• Early SE**
• Risk and integrated assessments
• Other std/enduring processes |

<table>
<thead>
<tr>
<th>9</th>
<th>Have principal stakeholders accepted the confidence level (risk assessment) associated with cost estimates?</th>
</tr>
</thead>
</table>
| **Cost Estimating policy & guidance (POE, ICE, etc.)** | **• CCTD**
• SEP
• RMP | **Risk process (ACE-AFMC/EN)**
• Sufficiency Rvw (best of breed from Risk Team)
• CE methodology | **SPM and center XR depending on effort/phase** | **• Risk process**
• Cost estimating methodology |

PERFORMANCE ASSESSMENT

<table>
<thead>
<tr>
<th>10</th>
<th>Are models and simulations adequate and appropriate to validate the selected concept and CONOPS against the KPPs?</th>
</tr>
</thead>
</table>
| **• Operational Context rather than “CONOPS” per se**
• MOEs at earliest “checkpoints” | **• ConSEP**
• CCTD
• SEP | **A2/5 (DP); M&S owner as enabler**
A2/5 from attestation perspective | **SPM and/or center XRs depending on effort/phase; also need M&S owner** | **• DT&E initiative**
• Analysis Team products (M&S activity) |

<table>
<thead>
<tr>
<th>11</th>
<th>At MS/KDP B, do the requirements consider likely future mission growth over the life cycle?</th>
</tr>
</thead>
</table>
| **SE/SEP guidance (Address in updates)**
• SEP
• Transition Plan | **• SEP**
• Transition Plan | **AFMC/CC attestation**
• DP/RAM
• SE | **SPM with insights from earlier XR efforts** | **• ICD and I-CDD (validation)** |
Checklist – Architecture, Risk

ARCHITECTURE DEVELOPMENT

<table>
<thead>
<tr>
<th>CURRENT PROCESS</th>
<th>SUPPORTING DOCUMENTATION</th>
<th>PROCESS OWNER(S)</th>
<th>OPR(S)</th>
<th>KEY LINKAGE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Has the system been partitioned to define segments that can be independently developed and tested?</td>
<td>Architecture views required per JCIDS</td>
<td>ConSEP, CCTD, SEP</td>
<td>SE and DP/RAM</td>
<td>Center XRs and XPM depending on effort/phase, DT&E initiative, SoS SE, ICD and I-CDD to validate approach, CCP Guide</td>
</tr>
<tr>
<td>13 By MS/KDP A, is there a plan to have information exchange protocols in place by MS/KDP B?</td>
<td>Architecture views required per JCIDS (OV-3, OV-5 and SV-6 should address)</td>
<td>ConSEP, CCTD, SEP</td>
<td>A2/5 for DP/RAM process, SE process including SoS</td>
<td>Center XRs and SPM, SoS practices and standards, early SE, DP/RAM</td>
</tr>
<tr>
<td>14 At MS/KDP B, is the program plan structured to ensure that the contractor addresses rqmts decomposition / allocation to hardware, software, and human elements sufficiently early in development?</td>
<td>SE guidance in MS B RFP, WBS</td>
<td>Acquisition Strategy, IMP/IMS</td>
<td>SE, AFMC/CC attestation</td>
<td>SPM, Attestation</td>
</tr>
</tbody>
</table>
Checklist – Risk Assessment, Program Implementation

<table>
<thead>
<tr>
<th>RISK ASSESSMENT</th>
<th>PROGRAM IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Are all key risk drivers (including but not limited to critical technologies) identified?</td>
</tr>
</tbody>
</table>
| **16** | Does the program implementation plan account for necessary and sufficient # and skill levels of organic (military and civilian), FFRDC, and support contractor personnel to manage the program? | • SEP should be a resource-constrained plan
• LCMP should address. |
| **17** | At MS/KDP A, is there a plan in place that identifies all necessary activities and resources to reach MS/KDP B? | LCMP |

CURRENT PROCESS	**SUPPORTING DOCUMENTATION**	**PROCESS OWNER(S)**	**OPR(S)**	**KEY LINKAGE(S)**
• ConSEP				
• CCTD				
• SEP				
• TDTS	SoS engr processes; risk process (must begin early)	Center XRs and SPMs depending on effort/phase	• TD initiatives	
• Linkage betw risk, SE and SoS eng, Cost				
• SEP should be a resource-constrained plan				
• LCMP should address.	• Acq strategy			
• Transition Plan	A1 – should be accounted for in Mission Assignment process as well as during transition to a SPO – all functionals (including A2/5 for DP) need to be included in the assessment process	SPO Cadre and SPM (Center XR, EN, other functionals as needed)		
LCMP	Early SE Guide	• A2/5 for DP/RAM		
• SE and SoS processes | Center XRs and SPMs w/resource allocation process | • SoS
• SE
• DP/RAM resource allocation
• All enduring processes |
Checklist – Program Implementation

18. Is there a top-level system integration and test plan?
- **SEP and TEMP**
 - ConSEP
 - CCTD
 - Transition Plan
- **PROCESS OWNER(S):** A2/5 (DP & attestation), PM, SE, SoS
- **OPR(S):** TE Contractor
- **KEY LINKAGE(S):** DT&E and TD initiatives, SoS practices

19. At MS/KDP B, are the necessary and sufficient program management and systems engineering management personnel in place? Have they been empowered to tailor processes and enforce requirements stability through IOC?
- Usually based on PM and CE judgment and then articulated in SEP and LCMP. They are empowered to tailor processes. EMA instituted to add/improve discipline for requirements stability.
- **PROCESS OWNER(S):** ConSEP
 - Transition Plan
- **OPR(S):** A1 (Mission Assignment Process)
- **KEY LINKAGE(S):** SPO Cadre and SPM (Center XR, EN, other functionals as needed)

20. Has the government attempted to align the duration of the program manager’s assignment with key milestones and deliverables?
- New policy memo forthcoming
- **PROCESS OWNER(S):** Transition Plan
- **OPR(S):** Mission assignment process with senior officer moves
- **KEY LINKAGE(S):** OSD
 - In work (OSD)
Prototyping and Early SE

- Basic tenets of prototyping can help a program-to-be directly address 10 of the 20 checklist items -- at least one in each of the 7 areas
- A well-crafted prototyping plan can impact most if not all other items

PROTOTYPING AND EARLY SE CHECKLIST “BOX SCORE”

<table>
<thead>
<tr>
<th></th>
<th>Concept Development</th>
<th>Architecture Development</th>
<th>KPPs and CONOPS</th>
<th>Risk Assessment</th>
<th>Cost and Schedule Scoping</th>
<th>Program Implementation Strategy</th>
<th>Performance Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/4</td>
<td>2/3</td>
<td>1/3</td>
<td>2/2</td>
<td>1/1</td>
<td>1/2</td>
<td>1/5</td>
<td></td>
</tr>
</tbody>
</table>
Concept SE Process
CCTD Content

TABLE OF CONTENTS

1. Mission / Capability Need Statement / CONOPS
2. Concept Overview
3. Trade Space Definition / Characterization
 3.1 Top-Level Architecture
 3.2 Principal Interfaces
 3.3 Operating Regime
 3.4 Key System Parameters
4. Studies, Analyses, Experiments
 4.1 Parametric Studies (e.g., weight, power, cooling, throughput)
 4.2 Analyses (e.g., HSI considerations, supportability concepts)
 4.3 Experiments
 4.4 Conclusions
5. Concept Characterization / Design
 5.1 Common Analysis Assumptions
 5.2 Operating Regime
 5.3 Interface / Interoperability / System-of-Systems Approach
 5.4 Critical Subsystem Design and Sizing
 5.5 Supportability / Sustainment Features
 5.6 Configuration Summary
 5.7 Analysis Results
 5.8 Concept Design Conclusions (Capability Performance Description)
6. Program Characterization
 6.1 Critical Technologies
 6.2 Technology Maturity Approach
 6.3 Test & Evaluation / Verification & Validation Approach
 6.4 Prototyping Approach
 6.5 Manufacturing / Productivity Approach
 6.6 Sustainment / Supportability Approach
 6.7 Schedule Assumptions
 6.8 Cost Analysis Assumptions
 6.9 Cost Estimates
 6.10 Risk Assessment
7. Conclusions
8. Recommendations (if applicable)
<table>
<thead>
<tr>
<th>Type</th>
<th>Title</th>
<th>Counts/Versions</th>
<th>Owner</th>
<th>Date Modified</th>
<th>Email This</th>
<th>Reserved</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Briefings presented</td>
<td></td>
<td>🗂️=0, 📦=5</td>
<td></td>
<td>6/25/2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft Checklists</td>
<td></td>
<td>🗂️=0, 📦=6</td>
<td></td>
<td>6/26/2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft Policy</td>
<td></td>
<td>🗂️=0, 📦=1</td>
<td></td>
<td>6/25/2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft process briefs</td>
<td></td>
<td>🗂️=0, 📦=1</td>
<td></td>
<td>6/25/2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft RAM Strategic Plan</td>
<td></td>
<td>🗂️=0, 📦=1</td>
<td></td>
<td>9/18/2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimating Guide/Templates</td>
<td></td>
<td>🗂️=0, 📦=1</td>
<td></td>
<td>9/17/2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prioritization</td>
<td></td>
<td>🗂️=2, 📦=0</td>
<td></td>
<td>7/24/2008</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“Everything has been said before, but since nobody listens we have to keep going back and beginning all over again.”
-- Andre Gide, Le traite du Narcisse
RCM Applied to the CH-47 Chinook Heavy Lift Helicopter

For the Warfighter – With the Warfighter
Presentation Agenda

• Reliability Centered Maintenance (RCM) overview
• CH-47 Chinook Introduction
• Application of RCM Principles to the CH-47D:
 – Maintenance Program
 – Special Tools and Test Equipment (STTE)
 – Unique Identification (UID)
 – Condition Based Maintenance Plus (CBM+)
What is Reliability Centered Maintenance?
A zero-based, structured process used to identify the failure management strategies required to ensure an asset meets its mission requirements in its operational environment in the most safe and cost effective manner.

