<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YYYY)</th>
<th>05 October 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. REPORT TYPE</td>
<td>Briefing Charts</td>
</tr>
<tr>
<td>3. DATES COVERED (From - To)</td>
<td>15 September 2015 - 05 October 2015</td>
</tr>
<tr>
<td>6. AUTHOR(S)</td>
<td>M. Billingsley, D. Pamplin, N. Keim, B. Hill-Lam, C. Wilhelm, R. Synovec</td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>Air Force Research Laboratory (AFMC) AFRL/RQRC 10 E. Saturn Blvd. Edwards AFB, CA 93524-7680</td>
</tr>
<tr>
<td>9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)</td>
<td>Air Force Research Laboratory (AFMC) AFRL/RQ 5 Pollux Drive Edwards AFB, CA 93524-7048</td>
</tr>
<tr>
<td>11. SPONSOR/MONITOR'S REPORT NUMBER(S)</td>
<td>AFRL-RQ-ED-VG-2015-367</td>
</tr>
<tr>
<td>12. DISTRIBUTION / AVAILABILITY STATEMENT</td>
<td>Approved for public release; distribution unlimited</td>
</tr>
<tr>
<td>13. SUPPLEMENTARY NOTES</td>
<td>For presentation at 14th International Symposium on the Stability, Handling, & Use of Liquid Fuels; Charleston, SC; 05 Oct 2015 PA Case Number: #15588; Clearance Date: 9/24/2015</td>
</tr>
<tr>
<td>14. ABSTRACT</td>
<td>Briefing Charts/Viewgraphs</td>
</tr>
<tr>
<td>15. SUBJECT TERMS</td>
<td>N/A</td>
</tr>
<tr>
<td>16. SECURITY CLASSIFICATION OF:</td>
<td>Unclassified</td>
</tr>
<tr>
<td>a. REPORT</td>
<td>Unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>Unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>Unclassified</td>
</tr>
<tr>
<td>17. LIMITATION OF ABSTRACT</td>
<td>SAR</td>
</tr>
<tr>
<td>18. NUMBER OF PAGES</td>
<td>26</td>
</tr>
<tr>
<td>19a. NAME OF RESPONSIBLE PERSON</td>
<td>M. Billingsley</td>
</tr>
<tr>
<td>19b. TELEPHONE NO (include area code)</td>
<td>N/A</td>
</tr>
</tbody>
</table>
ADVANCED FUEL QUALITY ASSURANCE STANDARDS
BASED ON THERMAL TESTING & CHEMOMETRIC MODELING

Matt Billingsley (AFRL/RQRC)
D.Pamplin (DLA Energy/DQT)
N.Keim, B.Hill-Lam, C.Wilhelm (Johns Hopkins University / CADRE)
R.Synovec (University of Washington)

IASH 14th Int’l. Symposium
Charleston, SC
Oct 2015

Distribution A: Approved for Public Release. Distribution is Unlimited
Acknowledgments

- Jose Maniwang, Lindsey Hicks
 DLA Energy (DQT), Ft. Belvoir, VA

- Tim Edwards (AFRL/RQTF)
- Linda Shafer, Matt DeWitt, coworkers (UDRI)
- Steve Westbrook, George Wilson (SwRI)
- Joel Moreno, Indresh Mathur (Haltermann Solutions)
Outline

- Motivation/Background
- Approach
- Referee Fuel Set
- Thermal Integrity Test Method and Results
- Model Development and Results
- Future Work

LIQUID PROPELLANTS SYMPOSIUM

Sponsored by the TECHNICAL ADVISORY PANEL ON FUELS AND LUBRICANTS

Distribution A: Approved for Public Release. Distribution is Unlimited
Motivation: Fuel Quality Assurance

- Propulsion fuel performance, quality, and suitability **must be verified**
- This challenge is faced by:
 - Aerospace propulsion development/demonstration activities
 - Agencies who procure fuels for DoD use
 - Fuel manufacturers and suppliers
- Many requirements to consider:
 - Propellant cost
 - Support operations/infrastructure
 - Product availability & sustainability
 - **Functional performance**: combustion, cooling, lubrication…

Fuel thermal stability and material compatibility

Aerospace Cooling System Conditions and Environments

<table>
<thead>
<tr>
<th>Application</th>
<th>T_{wall} (°F)</th>
<th>$T_{\text{fuel, bulk}}$ (°F)</th>
<th>Pressure (psi)</th>
<th>Heat Flux (Btu/in²s)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rockets</td>
<td>500-900</td>
<td>100-500</td>
<td>700-7000</td>
<td>10-120</td>
<td>Cu alloys</td>
</tr>
<tr>
<td>Hypersonics</td>
<td>1200-1500</td>
<td>100-1300</td>
<td>500-1000</td>
<td>0.5-2</td>
<td>Ni alloys</td>
</tr>
<tr>
<td>Aircraft</td>
<td>300-400</td>
<td>100-300</td>
<td>500-800</td>
<td><1</td>
<td>SS alloys</td>
</tr>
</tbody>
</table>
Liquid Rocket Engine (LOX/Kerosene)
Regenerative Cooling Environment

- Nonuniform heat flux, q''
- Deposition
- Supercritical
- Subcritical
- Compressibility: $\rho(r,z)$
- Transcritical process: sharp $\frac{\partial}{\partial T}$
- Compositional variability
- Surface corrosion/catalysis
- Competing rate processes:
 - Momentum & mass transfer, chemical kinetics

$R \cdot + O_2 \rightarrow ROO \rightarrow$
$ROOH \rightarrow P \rightarrow$ deposit

$R \rightarrow R \cdot \rightarrow$ bulk deposits
Background

1. Fuel Specification

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirement, Units</td>
<td></td>
<td>5624U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distillation, °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBP</td>
<td>D86</td>
<td>report</td>
<td><205</td>
<td><205</td>
<td>(185-210)</td>
</tr>
<tr>
<td>10% recovered</td>
<td>D86</td>
<td>report</td>
<td><205</td>
<td><205</td>
<td>(185-210)</td>
</tr>
<tr>
<td>20% recovered</td>
<td>D86</td>
<td>report</td>
<td><205</td>
<td><205</td>
<td>(185-210)</td>
</tr>
<tr>
<td>50% recovered</td>
<td>D86</td>
<td>report</td>
<td><205</td>
<td><205</td>
<td>(185-210)</td>
</tr>
<tr>
<td>90% recovered</td>
<td>D86</td>
<td>report</td>
<td><205</td>
<td><205</td>
<td>(185-210)</td>
</tr>
<tr>
<td>End point</td>
<td>D1298</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td><300</td>
</tr>
<tr>
<td>Density/15°C, kg/L</td>
<td>D1298</td>
<td>0.788-0.845</td>
<td>0.775-0.840</td>
<td>0.799-0.815</td>
<td>0.799-0.815</td>
</tr>
<tr>
<td>Viscosity/-20°C, mm²/s</td>
<td>D445</td>
<td><8.5</td>
<td><8.0</td>
<td><16.5ᵇ</td>
<td><16.5ᵇ</td>
</tr>
<tr>
<td>Flash Point, °C</td>
<td>D93ᵇ</td>
<td>>60</td>
<td>>38</td>
<td>>60</td>
<td>>60</td>
</tr>
<tr>
<td>Freezing Point, °C</td>
<td>D2386ᵈ</td>
<td><=-46</td>
<td><=-40</td>
<td><=(-51)</td>
<td><=(-51)</td>
</tr>
<tr>
<td>Net Heat of Combustion, MJ/kg</td>
<td>variesᶠ</td>
<td>>42.6</td>
<td>>42.8</td>
<td>(>43.0)</td>
<td>(>43.0)</td>
</tr>
<tr>
<td>Hydrogen, mass %</td>
<td>variesᵍ</td>
<td>>13.4</td>
<td>>13.4ʰ</td>
<td>>13.8</td>
<td>>13.8</td>
</tr>
<tr>
<td>Aromatics, vol %</td>
<td>D1319</td>
<td><25.0</td>
<td><25.0</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>Olefins, vol %</td>
<td>D1319</td>
<td><2.0</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total sulfur, mass%</td>
<td>varies¹</td>
<td><0.3</td>
<td><0.3</td>
<td><0.003</td>
<td><0.00001</td>
</tr>
<tr>
<td>Mercaptan sulfur, mass%</td>
<td>D3227</td>
<td><0.002ʰ</td>
<td><0.003¹</td>
<td><0.0003</td>
<td><0.0003</td>
</tr>
<tr>
<td>Thermal Stability: ΔP change, mmHg</td>
<td>D3241ᵏ</td>
<td><25</td>
<td><25</td>
<td></td>
<td>report</td>
</tr>
</tbody>
</table>