Real honest to goodness output that meets the needs of the organization.
A zero-based, structured process used to identify the failure management strategies required to ensure an asset meets its mission requirements in its operational environment in the most safe and cost effective manner.
A zero-based, structured process used to identify the failure management strategies required to ensure an asset meets its mission requirements in its operational environment in the most safe and cost effective manner.
A zero-based, structured process used to identify the failure management strategies required to ensure an asset meets its mission requirements in its operational environment in the most safe and cost effective manner.
The RCM Process
Application of Reliability Centered Maintenance to the CH-47D
Application of RCM to the CH-47

- To reverse the trend of increasing Operation and Support costs

- Chief focus of maintenance had been on the prevention of failures
 - Common assumption that, in most cases, equipment “wears out” and inevitably becomes less reliable with age

- With RCM analysis, focus began to shift from preventing failures to managing the consequences of failures as they affect the aircraft as a whole.

"Our Army at War -- Relevant and Ready".
In the absence of specific data on failure rates and characteristics, intervals are largely determined based on service experience.

Often the most truthful source of data
Maintenance Transformation

<table>
<thead>
<tr>
<th>BEFORE RCM</th>
<th>AFTER RCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 Hour Phase maintenance</td>
<td>400 Hour Cycle Service Plan</td>
</tr>
<tr>
<td></td>
<td>200 Hour Servicing/Inspection</td>
</tr>
</tbody>
</table>

- Number of Phase Maintenance tasks reduced by **73%**
- Phase Maintenance requires **50% fewer** man hours to complete
 - 200 Phase: ~67 days downtime
 - 400 hour Cycle Service: ~19 days downtime
 - 200 hour Cycle Service: ~10 days downtime
- Produced an *increase in readiness*!

"Our Army at War -- Relevant and Ready".
Application of RCM to the CH-47

• Eliminated unnecessary tasks
 – Eliminated Duplication of Effort
 • 200 Hour Phase Maintenance Program: Independent Activities
 • 400 Hour Cycle Service: Supportive Activities
 – Technical Justification
 • Pitot Static System Check
 – In response to single events
 • Retorque droop stop bolts (due to bad lot of hydrogen embrittlement)
 – Extended intervals
 • Wheel bearing repacking (Extended from 200 to 400 hours)
 – Move to On-Condition Maintenance
 • Brake pad replacement

"Our Army at War -- Relevant and Ready".
200 Flight Hour Phase Maintenance to 400 Flight Hour Cycle Service Plan

<table>
<thead>
<tr>
<th># of Tasks Before RCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 Flight Hour Phase</td>
</tr>
<tr>
<td>428</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># of Tasks After RCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 Flight Hour Servicing and Inspection</td>
</tr>
<tr>
<td>68</td>
</tr>
<tr>
<td>400 Flight Hour Cycle Service Plan</td>
</tr>
<tr>
<td>48</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>116</td>
</tr>
</tbody>
</table>

"Our Army at War -- Relevant and Ready".
Application of RCM to the CH-47

- RCM implementation began in 2004.
 - In August 2007, the CH-47 achieved its readiness goal of 75% Fully Mission Capable (FMC) for the first time!
• RCM implementation began in 2004
• Since 2004, results were implemented aircraft by aircraft

<table>
<thead>
<tr>
<th>Year</th>
<th>FMC</th>
<th>NMCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY02</td>
<td>58</td>
<td>31</td>
</tr>
<tr>
<td>FY03</td>
<td>54</td>
<td>31</td>
</tr>
<tr>
<td>FY04</td>
<td>51</td>
<td>30</td>
</tr>
<tr>
<td>FY05</td>
<td>56.5</td>
<td>33</td>
</tr>
<tr>
<td>FY06</td>
<td>54.9</td>
<td>32</td>
</tr>
<tr>
<td>FY07</td>
<td>70.1</td>
<td>28</td>
</tr>
</tbody>
</table>

DA GOAL 75% FMC

"The Army – Persuasive in Peace, Invincible in War"
"Our Army at War -- Relevant and Ready"
Power and Value of RCM go far beyond equipment maintenance
RCM Principles Applied to Special Tools and Test Equipment (STTE)
STTE

• Analysis initiated to determine suitable Basis of Issue (BOI) to support Army Transformation

• BOI for STTE that was being was used estimated by Boeing ~1960s
 – Assumption that units stayed together
 – 1 of every applicable Tool was allotted per 25 Helicopters

• Needed to determine suitable BOI so the Field could operate under the new doctrine of Split Based Ops
Army Transformation Affect on STTE

Combat Aviation Brigade (CAB)

GSAB Attack Lift Aviation Support Brigade (ASB)

General Support Aviation Brigade (GSAB)

12 CH-47s 10 UH-60s
8 MEDEVAC UH-60s AVUM Support Maintenance Company

12 Aircraft Company
4 4 4

Aviation Support Battalion (ASB)
Personnel (maintenance, supply, etc.)

AVIM Support Location 1 AVIM Support Location 2
2 Simultaneous Locations

"Our Army at War -- Relevant and Ready"
STTE

• How do RCM Principles apply to STTE (tools)?
 – Allows a clear understanding of the Operating Context
 –Reviewed all maintenance tasks and analyzed tools
 • What tools were currently recommended versus what was needed
 – Functions, Functional Failures, Failure Modes and Failure Effects, and Failure Consequences

• Determined new BOI to support Army Transformation
RCM Principles Applied to STTE

“The Big List” Before

• 422 STTE line items

CH-47 STTE After

• 224 STTE line items

• Purged obsolete tools
 – All -712 engine tools purged (~120)

• Many items that were identified as STTE but were common tools
 – Dial Indicator

• Purged unnecessary tools
 – STVA (Self Tuning Vibration Absorber) Trailer Adapter
RCM Principles Applied to STTE

• Increased BOI in most cases
 – *Example: Actuator Safety Blocks and Rotor Head Lockout Pins from 1 set per 25 aircraft to 1 set per aircraft*
 – Field will be supplied with what they need

• Established Accountability
 – In process of putting all STTE on the MTOE (Modified Table of Organization and Equipment)
 – Means it must be inventoried and accounted for
 – Most STTE before this process were not required to be inventoried.
RCM Principles Applied to STTE

- Acquisition of additional STTE began 2 years ago
- First two units equipped in May and June 2007
- Analysis results justified an increase in STTE funding
 - As a result, the PM awarded $6M additional funding per year for the next 10 years
 - Funds 2 Combat Aviation Brigades
- The real success is that the guy in the Field has the tools he needs!!

“Our Army at War -- Relevant and Ready”
Unique Identification
DoD UID Mandate: Parts Marking

- July 2003, Office of the Under Secretary of Defense set forth policy to uniquely identify all legacy and new asset parts with a 2-D barcode if a part meets 1 or more of 5 criteria

- Raises important concerns: *how to mark, where to mark, and how to safely mark*

- CH-47: Approximately 1,000 components required to be marked

- Independent study performed on 300 components

"Our Army at War -- Relevant and Ready"
DoD UID Mandate: Parts Marking

• Realized that Parts Marking Decisions in such a critical environment require analysis

• Parts marking solutions identified using RCM Principles
 – Systematic review of all Failure Modes, Failure Effects, and Consequences of each marking opportunity

• Facilitated Group Approach
 – Ensures the right people who are sensitive to the hazards of the equipment in its operating environment are the decision makers

• Incorporates safety and operating context into the core of the parts marking decision making.

"Our Army at War -- Relevant and Ready".
DoD UID Mandate: Parts Marking

Results:

• ~280 items approved for label marking
• 100 items under review for marking approval
• 167 Direct Part Marking Candidates
• Over 13,000 items marked in the DoD UID registry
CBM and RCM

- CBM: Powerful Failure Management Strategy that allows
 - Impending failure to be identified before the failure occurs so that proactive action can be taken in enough time to manage the consequences of failure.
 - Ex. Measuring brake pads, eddy current, continuous monitoring, etc.

- In other words, failure is handled on the equipment custodian’s terms – not the equipment’s terms

- CBM and RCM are often mistaken as two different processes. They are not!
2 December 2007, Mr. John Young, the Under Secretary of Defense for Acquisition, Technology, and Logistics signed DoDI 4151.22, *Condition Based Maintenance Plus (CBM+) for Materiel Maintenance*

- Establishes policy for the application of Reliability Centered Maintenance (RCM) and Condition Based Maintenance Plus (CBM+)
- CBM+ is intended ...“to expand the application of sensors on weapons systems enhancing maintenance efficiency and effectiveness…”
- CBM must be performed correctly in order to achieve the DoD’s goals.
1. Functions
2. Functional Failures
3. Failure Modes
4. Failure Effects
5. Failure Consequences
6. Proactive Maintenance and Intervals
7. Default Strategies

RCM
1. Functions
2. Functional Failures
3. Failure Modes
4. Failure Effects
5. Failure Consequences
6. Proactive Maintenance and Intervals
7. Default Strategies

Consideration of Condition Based Maintenance
Physical assets are managed at the Failure Mode level

- Failure Mode: What specifically causes a Functional Failure

CH-47 example

- Failure Mode: Drive shaft hanger bearing wears due to normal use
Nearly all Functional Failures give some sort of evidence that failure is imminent.

- Referred to as a *Potential Failure Condition* or “P”

Failure Mode: *Drive shaft hanger bearing wears due to normal use*

- P_1: Vibration that is detectable via a continuous monitoring device applied directly to the equipment.

- P_2: Vibration that is detectable by the crew by feeling the drive shafting area from inside the cabin in flight.
P-F Curve

Resistance to Failure

Time

P: Potential Failure Condition

P-F Interval

F: Failure
Failure Mode: Drive Shaft Hanger Bearing wears due to normal use

- P_1: Vibration detectable via sophisticated monitoring device
- P_2: Vibration detectable by the crew by feeling the drive shafting area from inside the cabin in flight
- F: Bearing fails

Adequate time to find a suitable landing site

100 Flight Hours
Failure Mode: *Drive Shaft Hanger Bearing wears due to normal use*

- It would likely be practical to check the data at intervals less than 100 flight hours.
- It would be equally practical to feel for vibration in flight every 30 minutes.

Diagram

- **P_1: Vibration detectable via sophisticated monitoring device**
- **P_2: Vibration detectable by the crew by feeling the drive shafting area from inside the cabin in flight**
- **F: Bearing fails**
- **Adequate time to find a suitable landing site**

Graph

- **Resistance to Failure**
- **Time**
- **100 Flight Hours**
CH-47 CBM+

- 49 specific CH-47 components selected for CBM+ analysis.
- Acknowledge that a FMEA is required to properly implement CBM+ strategy
- Components evaluated to identify Failure Modes that could be monitored.
 - Forward Transmission: 13 Failure Modes such as
 - Stationary ring gear wears due to normal use.
 - FWD transmission 1st stage planetary carrier splines wear due to normal use.
 - FWD transmission spiral bevel pinion gear wears due to normal use.
- Each Failure Mode prioritized for CBM+ Implementation based upon
 - Failure consequences
 - Frequency of failure
 - Effort required for implementation (ex. cost of equipment, training, etc.)
- 161 Failure Modes were identified as candidates for Condition Based Maintenance

"Our Army at War -- Relevant and Ready".
RCM Implementation
What RCM Achieved

• “RCM makes you take a real hard look at what you’re doing.”

• RCM offers results to better support the Warfighter
 – Reduced Downtime and improved Readiness
 – Reduction of workload to the soldier
 • Relieves unnecessary burdens
 – Improved Health of Aircraft
 – RCM has the ability to change the maintenance philosophy
Nancy Regan
256-428-8868
NancyRegan@TheForceInc.com
Enhancing Systems Engineering Planning and Practices

Sue O’Brien
Acting Director - RSESC
Rotorcraft Systems Engineering and Simulation Center
256-824-6133
obriens@uah.edu

Dawn Sabados, Ph.D.
Research Engineer III
RSESC/Army –
Cost Sharing Cooperative Agreement Initial Goals

- In August 2002 UAH was competitively awarded cooperative agreement – AMRDEC/PEO Aviation and UAHuntsville
 - Establish a technical center to elevate rotorcraft knowledge and skill levels in Northern Alabama headquartered at UAHuntsville.
 - Establish degreed SE academic programs
 - Provide System Engineering Support to Redstone agencies
 - Support the sustaining engineering needs of the Army Aviation
 - Life Cycle Management
 - Systems Engineering
 - Reliability Centered Maintenance
 - Helicopter Aerodynamics

$1.1 Million Investment by UAH
RSESC

- Multifaceted Organization Focused on Applied Systems Engineering
- Independent Assessments
- Systems Engineering Support
- Hardware Design, Analysis, Fabrication and Testing
- Non Destructive Testing and Evaluation
- Reverse Engineering
- Health Monitoring
- Damage Tolerance

- Projects funded through NASA, PEO Aviation, PEO Missiles and Space, OSD, and Industry
Education and Training

- Developed two new Master of Science Programs
 - Rotorcraft Systems Engineering
 - Missile Systems Engineering
- 56 Master of Science Degrees Conferred – Redstone Engineers
- 2 Current PhD students
- Developing two new AMRDEC / PEO related curricula
 - Reliability Engineering
 - Acquisition Engineering
RSESC Curriculum

MSE—Rotorcraft & Missile Systems Eng.

<table>
<thead>
<tr>
<th>1st Semester</th>
<th>2nd Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Selected Topics in Mathematics</td>
<td>- Helicopter Theory</td>
</tr>
<tr>
<td>- Statistical Methods for Engineers</td>
<td>- Aerospace Systems Engineering</td>
</tr>
<tr>
<td>- Aircraft Stability and Control</td>
<td>- Rotorcraft Design I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Semester</th>
<th>4th Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Rotorcraft Design II</td>
<td>- Engineering Reliability</td>
</tr>
<tr>
<td>- Performance Flight Testing</td>
<td>- System Safety</td>
</tr>
<tr>
<td>- Modeling and Simulation</td>
<td>- Aviation Systems Simulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1st Semester</th>
<th>2nd Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Missile Aerodynamics</td>
<td>- Missile Design</td>
</tr>
<tr>
<td>- Rocket Propulsion</td>
<td>- Graduate Engineering Analysis</td>
</tr>
<tr>
<td>- Aero Systems Engineering</td>
<td>- Statistical Methods</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Semester</th>
<th>4th Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Stability and Control</td>
<td>- System Simulation</td>
</tr>
<tr>
<td>- Performance Flight Testing</td>
<td>- System Modeling & Analysis</td>
</tr>
<tr>
<td>- Reliability Engineering</td>
<td>- Integrated Product & Process Design</td>
</tr>
</tbody>
</table>
RSESC Labs

- Two System Engineering Labs w/ full SE software resources
- Aero Simulation Lab
- Electrical and Mechanical Design and Manufacture Lab with a Machine Shop
- Modal Testing
- Environmental Testing
- Systems Design and Testing Lab
- NDE/NDT
SE Planning, Design, Simulate, Develop, Fabricate and Test
Design and Analysis

- Prototype Designs
- Independent Analysis
- Specialty Analysis
Systems Engineering Labs

Fully Integrated SE Lab
Analysis and System Engineering Software
Integrated with CAD Lab, Computer Cluster, Rapid Prototyping Machines
Systems Engineering Toolkit & System Engineering Projects
Revitalization of SE in DoD

In February 2004, the Department of Defense mandated the revitalization of systems engineering throughout all the services.

All acquisition category level programs were required to create system engineering plans (SEP).

From this mandate the Office of the Deputy Under the Secretary of Defense (OSD) created a SEP Preparation Guide for all programs to follow.
Problem Statement

- Systems Engineering is highly complex subject
- Data is required in many engineering fields
- Metrics need to be determined to ensure systems engineering is performed effectively and efficiently
- One method to collect data and to create metrics was through a web based SE tool
The Rotorcraft Center’s initial response to support PEO-Aviation and PEO-Missiles and Space in enhancing systems engineering planning was to create a checklist to ensure the requirements for systems planning were met in the SEP.

This checklist evolved into the Systems Engineering Toolkit to ease the burden of creating a SEP and to create a means for metrics, sharing of information and application based learning to enhance systems engineering planning.
Metric/Effectiveness

- Real time training
- Improved means to determine areas of difficulty
- Clear indication of the amount of time to create the document
- Ability to collect statistics on users and level of experience
- Time spent planning rather than formatting and issues with writing a complex document
The Systems Engineering Toolkit presently assists in creating SEPs.

It is anticipated that future versions will be composed of several systems engineering tools.

The tool is

- Configuration Controlled with Global Access
- Web based for generating Plans and Technical Documents
- Tailorable to the Projects Needs, Phase and ACAT Level
- Modular/adaptable system to many different documents, applications, and phases

Available to DoD agencies
SEP Preparation

- SEP portion of the tool is created from:
 - OSD Preparation Guide
 - DAG Guide
 - Briefings from OSD on SEP content

- Beta Version of SET released June 2007

- SET Version 1.0 released March, 2008 based on SEP Guidance V. 2.01
SEP Preparation Tool

- Integrated review process
- Eight types of users
- Currently creates SEP into PDF documents, unchangeable only from within the SET preparation tool
- Secure and controlled access to programs
- Allows multiple users working on the same document at any time
SEP Planning Tool

Navigation tree based on SEP Preparation Guide TOC

Colored Status Indicators

Multiple SEPs and Permission Levels Available to Users

Message Area

Change Log

Available Documents

<table>
<thead>
<tr>
<th>Document</th>
<th>Permissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test SEP</td>
<td>Read, Approve, Write</td>
</tr>
<tr>
<td>TEST SEP2V2</td>
<td>Write</td>
</tr>
<tr>
<td>UAS</td>
<td>Admin</td>
</tr>
<tr>
<td>Aviation Systems Test SEP</td>
<td>Admin</td>
</tr>
<tr>
<td>Tool Demo</td>
<td>Write, Admin, Version Control</td>
</tr>
<tr>
<td>Joint Air to Ground Module (JAGM)</td>
<td>Write, Peer Approve, Admin</td>
</tr>
<tr>
<td>Blackhawk UH60M</td>
<td>Admin</td>
</tr>
<tr>
<td>JAVELIN</td>
<td>Admin</td>
</tr>
</tbody>
</table>

Section Change Log

<table>
<thead>
<tr>
<th>Section</th>
<th>Editor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Table of KPPs</td>
<td>Lisa Leyer</td>
<td>22-APR-2008</td>
</tr>
<tr>
<td>3.5 a How will the program facilitate interaction among the SE Working-level Integrated Product Teams (WIPT), other government organizations, and contractors (as applicable) on technical tasks, activities, and responsibilities (e.g., requirements, technical baseline, technical reviews)? How will the program's organization and structure facilitate clear communication of technical guidance among these organizations engaged in SE activities? How will technical review artifacts and exit criteria be handled between these organizations? How will the SE WIPT contribute to and document the technical and management approach?</td>
<td>Dawn Shabados</td>
<td>19-MAR-2008</td>
</tr>
</tbody>
</table>
Document Generation

- Configuration controlled with automatic change logs
- Creates two types of PDF documents
Systems Engineering Toolkit

Benefits

- Most up-to-date information
- Ability to leverage strengths of other projects/programs
- Uniformity of Process
- Decrease Approval Timeline
- Team-Based SEP Generation = Consistent Execution
- Minimize “Shelf-Ware”
- Means to collect metrics and best applied practices

Ten Organizations interested in or using the tool

- PEO Aviation
- PEO Missiles and Space
- Joint PEO Chemical & Biological Defense
- NAVAIR in support of JPEO CBD
- AMRDEC
- TARDEC
- PEO IEW&S
- PEO C3T
- PEO CS&CSS
- Marines in support of JPEO CBD
UAHuntsville’s Involvement in SE

- Partnership created with AMRDEC in Huntsville to support Project offices in SEP development
- Training, educating and mentoring on tools, metrics and teaming in relation to systems engineering
- Active member of the Army Systems Engineering Forum since its inception
- Reviewing and creating workshops in Systems Engineering Planning for PEO-Aviation, PEO-Missiles and Space and NASA/MSFC
- Developing processes to assist in SE activities for NASA/MSFC
- Determining the effectiveness of SE
- Teaming
- Tailoring for the SEMP and SE Processes
- Modeling and Simulation of SE Processes
January 23, 2008 OSD sent a notice regarding creating a Systems Engineering Research (SER) University Affiliated Research Center (UARC).