- Specification review and development activities are important for fuel qualification.
- Physical, chemical spec limits are influenced by operational factors:
 - Performance
 - Handling/storage
 - Cost/Availability
- Neither engine performance nor fuel chemical composition are specified *per se*
2. Compositional Variation

Retention Time (min.)

Abundance (A.U.)

n-C$_8$ C$_9$ C$_{10}$ C$_{11}$ C$_{12}$ C$_{13}$ C$_{14}$ C$_{15}$ C$_{16}$ C$_{17}$

RP-2, Sample 1
RP-2, Sample 4
RP-1, Sample 19
JP-8, POSF 4751
JP-7, POSF 3327

data: G.Wilson, S.Westbrook (SwRI)

Distribution A: Approved for Public Release. Distribution is Unlimited
Background

3. (Lack of) Thermal Performance Test

ASTM D3241 (JFTOT) Results

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Designation</th>
<th>Tube Deposit Rating Code</th>
<th>Maximum ΔP, mmHg</th>
<th>Data: G.Wilson, S.Westbrook (SwRI) R.Cook (AFRL), M.Thiede (AFPET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP-7</td>
<td>POSF 3327</td>
<td><2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>JP-8</td>
<td>POSF 4751</td>
<td>>4AP<sup>a</sup></td>
<td>280.1</td>
<td></td>
</tr>
<tr>
<td>RP-1</td>
<td>Sample 19</td>
<td><2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>RP-2</td>
<td>Sample 4</td>
<td><2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RP-2</td>
<td>Sample 1</td>
<td><2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>RP-TS-5</td>
<td>Sample 14</td>
<td><2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RP-2</td>
<td>Sample 6</td>
<td><2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fuel Type</td>
<td>Designation</td>
<td>Tube Deposit Rating Code</td>
<td>Maximum ΔP, mmHg</td>
<td></td>
</tr>
<tr>
<td>RP-1</td>
<td>Sample 18</td>
<td>35-38 (17)<sup>b</sup></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RP-1</td>
<td>Sample X</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

^a “A” denotes abnormal deposit; “P” denotes peacock deposit.

^b Filtered

- Rocket kerosene is not quality tested for thermal stability or material compatibility prior to delivery
 - RP-1 is not tested. RP-2 is tested with ASTM D3241 (JFTOT) but results are “report only”
- JFTOT method may be valuable for screening very low performing fuels (contamination, alternative sources)...

But the method is inadequate for ensuring fuel quality as increasingly demanding thermal environments arise
AFQTMoDev Project Structure

Fuel Compositional Variation

1. Optimize Composition
2. Specification Limits

LECO RC612 Test section analysis

CRAFTI Thermal Integrity Index (TII)

GCxGC-TOFMS 3D Chemical Data

Compound Correlation to TII

Distribution A: Approved for Public Release. Distribution is Unlimited
Referee Fuel Set

- Criteria for fuel selection
 - Multicomponent: distribution of hydrocarbon species and/or types
 - Possess heteroatom species diversity
 - Span the compositional range of fuels meeting MIL-DTL-25576E: not necessarily “today’s fuel”
 - Meet aerospace fuel designations for health/flammability/reactivity, etc.