UAHuntsville partnered with Stevens Institute of Technology, Univ. of Southern CA and 14 other universities

Two initial tasks have been identified that RSESC will be involved in

- SE Effectiveness
- Evaluating Methods, Processes and Tools (MPTs)
Summary

- Vast experience in applied systems engineering processes, hardware and software development to add value to overall project success
- Experience in Systems Engineering and the practices of OSD and NASA
- Utilizing graduate and undergraduates on research projects to combine theory with practical applications and to help mentor engineers and scientists entering in the workforce
- Willing to partner with other universities and organizations bringing together the best assets to the community
- Systems Engineering Toolkit (SET) is available to the DoD PM offices and NASA

UAHuntsville and the Rotorcraft Systems Engineering and Simulation Center is committed to becoming one of the top research centers for Systems Engineering
System Concept of Operations:
Standards, Practices and Reality

Nicole Roberts, L-3 Communications
Robert Edson, ANSER
Overview

- Problem Statement
- Approach
- What is a CONOPS?
- Standards
- Literature Review
- Case Studies
- Survey
- CONOPS Development Process
- CONOPS Evaluation Criteria
- Recommendations
Problem Statement

- Inconsistent and ineffective use of ConOps in the Systems Engineering life cycle.
 - Saw through initial survey

- Objectives
 - Explore Industry Use of ConOps
 - Define a quality ConOps
 - Develop Evaluation Criteria for ConOps goodness
Approach

- Review Standards
- Literature Review
- Review Example ConOps
- Conduct Survey

Synthesis Activity

Develop Template

Evaluate ConOps
A Concept of Operations (ConOps) document is produced early in the requirements definition process to describe what the system will do (not how it will do it) and why (rationale). It should also define any critical, top-level performance requirements or objectives (stated either qualitatively or quantitatively) and system rationale.

Standards

<table>
<thead>
<tr>
<th>Agency</th>
<th>Title</th>
<th>Year</th>
<th>Highlights</th>
</tr>
</thead>
</table>
| GEIA | Processes for Engineering a System | 1999 | • DoD and IEEE approved
• No details, just says to have one with RFP |
| CMMI | Guidelines for Creating a Product Line Concept of Operations | 1999 | • Specific for building a ConOps for a large run one product line
• Good techniques that can be applied to system ConOps also |
• Most complete instruction for building a ConOps |
| INCOSE | INCOSE Systems Engineering Handbook | 2004 | • Defines what a ConOps is and should include
• Does not give instruction on how to build one
• Describes what other phases it is an input to |
| IEEE | IEEE Guide for Information Technology – System Definition – Concept of Operations (ConOps) Document | 1998 | • Gives instruction on how to build a ConOps and what to include
• Focused on software but can be used for other
• Only one that says to include proposed systems in this document |
Definitions

- To clearly define the operational boundaries and to capture the needs of the user community. (Herald and Verma)

- Provide stakeholder consensus, measures of effectiveness, standards of acceptance and system design/architecting purposes. (Ring)

- To provide verified accurate work process information to validate and defend projects and enable management decisions. (Nichols)

- A document that focuses on the achievement, performance and basic technological necessities of the system. (Cakmak and Gokpinar)
ConOp Case Studies

- Reviewed 6 ConOps
- 50% appear to be satisfactory
- Example: SOFIA Science and Mission Operations Plan
 - Focus on system use
 - List of key personnel and their responsibilities
 - Use of system by personnel
 - Facilities information
 - Training, support, logistics and maintenance information included
Industry Survey

- Conducted to understand how industry is using ConOps and what is considered a ConOps
- 27 Questions
- 3 Sections
 - Basic Overview of the individual and ConOps use
 - Questions for people who have worked with ConOps
 - Questions for those who have been a ConOps author
- 108 responses from 18 companies and organizations
 - DoD, L-3 Communications, Raytheon, Boeing, Lockheed Martin, USAF, Bell Helicopter, Texas Instruments, Honeywell, General Dynamics, Army, and more
Survey Results: Demographics

- 48% Systems or Lead Systems Engineers
- From 1 month to 54 years in the industry
- Worked between 1 and 100 programs with 19.9 as the average

![Pie chart showing job roles and their percentages]

- System Engineer: 35%
- Lead Systems Engineer: 33%
- Project Engineer: 11%
- Program Manager: 16%
- Other: 5%
Survey Results: Perception of ConOps

- 100% said they would find one useful
- 36% have never worked a program with a ConOps
- Stated ConOps Purpose
 - 89% - Define the system use
 - 71% - Define the system boundaries
 - 37% - Define the system
 - 28% - Define system details
- Program Phases to be helped by ConOps
 - 88% - Requirements Development
 - 83% - System Design
 - 70% - Planning for Test
Survey Results: ConOp Experience

- Average number of programs with a fully developed ConOps is 4.4
- 36% have never worked a program with a ConOps
- 76% of those who have worked with a ConOps ranked them as a 4 or 5
- 85% of those who worked with a ConOps had regular access to it
Survey Results: Development and Use

- 31% completed by bid phase, 27% by program start-up
- 50% were not updated throughout the lifecycle
- 76% of the ConOps were written and graphical
- 28% of respondents have been an author
- 55% of authors were a systems or lead systems engineer
- Customer involved 74% of the time and user 70% with an average of 11 people involved
- 3% of the time no one besides the author was involved
- Standards used 50% of the time
- Average time to develop is 78 days
- 75% of the time the author personally used the ConOps
Survey Conclusions

- Everyone wants a ConOps but only one-third of all programs have one
- Requirements Development and System Design would be helped most by a ConOps
- Need qualified, experienced systems engineer developing the ConOps with multiple inputs
- Industry is not utilizing developed ConOps to their advantage throughout the lifecycle – Only 4% used through to the end
ConOps Development Guidelines

- Do not list any specifics
- Do not describe how a process or how a function should be performed only list the needs
- Include all stakeholders or representatives for each area
- Limit the group to less than fifteen people
- Representatives need the authority to make final decisions
- Have everyone convene in one place at the same time at least twice
- Author/moderator needs the skills to guide the group and keep them on track
- Get interviews with all users not in the group then share
- Limit the document size without limiting the information
- Make sure the level of language is not too technical to understand
- Customize. Include information and change the format so all understand the needs
ConOps Development Outline

<table>
<thead>
<tr>
<th>Section Number</th>
<th>Title</th>
<th>Key Elements</th>
</tr>
</thead>
</table>
| 1 | Introduction | - Brief overview
 | | - Stakeholders | |
| 2 | References | |
| 3 | Problem Statement | - High level problem statement |
| 4 | Program or System History | - Current likes and dislikes
 | | - Current needs | |
| 5 | System Use | Detailed explanation of the system use including |
 | | - Users |
 | | - External system interfaces |
| 6 | System Boundaries | - Graphic representation of the external system interfaces |
 | | - Text explanation of the details of each interface |
| 7 | System Environment | - Basic system operating environment |
 | | - Operator environment |
 | | - Maintainer environment |

This document contains no ITAR controlled Technical Data nor provides any ITAR controlled Defense services.
<table>
<thead>
<tr>
<th>Section Number</th>
<th>Title</th>
<th>Key Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Constraints</td>
<td>Details that are truly a must to be designed around, possibly including: -Cost -Technologies -Weight -Space to design in -Performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Schedule -Power -Life expectancy -Environment</td>
</tr>
<tr>
<td>9</td>
<td>System Models</td>
<td>Models or simulations that help to show how the system will be used</td>
</tr>
<tr>
<td>9</td>
<td>System Peripherals</td>
<td>-Training -Supportability -Maintainability</td>
</tr>
<tr>
<td>10</td>
<td>Expected Output</td>
<td>- Summary of what is to be done - Prioritization of what is to be done - Measure of effectiveness</td>
</tr>
<tr>
<td>11</td>
<td>Acronyms and Definitions</td>
<td></td>
</tr>
</tbody>
</table>
ConOps Evaluation Criteria

- Does it include all required sections
 - If not is there sufficient reasoning why not
 - If there are more, is it too much information
- Were all stakeholder groups represented
- Does it define just the needs and not the how
- Does it include all standards the system will be required to adhere to
- Does it include the system boundaries and inputs and outputs
- Model to prove that the system is possible with all the information given
Recommendations

- All systems should have a Concept of Operations
- Use the ANSI/AIAA standard for help
- ConOps initial development should be done before requirements development if not earlier
- ConOps should be updated throughout the program lifecycle
- ConOps should be controlled and made accessible to all stakeholders working on the program
- If you do not know what you are trying to get you will never know if you accomplished it or not
- The contractor should own their ConOps but ensure customer involvement during updates
Questions?
Counting Software Size: Is It as Easy as Buying A Gallon of Gas?

October 22, 2008

NDIA – 11th Annual Systems Engineering Conference
Lori Vaughan and Dean Caccavo
Northrop Grumman Mission Systems
Office of Cost Estimation and Risk Analysis
Agenda

• Introduction
• Standards and Definitions
• Sample
• Implications
• Summary
Introduction

• In what ways is software like gasoline?

• In what ways is software not like gasoline?
Industry Data Suggests...

• A greater percentage of the functions of the DoD Weapon Systems are performed by software

<table>
<thead>
<tr>
<th>Weapon System</th>
<th>Year</th>
<th>% of Functions Performed in Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-4</td>
<td>1960</td>
<td>8</td>
</tr>
<tr>
<td>A-7</td>
<td>1964</td>
<td>10</td>
</tr>
<tr>
<td>F-111</td>
<td>1970</td>
<td>20</td>
</tr>
<tr>
<td>F-15</td>
<td>1975</td>
<td>35</td>
</tr>
<tr>
<td>F-16</td>
<td>1982</td>
<td>45</td>
</tr>
<tr>
<td>B-2</td>
<td>1990</td>
<td>65</td>
</tr>
<tr>
<td>F-22</td>
<td>2000</td>
<td>80</td>
</tr>
</tbody>
</table>

Source: PM Magazine

System Functionality Requiring Software

• Increased amount of software in Space Systems and DoD Weapon Systems – Ground, Sea and Space/Missile

• Increased amount of software in our daily lives:
 - Cars, Cell Phones, iPod, Appliances, PDAs...

The amount of software used in DoD weapon systems has grown exponentially
Is There a Standard for Counting Software?

- Since, increasing percent of our DoD systems are reliant on software we need to be able to quantify the software size
 - Historical data collection
 - Estimation and planning
 - Tracking and monitoring during program performance
- Software effort is proportional to the size of the software being developed
 - *SW Engineering Economics* 1981 by Dr. Barry Boehm
- “Counting” infers there is a standard
- Experience as a prime integrator
 - Do not see a standard being followed

There are software counting standards but the message isn’t out or it is not being followed consistently
Source Line of Code definition

From Wikipedia, the free encyclopedia

"Source lines of code (SLOC) is a software metric used to measure the size of a software program by counting the number of lines in the text of the program's source code. SLOC is typically used to predict the amount of effort that will be required to develop a program, as well as to estimate programming productivity or effort once the software is produced."

• Variety of Software Languages in which source code is written
 – A to Z
 • Ada, Assembler, C, C++, C#, COBOL, Fortran, Java, JavaScript, Pascal, Perl and SQL to name just a few
Source Line of Code definition: Physical and Logical

- Software Engineering Institute (SEI) has developed checklist as part of a system of definition checklists to support measurement definitions.

<table>
<thead>
<tr>
<th>Statement type</th>
<th>Definition</th>
<th>Data array</th>
<th>Includes</th>
<th>Excludes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Executable</td>
<td>Order of precedence</td>
<td>✓</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>2. Non-executable</td>
<td></td>
<td></td>
<td>2</td>
<td>✓</td>
</tr>
<tr>
<td>3. Declarations</td>
<td></td>
<td></td>
<td>3</td>
<td>✓</td>
</tr>
<tr>
<td>4. Compiler directives</td>
<td></td>
<td></td>
<td>4</td>
<td>✓</td>
</tr>
<tr>
<td>5. Comments</td>
<td></td>
<td></td>
<td>5</td>
<td>✓</td>
</tr>
<tr>
<td>6. On their own lines</td>
<td></td>
<td></td>
<td>6</td>
<td>✓</td>
</tr>
<tr>
<td>7. On lines with source code</td>
<td></td>
<td></td>
<td>7</td>
<td>✓</td>
</tr>
<tr>
<td>8. Banners and nonblank spaces</td>
<td></td>
<td></td>
<td>8</td>
<td>✓</td>
</tr>
<tr>
<td>9. Blank (empty) comments</td>
<td></td>
<td></td>
<td>9</td>
<td>✓</td>
</tr>
<tr>
<td>10. Blank lines</td>
<td></td>
<td></td>
<td>10</td>
<td>✓</td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
<td>11</td>
<td>✓</td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td></td>
<td>12</td>
<td>✓</td>
</tr>
</tbody>
</table>

- Physical SLOC: One physical SLOC is corresponding to one line starting with the first character and ending by carriage return or an end of file marker of the same line and which excludes the blank and comment line.

- Logical SLOC: Lines of code intended to measure “statements” which normally terminated with a semicolon or a carriage return. Logical SLOC are not sensitive to format, style and conventions, but they are language dependent.
Source Line of Code Samples

```c
for (i=0; i<100; ++i) printf("hello"); /* How many lines of code is this? */
   - 1 Physical Line of Code LOC
   - 2 Logical Lines of Code LOC (for statement and printf statement)
   - 1 Comment Line
```

```c
for (i=0; i<100; ++i)
{
    printf("hello");
}
/* Now how many lines of code is this? */
   - 4 Physical Lines of Code LOC (Is placing braces work to be estimated?)
   - 2 Logical Line of Code LOC (What about all the work writing non-statement lines?)
   - 1 Comment Line (Tools must account for all code and comments regardless of comment placement.)
```

Note the logical count is independent of the programming style and conventions
Suppose you were given this simplified software cost formula and you received data from two separate contractors and were asked to determine relative development costs?

What would that impact?

- Size
- Productivity
- Hours
Implication Illustration – Historical

Contractor A

- **Physical Coordinate Perspective**
 - SLOC Count: 500 KSLOC
 - Effort: 2500 Person Months (PM)
 - Productivity: \(\frac{500 \text{ KSLOC}}{2500 \text{ PM}} = 200 \text{ ESLOC/PM} \)

Contractor B

- **Logical Coordinate Perspective**
 - SLOC Count: 312.5 KSLOC
 - Effort: 2500 (PM)
 - Productivity: \(\frac{312.5 \text{ KSLOC}}{2500 \text{ PM}} = 125 \text{ ESLOC/PM} \)

Without understanding the basis of the Software SLOC count, it looks like Contractor A is more productive. Is this correct?
Implication Illustration - Estimate Comparison

<table>
<thead>
<tr>
<th>Contractor A</th>
<th>Contractor B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Size</td>
<td>600 KSLOC</td>
</tr>
<tr>
<td>Historical Productivity</td>
<td>200 ESLOC/PM</td>
</tr>
<tr>
<td>Estimated Effort</td>
<td>3,000 PM</td>
</tr>
<tr>
<td>Estimated Cost</td>
<td>3,000 PM x $20K = $ 60 M</td>
</tr>
</tbody>
</table>

• Attributes of a good code counter
 - Non Proprietary
 - Available to the public
 - Platform independent
 - Support multiple programming languages
 - Count both physical and logical SLOC
 - Limited Public License or “Copyleft” type agreement

• http://sunset.usc.edu/research/CODECOUNT/

Sample 1.0::SLOC Counting
The Totals

<table>
<thead>
<tr>
<th>Total</th>
<th>Blank</th>
<th>Comments</th>
<th>Compiler Data</th>
<th>Exec.</th>
<th>Number</th>
<th>File</th>
<th>SLOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lines</td>
<td>Lines</td>
<td>Whole Embedded</td>
<td>Direct.</td>
<td>Decl.</td>
<td>Instr.</td>
<td>of Files</td>
<td>Type</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-----------------</td>
<td>---------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>33991</td>
<td>3855</td>
<td>8465</td>
<td>19</td>
<td>250</td>
<td>6815</td>
<td>14606</td>
<td>336</td>
</tr>
<tr>
<td>33991</td>
<td>3855</td>
<td>8465</td>
<td>19</td>
<td>250</td>
<td>2775</td>
<td>10667</td>
<td>336</td>
</tr>
<tr>
<td>1135</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1093</td>
<td>0</td>
<td>47</td>
</tr>
</tbody>
</table>

Number of files successfully accessed......................... 383 out of 383

Ratio of Physical to Logical SLOC............................. 1.58
USC CSSE CodeCount™

• What programming languages are covered today
 – Ada, Assembler(s), Jovial, Pascal, COBOL, Fortran, MUL – Markup Language, Java, C/C++, C#, JavaScript, Visual Basic and Visual Basic Script

• What is included for each language
 – Read me file
 – Logical Standard (word table)
 – C source code of language specific counter
 – Sample input, source files and output file
Imagine Software Code Counting...

- As an integral part of your program’s change management system
- Improving your ability to perform Root cause Analysis
- Normalized code counts of existing software that are automatically uploaded to your historical database
- A historical repository of software size that could be used for estimation purposes and parametric model calibration
- Improving the representative nature of Parametric and Predictive Modeling
- Being consistent...
Summary

• Recognize underlying implications of Physical and Logical software sizing

• Assess appropriateness and magnitude of code count measurement

• Consider widespread standardization and integration into acquisition process
Reuse Readiness Levels: A Framework for Decision Making

NDIA Systems Engineering Conference
October 20-23, 2008

Steven Wong
Northrop Grumman Mission Systems
Topics

• Reuse and Maturity

• Measures of Maturity - Technology Readiness Levels
 – Background
 – Applicability to Software
 – Limitations

• Reuse Readiness Levels
 – Motivation
 – Background
 • SEI
 • NASA
 – Northrop Grumman Approach
 • Reuse Attributes
 • Decision Analysis Resolution Process

• Outcomes
To Reuse or Not to Reuse Software?

- “Good reuse” economizes time and money; ensures quality
 - Increased dependability
 - Compliance to standards
 - Accelerated development
 - Economies of Scale
 - Reduce product and process risk

- “Bad reuse” introduces risk resulting in cost and schedule growth
 - Incompatibility
 - Obsolescence
 - Breakage
 - Requirements differences
 - Unfamiliarity

How can one make an *a priori* distinction between good and bad reuse?
7.5. -- Technology Maturity

Technology maturity shall measure the degree to which proposed critical technologies meet program objectives. Technology maturity is a principal element of program risk. A technology readiness assessment shall examine program concepts, technology requirements, and demonstrated technology capabilities to determine technological maturity.

The PM shall identify critical technologies via the work breakdown structure (WBS) (see 5.3.1). Technology readiness assessments for critical technologies shall occur sufficiently prior to milestone decision points B and C to provide useful technology maturity information to the acquisition review process.