- What we ended up with
 - 51 compositionally unique fuels (or potential blend materials – single/multicomponent)...
 - 19 evaluated for thermal integrity and included in chemometrics/modeling
 - 3 available from previous SwRI project
 - Less than ideal compositional variation
 - Produced on demand – no repository of historical fuels
 - Relatively consistent production past 20 years
 - Several “interesting” fuels contained common feedstocks
Referee Fuel Set Variation

Distillation Temperature (°F)

% Distilled

Distribution A: Approved for Public Release. Distribution is Unlimited
Fuel Set Compositional Variation

RP-1 (18)
- Aromatics (3.35 Vol%)
 - 39.41
 - 35.85
 - 13.76
 - 5.69
- Iso-Paraffins
- n-Paraffins
- Monocycloparaffins
- Dicycloparaffins
- Tricycloparaffins
- Alkylbenzenes
- Alkynaphthalenes
- Cycloaromatics

RP-2 (1)
- Aromatics (0.25 Vol%)
 - 38.83
 - 35.42
 - 20.87
 - 2.59
- Iso-Paraffins
- n-Paraffins
- Monocycloparaffins
- Dicycloparaffins
- Tricycloparaffins
- Alkylbenzenes
- Alkynaphthalenes
- Cycloaromatics

RP-2 (4)
- Aromatics (0.62 Vol%)
 - 41.40
 - 23.99
 - 18.23
 - 14.23
- Iso-Paraffins
- n-Paraffins
- Monocycloparaffins
- Dicycloparaffins
- Tricycloparaffins
- Alkylbenzenes
- Alkynaphthalenes
- Cycloaromatics

Total Aromatics
- 0.0
- 1.0
- 2.0
- 3.0
- 3.5

Cycloaromatics
- 0.0
- 0.2
- 0.4
- 0.6
- 0.8
- 1.0

Alkynaphthalenes
- 0.0
- 0.2
- 0.4
- 0.6
- 0.8
- 1.0

Alkylbenzenes
- 0.0
- 0.2
- 0.4
- 0.6
- 0.8
- 1.0

Distribution A: Approved for Public Release. Distribution is Unlimited
Compact Rapid Assessment of Fuel Thermal Integrity (CRAFTI)

Standard Test Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reynolds Number, Re</td>
<td>2000-20,000</td>
<td>-</td>
</tr>
<tr>
<td>Test article material</td>
<td>Cu (C10100)</td>
<td>-</td>
</tr>
<tr>
<td>Input power</td>
<td>4500 W</td>
<td></td>
</tr>
<tr>
<td>Wall temperature (dependent variable)</td>
<td>~1050±250</td>
<td>°F</td>
</tr>
<tr>
<td>Backpressure</td>
<td>1,000 (6.9)</td>
<td>psi (MPa)</td>
</tr>
<tr>
<td>Heated length</td>
<td>4 (10.2)</td>
<td>in. (cm)</td>
</tr>
<tr>
<td>Test duration</td>
<td>15 min.</td>
<td></td>
</tr>
</tbody>
</table>

Test Article Details & Naming

Test Article Analysis
Temperature Programmed Oxidation

Distribution A: Approved for Public Release. Distribution is Unlimited
Ten runs were performed at standard test conditions using baseline fuel (RP-2 Sample 1):
- 6 runs – initially
- 2 runs – 2/3 mo. later
- 2 runs – 9/10 mo. later
- Purge/flush/purge protocol between fuels; no disassembly

Pressure drop can be indicative of deposit formation:
- Variation from other sources should be minimized

Pressure drop variability from test to test was well within measurement uncertainty:
\[\delta(\Delta P) \approx \delta(P_{in}) + \delta(P_{out}) \]
Repeatability: Deposit Formation

- For ten runs with baseline fuel, carbon deposit behavior is similar – and initially somewhat unexpected.
- Near detection limits → some noise likely due to instrument response.
- These results indicate "end-to-end" variation (fuel, experiment, test article handling, analysis, etc.)
- Will carbon deposit behavior vary with fuel composition?
CRAFTI v1.1 Conditions/Results

(15 min., \(T_{\text{obulk}} \sim 650^\circ\text{F}, T_{\text{wc}} \sim 800-1200^\circ\text{F} \))

(Shaded fuels: Indistinguishable \(\Delta P \) with JFTOT)

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Sample #</th>
<th># of Runs</th>
<th>Average Wall Temperature °F (°C)</th>
<th>Pressure Drop (\Delta P), initial psi (kPa)</th>
<th>(\Delta P) Increase during Test psi (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP-2</td>
<td>1</td>
<td>10</td>
<td>1158 (626)</td>
<td>44 (306)</td>
<td>16 (113)</td>
</tr>
<tr>
<td>RP-2</td>
<td>4</td>
<td>4</td>
<td>1026 (552)</td>
<td>42 (288)</td>
<td>20 (136)</td>
</tr>
<tr>
<td>RP-2</td>
<td>7</td>
<td>2</td>
<td>1048 (564)</td>
<td>39 (269)</td>
<td>21 (142)</td>
</tr>
<tr>
<td>RP-1</td>
<td>3</td>
<td>7</td>
<td>1112 (600)</td>
<td>46 (320)</td>
<td>21 (146)</td>
</tr>
<tr>
<td>UL-RP-1</td>
<td>13</td>
<td>2</td>
<td>1115 (602)</td>
<td>33 (225)</td>
<td>22 (154)</td>
</tr>
<tr>
<td>RP-2</td>
<td>9</td>
<td>4</td>
<td>1110 (599)</td>
<td>31 (213)</td>
<td>23 (158)</td>
</tr>
<tr>
<td>RP-2</td>
<td>6</td>
<td>2</td>
<td>1145 (618)</td>
<td>47 (326)</td>
<td>23 (158)</td>
</tr>
<tr>
<td>RP-1</td>
<td>10</td>
<td>2</td>
<td>1057 (569)</td>
<td>31 (217)</td>
<td>26 (179)</td>
</tr>
<tr>
<td>RP-2</td>
<td>12</td>
<td>2</td>
<td>1144 (618)</td>
<td>29 (203)</td>
<td>30 (207)</td>
</tr>
<tr>
<td>RP-1</td>
<td>19</td>
<td>2</td>
<td>1074 (579)</td>
<td>26 (180)</td>
<td>30 (210)</td>
</tr>
<tr>
<td>RP-2</td>
<td>11</td>
<td>2</td>
<td>1085 (585)</td>
<td>30 (205)</td>
<td>33 (225)</td>
</tr>
<tr>
<td>RP-TS-5</td>
<td>14</td>
<td>2</td>
<td>1130 (610)</td>
<td>32 (222)</td>
<td>35 (242)</td>
</tr>
<tr>
<td>JP-900</td>
<td>16</td>
<td>2</td>
<td>1015 (546)</td>
<td>31 (217)</td>
<td>45 (313)</td>
</tr>
<tr>
<td>JP-7</td>
<td>15</td>
<td>2</td>
<td>950 (510)</td>
<td>30 (205)</td>
<td>50 (343)</td>
</tr>
<tr>
<td>RP-1</td>
<td>8</td>
<td>2</td>
<td>964 (518)</td>
<td>35 (241)</td>
<td>79 (545)</td>
</tr>
<tr>
<td>RP-1</td>
<td>5</td>
<td>2</td>
<td>985 (529)</td>
<td>41 (281)</td>
<td>82 (563)</td>
</tr>
<tr>
<td>RP-1</td>
<td>2</td>
<td>7</td>
<td>1027 (553)</td>
<td>45 (311)</td>
<td>91 (625)</td>
</tr>
<tr>
<td>RP-1</td>
<td>17</td>
<td>1</td>
<td>964 (518)</td>
<td>31 (217)</td>
<td>103 (713)</td>
</tr>
<tr>
<td>RP-1</td>
<td>18</td>
<td>2</td>
<td>1005 (541)</td>
<td>30 (210)</td>
<td>188 (1293)</td>
</tr>
</tbody>
</table>