The Component Science and Technology (S&T) Executive shall direct the technology readiness assessment and, for ACAT I and ACAT IA programs, submit the findings to the Deputy Under Secretary of Defense (S&T) (DUSD(S&T)) with a recommended technology readiness level (TRL) for each critical technology. In cooperation with the Component S&T Executive and the program office, the DUSD(S&T) shall evaluate the technology readiness assessment and, if he/she concurs, forward findings to the OIPT leader and DAB. If the DUSD(S&T) does not concur with the technology readiness assessment findings, an independent technology readiness assessment, under the direction of the DUSD(S&T), shall be required.
A Definition

Technology Readiness Levels (TRL) are used to assess the maturity of a practically-applied scientific/engineering invention (materials, components, methods, devices, etc.) prior to its incorporation into a system.

A method for assessing how much risk is potentially involved with adopting a technology.

TRLs assume that a technology is less suitable for immediate usage when it is newly invented or conceptualized.

A technology becomes sufficiently proven (i.e., mature) after being subjected to experimentation, refinement, and increasingly demonstrated and tested in a realistic environment.

Examples: Hardware TRL, Software TRL, Manufacturing TRL, Biomedical TRL.
Technology Readiness Levels

- **TRL 9**: Actual system “flight proven” through successful mission operations
- **TRL 8**: Actual system completed and “flight qualified” through test and demonstration
- **TRL 7**: System prototype demonstration in a operational environment
- **TRL 6**: System/subsystem model or prototype demonstration in a relevant environment
- **TRL 5**: Component and/or breadboard validation in relevant environment
- **TRL 4**: Component and/or breadboard validation in laboratory environment
- **TRL 3**: Analytical and experimental critical function and/or characteristic proof-of-concept
- **TRL 2**: Technology concept and/or application formulated
- **TRL 1**: Basic principles observed and reported
Software Readiness Levels (SWRL)
Missile Defense Agency (MDA)

Engineering Manufacturing Readiness Levels (Hardware)

- **EMRL 1**
 - Breadboard
- **EMRL 2**
 - Prototype
- **EMRL 3**
 - Advanced development
- **EMRL 4**
 - Similar production
- **EMRL 5**
 - FRP

Software Readiness Levels

- **SWRL 1**
 - Concept
- **SWRL 2**
 - Prototype
- **SWRL 3**
 - Development
- **SWRL 4**
 - Functional
- **SWRL 5**
 - Deployable

Capability
Demonstration

DR1

SWRL 4

DR2

SWRL 5
<table>
<thead>
<tr>
<th>Technology Readiness Level</th>
<th>Software Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Basic principles observed and reported</td>
<td>Lowest level of software technology readiness. A new software domain is being investigated by the basic research community. This level extends to the development of basic use, basic properties of software architecture, mathematical formulations, and general algorithms.</td>
</tr>
<tr>
<td>2. Technology concept and/or application formulated</td>
<td>Once basic principles are observed, practical applications can be invented. Applications are speculative, and there may be no proof or detailed analysis to support the assumptions. Examples are limited to analytic studies using synthetic data.</td>
</tr>
<tr>
<td>3. Analytical and experimental critical function and/or characteristic proof of concept</td>
<td>Active R&D is initiated. The level at which scientific feasibility is demonstrated through analytical and laboratory studies. This level extends to the development of limited functionality environments to validate critical properties and analytical predictions using nonintegrated software components and partially representative data.</td>
</tr>
<tr>
<td>4. Module and/or subsystem validation in a laboratory environment (i.e., software Prototype development environment)</td>
<td>Basic software components are integrated to establish that they will work together. They are relatively primitive with regard to efficiency and robustness compared with the eventual system. Architecture development initiated to include interoperability, reliability, maintainability, extensibility, scalability, and security issues. Emulation with current/legacy elements as appropriate. Prototypes developed to demonstrate different aspects of eventual system.</td>
</tr>
<tr>
<td>5. Module and/or subsystem validation in a relevant Environment</td>
<td>Level at which software technology is ready to start integration with existing systems. The prototype implementations conform to target environment / interfaces. Experiments with realistic problems. Simulated interfaces to existing systems. System software architecture established. Algorithms run on a processor(s) with characteristics expected in the operational environment.</td>
</tr>
<tr>
<td>6. Module and/or subsystem validation in a relevant end-to-end environment)</td>
<td>Level at which the engineering feasibility of a software technology is demonstrated. This level extends to laboratory prototype implementations on full-scale realistic problems in which the software technology is partially integrated with existing hardware/software systems</td>
</tr>
<tr>
<td>7. System prototype demonstration in an operational high-fidelity environment</td>
<td>Level at which the program feasibility of a software technology is demonstrated. This level extends to operational environment prototype implementations where critical technical risk functionality is available for demonstration and a test in which the software technology is well integrated with operational hardware/software systems.</td>
</tr>
<tr>
<td>8. Actual system completed and mission qualified through test and demonstration in an operational environment</td>
<td>Level at which a software technology is fully integrated with operational hardware and software systems. Software development documentation is complete. All functionality tested in simulated and operational scenarios.</td>
</tr>
<tr>
<td>9. Actual system proven through successful mission-proven operational capabilities</td>
<td>Level at which a software technology is readily repeatable and reusable. The software based on the technology is fully integrated with operational hardware/software systems. All software documentation verified. Successful operational experience. Sustaining software engineering support in place. Actual system.</td>
</tr>
</tbody>
</table>
Software TRL Limitations

• Software differs from hardware in that taking an operational product and using it in a new context or system does not necessarily correlate to system success in performance or in achieving planned cost and schedule benefits
 - In some situations it may introduce more complications and problems than if the code was not reused

• TRLs inherently assume “good reuse”
 - Increased dependability
 - Reduce product and process risk
 - Accelerated development

• TRLs do not adequately address “bad reuse” or COTS/GOTS and OSS
 - Obsolescence
 - Breakage
 - Requirements and usage differences
 - Unfamiliarity
Software Reuse Root Cause Analysis
Six Sigma Project #1299

Reuseable components
- Domain not applicable
- Design not compatible
- Code not compatible
- Processors not compatible
- Quality insufficient
- Turnaround time
- Automation and tools
- Distributed development

Product requirements
- Changed – volatile
- Poor quality
- More stringent testing
- Quality inspection
- Staff familiarity with reuse SW
- Process maturity
- Reuse decision makers
- Time of reuse decisions

Development tools/facilities
Development staff/process
Estimation
- Time of reuse decisions
- Level of cost adjustment

SW reuse is less than planned because of:
RRL Background
Software Engineering Institute (SEI)

• TRL for Non-Developmental Item Software (Smith 2004)
 – Requirements Satisfaction
 • Rates how well requirements, including functional (e.g., throughput, accuracy, latency) and non-functional (e.g., reliability, maintainability) are allocated to a given software product or technology to be satisfied by it.
 • Accounts for the number of requirements are satisfied as well as any provided functionality that is not required
 – Environmental Fidelity
 • Addresses how faithfully the development environment of the software asset has been demonstrated to operate in the target operational environment.
 – Product Criticality
 • The degree to which the target system is dependent upon, or inseparable from the product or technology.
 – Product Aging
 • The availability of the product over its lifespan relative to the requirements of the system under development
 – Product Maturity
 • Maturity of the software product or technology relative to three distinct modes/domains: COTS, GOTS, OSS
RRL Background
SEI (page 2)

- ImpACT Methodology for COTS (Smith 2005)
 - Importance
 • Criticality to the system; difficulty of effecting a work-around if the technology or product doesn’t work (or isn’t available)
 - Availability
 • The degree to which the product or technology is commercially available
 - Capability
 • The functional fit (or misfit) between the product or technology and the requirements of the system
 - Timeframe
 • A measure of how the lifecycle of the product or technology matches the lifecycle for the system. Will it be available when needed? Over the life of the system?
RRL Background
National Aeronautics and Space Agency (NASA)

 - Determine reuse maturity of software assets being prepared for reuse
 - Initially developed for the Earth science domain, applicable to general
 - Promote, facilitate, catalog and incentivize reuse
 - Reuse Enablement System
 - Web-based portal, Reuse metadata of an existing software asset
 - Aligned with familiar 1-9 scale TRL

- Topic Areas
 - Portability
 - Extensibility
 - Documentation
 - Support
 - Packaging
 - Intellectual Property
 - Standards Compliance
 - Verification and Testing
 - Modularity
NASA RRL Topic Areas and Rating Scale