- Standard test conditions produce **measureable performance differences**
- Pressure drop increase varies from 40-630% of initial value
- Most fuels meet current RP-1/RP-2 limits (MIL-DTL-25576E)
- JFTOT results indicated indistinguishable performance (\(\Delta P \) increase after 5 hours) for these fuels
Wall Temperature Behavior (Heated Region Only)

- Wall temperature can be indicative of fuel thermal integrity, but is complicated by other factors:
 - Electrical connection → local current flux density
 - Deposit formation → effects on local heat transfer
 - Transcritical flow → property gradients
- Repeateable characteristic profile for fuels of different thermal quality...
- Difficult to explain temperature/time history variation
- Modeling & simulation underway to characterize fluid/solid thermal environment, flow behavior

Time-Averaged Wall Temperature (°F)

Axial Position (inches)

Error bars: ±5%
Time-Integrated (Total) Carbon Sensitive to Fuel Composition

Average Carbon Deposit (A.U.)

Section Number

Distribution A: Approved for Public Release. Distribution is Unlimited
Differentiated Carbon Data Provides Additional Insight

- Highest depositing fuels showed largest pressure drop increase
 - Exception: UL-RP-1 (13): significant deposit but small ΔP increase
- Heated region carbon deposits predominantly chemisorbed (0-200s)
- Amorphous carbon (200-450s) dominates exit region
- Only one fuel with strong filamentous carbon signal (450-800s): UL-RP-1 (13) in heated region
- Pressure drop increase correlated with amorphous deposit in exit region?
Chemometrics with CRAFTI, Carbon Deposit, & Comprehensive GC×GC-TOFMS Datasets

- **Purpose of chemometrics:**
 - Clarify role of fuel composition in cooling performance/quality
 - Guide fuel formulation
 - Advise specification methods/limits

- **Implementation:**
 - Principal component analysis (PCA)
 - Assign categorical quality
 - Identify important compositional differences
 - Fisher ratio (F-ratio) analysis
 - Refine GC×GC dataset for optimized models
 - Identify distinguishing chemical compounds
 - Partial least squares (PLS) modeling
 - Develop predictive models that relate thermal integrity behavior to fuel composition

Distribution A: Approved for Public Release. Distribution is Unlimited
PCA Example: Correlate Carbon Deposit Types/Regions with Channel ΔP Increase

- Map of 3D TPO data
- Available for 19 referee fuels
- Multivariate data: excellent PCA candidate
- How can information be made useful?

- PCA Scores Plot: PC groupings capture variance in measured data (ideally 100%)
- In this case, high ΔP fuels (purple) and low ΔP fuels (green) group together – primarily along PC1
- A relationship between carbon deposit and pressure drop is confirmed – but what does PC1 represent?

- PCA PC1 Loadings Plot
 - Associates positive (blue) & negative (red) contributions to PC1 with original data matrices
 - Positive contributions to PC1 (blue) correlate with high pressure drop
 - ΔP most sensitive to amorphous carbon (200-450s) in exit region (sections 12-21)

Similar analyses performed for test article pressure drop, wall temperature, GC×GC-TOFMS chromatographic variation

Distribution A: Approved for Public Release. Distribution is Unlimited
Fisher Ratio Analysis: Identify Compounds Responsible for Group Assignment