<table>
<thead>
<tr>
<th>Level</th>
<th>Portability</th>
<th>Extensibility</th>
<th>Documentation</th>
<th>Support</th>
<th>Packaging</th>
<th>Intellectual Property issues</th>
<th>Standards compliance</th>
<th>Verification & Testing</th>
<th>Modularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The software is not portable at any cost</td>
<td>No ability to extend or modify program behavior</td>
<td>Limited internal documentation available</td>
<td>No support available</td>
<td>Source code available</td>
<td>Potential owners and stakeholders of product have been identified.</td>
<td>Follows no particular standard</td>
<td>No testing performed</td>
<td>No designs for modularity or reuse</td>
</tr>
<tr>
<td>2</td>
<td>Some parts of the software may be portable</td>
<td>Prohibitive costs and efforts need to modify or extend the system</td>
<td>Fully commented source code available</td>
<td>Known contact available</td>
<td>Relevant intellectual policies of potential owners and stakeholders have been reviewed.</td>
<td>Follows some parts of common standards and best practices</td>
<td>Software application formulated and unit testing performed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>The software is only portable with significant costs</td>
<td>Can be extended with the input of considerable time and effort on par with recreating system separately</td>
<td>Basic external documentation available</td>
<td>Original developers provide proactive support</td>
<td>Detailed installation instructions available</td>
<td>Intellectual property agreements have been proposed to potential stakeholders.</td>
<td>Follows a company-wide standard for development and testing</td>
<td>Testing includes testing for error conditions and proof of handling input errors</td>
<td>Modularity at major system or subsystem level only</td>
</tr>
<tr>
<td>4</td>
<td>The software may be portable at a reasonable cost</td>
<td>Can be modified and extended through configuration changes, minimal modification of source</td>
<td>Reference manual available</td>
<td>Latest updates or patches are available but not very frequently</td>
<td>Potential stakeholders have negotiated on intellectual property agreements and authorship issues.</td>
<td>Most components follow a complete, universal standard, but not validated</td>
<td>Software application demonstrated in a laboratory environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>The software is moderately portable</td>
<td>Consideration for future extensibility designed into system, extensibility approach somewhat defined</td>
<td>User manual available</td>
<td>Informal user community available</td>
<td>Software is easily configurable for different environments</td>
<td>Agreement and approval on authorship, attribution, and intellectual property issues has been obtained from stakeholders.</td>
<td>All components follow a universal standard, but only partially validated</td>
<td>Software application tested and validated in a laboratory environment</td>
<td>Partial segregation of generic and specific functionality</td>
</tr>
<tr>
<td>6</td>
<td>The software is portable</td>
<td>Designed from the start to allow easy extensibility, provides many points of extensibility and a thorough and detailed extensibility plan</td>
<td>Tutorials available</td>
<td>Centralized support available</td>
<td>Authorship, attribution, and intellectual property statements have been drafted to reflect agreement among stakeholders on intellectual property and authorship.</td>
<td>Validated to follow a specific proprietary standard</td>
<td>Software application demonstrated in a relevant environment (Earth science related)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>The software is highly portable</td>
<td>Proven to be extensible internally, code structured to provide loose coupling and high cohesion</td>
<td>Interface guide available</td>
<td>Organized/defined support by the original developer available</td>
<td>OS detect and auto-build for supported platforms</td>
<td>Authorship and intellectual property statements included in product prototype.</td>
<td>Validated to comply to a specific open standard</td>
<td>Software application tested and validated in a relevant environment (Earth science related)</td>
<td>Clear delineations of specific and reusable components</td>
</tr>
<tr>
<td>8</td>
<td>Proven extensibility on a major external program, provides a clear plan for modifying and extending features</td>
<td>Extension guide and/or Design/Development guide available</td>
<td>Support by organization available</td>
<td>Manifestation of authorship, attribution, and intellectual property statements reviewed in product prototype before product release.</td>
<td>Proven by validation to comply with a “gold” standard</td>
<td>Software application “qualified” through test and demonstration (meets requirements) and successfully delivered to the Earth science environment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>The software is completely portable</td>
<td>Proven extensibility in multiple scenarios, provides specific documentation and features to build extensions</td>
<td>Full software lifecycle engineering design documentation available</td>
<td>Large user community with well-defined support available</td>
<td>QUI installation environment provided</td>
<td>Reviewed authorship, attribution, and intellectual property statements packaged with product for release.</td>
<td>“Gold” standard compliance of entire system and development, independently validated</td>
<td>Actual software application tested and validated through successful use of application output</td>
<td>All functions and data encapsulated into objects or accessible through web service interfaces</td>
</tr>
</tbody>
</table>

NORTHROP GRUMMAN CORPORATION ©
Northrop Grumman (NGC) Reuse Readiness Level Framework

- NGC is developing *Reuse Readiness Levels* (RRL) as a decision framework to evaluate the technical viability of leveraging existing software
 - Merges the TRL concept with NGC’s Decision Analysis and Resolution (DAR) process
 - Aligned with the 1-9 ascending TRL scale
 - DAR
 - Reduces subjectivity, increases rigor and consistency
 - Encourages disciplined objective thinking and stakeholder buy-in via evidence
 - Ensures best possible solutions for high risk decisions
 - Avoids premature commitment to a point design
 - Flexible – fits all situations
 - Multi-attribute / multivariate considered
 - DAR allows tailoring
 - Applicable to product line, non-product line, COTS, GOTS, NDI, OSS, etc.

Results in well-reasoned, timely software reuse decisions and better software estimates and plans
NGC Reuse Readiness Attributes

- **Resources**
 - Supporting processes and resources
 - Software familiarity
 - Developer experience

- **Readability**
 - Quantity and level of documentation
 - Accuracy and completeness of documentation

- **Usability**
 - Configurability, Openness and Modularity
 - Extensibility
 - Scalability
 - Well-defined and stable interfaces

- **Maturity**
 - Product life cycle stage
 - Maintenance

- **Compatibility**
 - Platform compatibility
 - Version compatibility
 - Language compatibility

- **Tailoring / Rework**
 - Restructuring / Re-factoring
 - Re-engineering
 - Re-implementation
 - Re-integration and Re-test

- **Transportability**
 - Architecture / design synchronization
 - Percentage of translation to new context
 - Index of new requirements incorporation
RRL NGC – Attributes (1 of 3)

<table>
<thead>
<tr>
<th>#</th>
<th>Category</th>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Resources</td>
<td>Supporting Processes and Resources</td>
<td>The consonance of the development methods and activities to the integration of the reuse software in the new context/system as well as the accessibility and availability of expertise related to the reuse software (either internal or external to the organization).</td>
</tr>
<tr>
<td>2</td>
<td>Resources</td>
<td>Software Familiarity</td>
<td>The level of understanding and practice that the development team has in working with the reuse software.</td>
</tr>
<tr>
<td>3</td>
<td>Resources</td>
<td>Developer Experience</td>
<td>The knowledge, skill, proficiency and expertise of the development team within the system domain.</td>
</tr>
<tr>
<td>4</td>
<td>Readability</td>
<td>Quantity and Level of Documentation</td>
<td>The amount and the detail of available descriptions of the software such as: annotation in the code, reference manuals, style guides, developer user guides, use cases, etc.</td>
</tr>
<tr>
<td>5</td>
<td>Readability</td>
<td>Accuracy and Completeness of Documentation</td>
<td>The degree to which the reuse software documentation is comprehensive, usable and reliably describes and explains the product.</td>
</tr>
<tr>
<td>6</td>
<td>Usability</td>
<td>Configurability, Openness and Modularity</td>
<td>The extent to which the reuse software may be added, upgraded and have its components replaced; as well as the efficient separation of system concerns realized through the logical boundaries between components.</td>
</tr>
<tr>
<td>7</td>
<td>Usability</td>
<td>Extensibility</td>
<td>The ability of the system to accommodate future growth either through the addition of new functionality or through the modification of existing functionality while minimizing the impact to other existing system functions or infrastructure.</td>
</tr>
<tr>
<td>8</td>
<td>Usability</td>
<td>Scalability</td>
<td>The degree to which the design of the reuse software handles increasing amounts of work, data, throughput, quantities, resources, etc. with graceful or no degradation in performance.</td>
</tr>
</tbody>
</table>
RRL NGC – Attributes (2 of 3)

<table>
<thead>
<tr>
<th>#</th>
<th>Category</th>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Usability</td>
<td>Well-defined and Stable Interfaces</td>
<td>The clarity, understandability and integrity of the reuse software (internal and external) interfaces as well as the robustness of the interfaces under changing, stressing or anomalous conditions</td>
</tr>
<tr>
<td>10</td>
<td>Maturity</td>
<td>Product Life Cycle Stage</td>
<td>The current point in the reuse software's evolution (ranging from "bleeding edge" new to obsolete) and the degree to which it has been tried, tested and proven in a working system. Factors to consider: usage and acceptance in the domain and the Industry</td>
</tr>
<tr>
<td>11</td>
<td>Maturity</td>
<td>Maintenance</td>
<td>The required resources to upkeep of the reuse software for correcting faults and keeping it operational. Factors to consider: Software Problem Report history, number and frequency of software patches, etc.</td>
</tr>
<tr>
<td>12</td>
<td>Compatibility</td>
<td>Platform Compatibility</td>
<td>The degree to which the original hardware architecture and software framework on which reuse software runs is similar or complimentary to the new context/system. Factors to consider: computer architecture, operating system, graphical user interface, etc.</td>
</tr>
<tr>
<td>13</td>
<td>Compatibility</td>
<td>Version Compatibility</td>
<td>The level at which the reuse software behaves in the intended and expected manner when it interacts with the other software components, products, tools, environments and platforms in the new context/system. Factors to consider: rate of change/upgrades of underlying products, frequency of synchronization points, etc.</td>
</tr>
<tr>
<td>14</td>
<td>Compatibility</td>
<td>Language Compatibility</td>
<td>The extent to which the programming set of instructions of the reuse software requires translation, reimplementation, or re-compilation in order to work in the new context/system</td>
</tr>
<tr>
<td>#</td>
<td>Category</td>
<td>Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>Tailoring / Rework</td>
<td>Restructuring / Re-factoring</td>
<td>The extent to which the existing software needs to be cleaned up - i.e.; improve its understandability; remove extraneous (dead) code, make the internal structure and design more efficient, maintainable and amenable to change, etc.</td>
</tr>
<tr>
<td>16</td>
<td>Tailoring / Rework</td>
<td>Re-engineering</td>
<td>The amount of reverse engineering or learning required to modify the design for integration in the new context/system.</td>
</tr>
<tr>
<td>17</td>
<td>Tailoring / Rework</td>
<td>Re-implementation</td>
<td>The amount of adaptation of the existing code and/or the addition of new code to meet the objectives and environment of the new context/system</td>
</tr>
<tr>
<td>18</td>
<td>Tailoring / Rework</td>
<td>Re-integration and Re-test</td>
<td>The effort to combine the existing software into the new context/system and verify that resulting product functions within performance, reliability, and other criteria in the new system/context</td>
</tr>
<tr>
<td>19</td>
<td>Transportability</td>
<td>Architecture/Design Synchronization</td>
<td>The degree of similarity of the structure in which the reusable software will interact in the new context/system. Factors to consider: reuse of an entire product or functional components; control mechanisms, data exchange, logical dependencies</td>
</tr>
<tr>
<td>20</td>
<td>Transportability</td>
<td>Percentage of Translation to New Context</td>
<td>The percentage change in the behavior, conditions and/or constraints in which the reuse software will operate in the new context/system. Factors to consider: operational scenarios, operational threads, use cases, etc.</td>
</tr>
<tr>
<td>21</td>
<td>Transportability</td>
<td>Index of New Requirements Incorporation</td>
<td>The ratio of component level requirements allocated to the reuse software that are new relative to a normalized measure of the requirements that are already fully and partially satisfied by the software</td>
</tr>
</tbody>
</table>

RRL NGC – Attributes (3 of 3)
Comparison of Reuse Attributes

<table>
<thead>
<tr>
<th>NGC RRL</th>
<th>NASA RRL</th>
<th>Army SW TRL</th>
<th>SEI NDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supporting Processes and Resources</td>
<td>Support</td>
<td>Development Process</td>
<td></td>
</tr>
<tr>
<td>Software Familiarity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developer Experience</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Readability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy and Completeness of Documentation</td>
<td>Documentation</td>
<td>Previous System Documents / Code</td>
<td></td>
</tr>
<tr>
<td>Level of Documentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Architecture / Modularity</td>
<td>Modularity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configurability and Openness</td>
<td>Portability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensibility across Platforms</td>
<td>Extensibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scalability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well-defined and Stable Interfaces</td>
<td>Standards Compliance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compatibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platform Compatibility</td>
<td>Packaging</td>
<td>Development Environment</td>
<td>Environment Fidelity</td>
</tr>
<tr>
<td>Version Compatibility</td>
<td></td>
<td>Test (Verify) Environment</td>
<td></td>
</tr>
<tr>
<td>Language Compatibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maturity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years in Operation</td>
<td>Verification and Testing</td>
<td>Technology Prototyped/ Used Existing System</td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>Open Problem Reports</td>
<td>Maturity</td>
<td></td>
</tr>
<tr>
<td>Upgrades / Technology Insertion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rework</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restructuring/Refactoring</td>
<td></td>
<td>Change To Code</td>
<td></td>
</tr>
<tr>
<td>Re-engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re-implementation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re-integration and Re-test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Contexts/Instantiations in which reused</td>
<td>Studies / Test Use Results</td>
<td>Technology Critical</td>
<td></td>
</tr>
<tr>
<td>Architecture/Design Synchronization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of Translation to New Context</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index of New Requirements Incorporation</td>
<td>Precision / Performance</td>
<td>Requirements (Functional and Non-Functional)</td>
<td></td>
</tr>
<tr>
<td>Intellectual Property</td>
<td>Safety / Security</td>
<td>Availability</td>
<td></td>
</tr>
</tbody>
</table>
4.1 Address Generic Process Steps

4.2 Define Plans for Decision Analysis and Resolution

4.3 Determine Approach To Use

4.4 Establish Evaluation Criteria

4.5 Identify Alternative Solutions

4.6 Evaluate Alternatives

4.7 Select Solutions

End

- Sample Methodologies
 - Trade Study
 - Simple Multi-Attribute Rating Technique (SMART)
 - Analytical Hierarchy Process (AHP)
 - Pay-off table with application of an analysis technique (MiniMax, Expected Value, MaxiMax, Minimum Regret, etc.)
 - Decision Trees and Influence Diagrams
 - Simulation
 - Group Techniques (e.g., Delphi)
Reuse Readiness Levels - NGC Approach

Identify Candidates

- Obtain Pertinent Data / Information

Assign Weights Specific to Situation

- Tailor Candidate Attributes

Calculate Score

- Translate into RRL

Reuse Asset 1

<table>
<thead>
<tr>
<th>No.</th>
<th>Evaluation Criteria</th>
<th>Evaluation Method</th>
<th>Scoring Function</th>
<th>Weight (%)</th>
<th>Reuse Score</th>
<th>Weighted Score</th>
<th>COTS A Score</th>
<th>Weighted Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Supporting Processes and Resources</td>
<td></td>
<td></td>
<td>2.0%</td>
<td>2.0</td>
<td>0.10</td>
<td>2.0</td>
<td>0.10</td>
</tr>
<tr>
<td>2</td>
<td>Software Familiarity</td>
<td></td>
<td></td>
<td>2.0%</td>
<td>1.6</td>
<td>0.16</td>
<td>1.6</td>
<td>0.16</td>
</tr>
<tr>
<td>3</td>
<td>Developer Experience</td>
<td></td>
<td></td>
<td>10.0%</td>
<td>1.6</td>
<td>0.16</td>
<td>3.5</td>
<td>0.35</td>
</tr>
<tr>
<td>4</td>
<td>Quantity and Level of Documentation</td>
<td></td>
<td></td>
<td>1.0%</td>
<td>0.1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>5</td>
<td>Reliability and Completeness of Documentation</td>
<td></td>
<td></td>
<td>1.0%</td>
<td>0.4</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>6</td>
<td>Configurability, Openness and Modularity</td>
<td></td>
<td></td>
<td>17.0%</td>
<td>4.0</td>
<td>0.67</td>
<td>6.0</td>
<td>0.63</td>
</tr>
<tr>
<td>7</td>
<td>Estimability</td>
<td></td>
<td></td>
<td>0.0%</td>
<td>0.6</td>
<td>0.06</td>
<td>0.6</td>
<td>0.06</td>
</tr>
<tr>
<td>8</td>
<td>Scalability</td>
<td></td>
<td></td>
<td>5.0%</td>
<td>8.1</td>
<td>0.41</td>
<td>6.5</td>
<td>0.33</td>
</tr>
<tr>
<td>9</td>
<td>Well-defined and Stable Interfaces</td>
<td></td>
<td></td>
<td>12.0%</td>
<td>1.8</td>
<td>0.22</td>
<td>1.0</td>
<td>0.12</td>
</tr>
<tr>
<td>10</td>
<td>Product Life Cycle Stage</td>
<td></td>
<td></td>
<td>5.0%</td>
<td>2.3</td>
<td>0.12</td>
<td>1.7</td>
<td>0.09</td>
</tr>
<tr>
<td>11</td>
<td>Maintenance</td>
<td></td>
<td></td>
<td>5.0%</td>
<td>7.6</td>
<td>0.25</td>
<td>8.0</td>
<td>0.27</td>
</tr>
<tr>
<td>12</td>
<td>Platform Compatibility</td>
<td></td>
<td></td>
<td>0.0%</td>
<td>8.0</td>
<td>0.00</td>
<td>8.0</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>Version Compatibility</td>
<td></td>
<td></td>
<td>7.0%</td>
<td>6.4</td>
<td>0.36</td>
<td>2.1</td>
<td>0.15</td>
</tr>
<tr>
<td>14</td>
<td>Language Compatibility</td>
<td></td>
<td></td>
<td>0.0%</td>
<td>0.7</td>
<td>0.00</td>
<td>0.7</td>
<td>0.00</td>
</tr>
<tr>
<td>15</td>
<td>Restructuring / Re-factoring</td>
<td></td>
<td></td>
<td>1.0%</td>
<td>0.6</td>
<td>0.00</td>
<td>0.6</td>
<td>0.00</td>
</tr>
<tr>
<td>16</td>
<td>Re-engineering</td>
<td></td>
<td></td>
<td>0.0%</td>
<td>0.6</td>
<td>0.00</td>
<td>0.6</td>
<td>0.00</td>
</tr>
<tr>
<td>17</td>
<td>Re-implementation</td>
<td></td>
<td></td>
<td>4.0%</td>
<td>0.6</td>
<td>0.30</td>
<td>3.0</td>
<td>0.12</td>
</tr>
<tr>
<td>18</td>
<td>Re-integration and Relabel</td>
<td></td>
<td></td>
<td>4.0%</td>
<td>0.6</td>
<td>0.30</td>
<td>2.0</td>
<td>0.12</td>
</tr>
<tr>
<td>19</td>
<td>Architecture / Design Synchronization</td>
<td></td>
<td></td>
<td>8.0%</td>
<td>1.8</td>
<td>0.15</td>
<td>1.6</td>
<td>0.12</td>
</tr>
<tr>
<td>20</td>
<td>Percentage of Translation to New Context</td>
<td></td>
<td></td>
<td>1.0%</td>
<td>0.6</td>
<td>0.00</td>
<td>0.6</td>
<td>0.00</td>
</tr>
<tr>
<td>21</td>
<td>Index of New Requirements Incorporition</td>
<td></td>
<td></td>
<td>5.0%</td>
<td>3.6</td>
<td>0.19</td>
<td>2.7</td>
<td>0.14</td>
</tr>
</tbody>
</table>

TOTAL: 100.0%

RRL Description

<table>
<thead>
<tr>
<th>RRL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not reusable in the given context</td>
</tr>
<tr>
<td>2</td>
<td>Not practical to reuse in the given context</td>
</tr>
<tr>
<td>3</td>
<td>Conceptual reuse possible; significant risk to \</td>
</tr>
<tr>
<td></td>
<td>implementation</td>
</tr>
<tr>
<td>4</td>
<td>Reuse with 6 or more attributes of concern - \</td>
</tr>
<tr>
<td></td>
<td>assume substantial cost and risk</td>
</tr>
<tr>
<td>5</td>
<td>Reuse with 3 to 6 attributes of concern - \</td>
</tr>
<tr>
<td></td>
<td>assume a reasonable amount of cost and risk</td>
</tr>
<tr>
<td>6</td>
<td>Reuse with 1 to 3 attributes of concern - \</td>
</tr>
<tr>
<td></td>
<td>potential for some cost and risk</td>
</tr>
<tr>
<td>7</td>
<td>High reuse with minimum cost and risk</td>
</tr>
<tr>
<td>8</td>
<td>Demonstrated reuse by multiple adopters</td>
</tr>
<tr>
<td>9</td>
<td>Proven serial reuse by multiple skills and \</td>
</tr>
<tr>
<td></td>
<td>experience level</td>
</tr>
</tbody>
</table>
Outcomes

• Decisions / Assessments
 - Technical viability and rank order of reuse candidate software
 - Justification not to reuse
 - Investment in maturing a potential reuse asset
 - Use as a component to determine an overall for Software TRL of a critical technology

• Insight
 - Understanding of the level risk associated with incorporating software technologies into a system or solution
 - Sensitivity of driving factors that affect reuse success
 - Degree of modification (effort) required to reuse the product
 • Improved size and cost estimates