<table>
<thead>
<tr>
<th>#</th>
<th>F-Ratio (min.)</th>
<th>t_r1 (sec)</th>
<th>t_r2 (sec)</th>
<th>Compound</th>
<th>Match Value</th>
<th>C-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>277.1</td>
<td>18.7</td>
<td>0.91</td>
<td>1,1,6-trimethyltetralin</td>
<td>908</td>
<td>13.0</td>
</tr>
<tr>
<td>2</td>
<td>254.1</td>
<td>18.3</td>
<td>0.97</td>
<td>5-ethyltetralin</td>
<td>846</td>
<td>15.9</td>
</tr>
<tr>
<td>3</td>
<td>233.0</td>
<td>18.7</td>
<td>1.01</td>
<td>(1,4-dimethylpent-2-enyl)benzene</td>
<td>769</td>
<td>16.9</td>
</tr>
<tr>
<td>4</td>
<td>231.4</td>
<td>18.8</td>
<td>0.96</td>
<td>1-methyltetralin</td>
<td>751</td>
<td>6.3</td>
</tr>
<tr>
<td>5</td>
<td>219.4</td>
<td>16.5</td>
<td>1.20</td>
<td>(1-ethylbutyl) benzene</td>
<td>790</td>
<td>14.5</td>
</tr>
<tr>
<td>6</td>
<td>214.0</td>
<td>15.6</td>
<td>1.31</td>
<td>5-methylnonane</td>
<td>840</td>
<td>1.7</td>
</tr>
<tr>
<td>7</td>
<td>201.3</td>
<td>18.1</td>
<td>1.31</td>
<td>1,3,5-trimethyl-2-propylbenzene</td>
<td>894</td>
<td>11.9</td>
</tr>
<tr>
<td>8</td>
<td>188.5</td>
<td>23.6</td>
<td>0.64</td>
<td>2,6-dimethyl naphthalene</td>
<td>935</td>
<td>68.3</td>
</tr>
<tr>
<td>9</td>
<td>188.2</td>
<td>18.2</td>
<td>3.31</td>
<td>2,6-dimethyl heptadecane</td>
<td>900</td>
<td>5.0</td>
</tr>
<tr>
<td>10</td>
<td>182.9</td>
<td>17.3</td>
<td>1.43</td>
<td>Adamantane</td>
<td>885</td>
<td>2.4</td>
</tr>
<tr>
<td>11</td>
<td>179.4</td>
<td>17.6</td>
<td>1.29</td>
<td>1-ethyl-2,4,5-trimethylbenzene</td>
<td>792</td>
<td>16.0</td>
</tr>
<tr>
<td>12</td>
<td>177.6</td>
<td>23.5</td>
<td>0.41</td>
<td>Biphenyl</td>
<td>926</td>
<td>34.8</td>
</tr>
<tr>
<td>13</td>
<td>175.9</td>
<td>18.5</td>
<td>1.31</td>
<td>6-propyltetralin</td>
<td>735</td>
<td>9.1</td>
</tr>
<tr>
<td>14</td>
<td>172.4</td>
<td>18.9</td>
<td>0.81</td>
<td>6-methyltetralin</td>
<td>955</td>
<td>16.4</td>
</tr>
<tr>
<td>15</td>
<td>171.4</td>
<td>19.1</td>
<td>0.91</td>
<td>2,3-dimethyltetralin</td>
<td>711</td>
<td>4.6</td>
</tr>
<tr>
<td>16</td>
<td>169.0</td>
<td>17.5</td>
<td>1.31</td>
<td>1,4-dimethyl-2-[2-methylpropyl]-benzene</td>
<td>825</td>
<td>13.3</td>
</tr>
<tr>
<td>17</td>
<td>167.9</td>
<td>18.8</td>
<td>1.13</td>
<td>1-heptenylbenzene</td>
<td>794</td>
<td>10.1</td>
</tr>
<tr>
<td>18</td>
<td>164.6</td>
<td>17.7</td>
<td>1.19</td>
<td>(5-methyl-1-hexenyl)benzene</td>
<td>764</td>
<td>13.8</td>
</tr>
<tr>
<td>19</td>
<td>162.7</td>
<td>18.8</td>
<td>1.33</td>
<td>(1-methylhexyl) benzene</td>
<td>818</td>
<td>18.4</td>
</tr>
<tr>
<td>20</td>
<td>161.9</td>
<td>15.4</td>
<td>1.25</td>
<td>p-cymene</td>
<td>814</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Top 300 F-Ratio Chromatographic Locations

- F-Ratio Analysis top hits are primarily aromatic...
- But their relative influence is quantified
- Hits represent class-distinguishing compounds, not necessarily direct influences on fuel thermal integrity
- Reduces superfluous chemical data in PLS model development

Distribution A: Approved for Public Release. Distribution is Unlimited
PLS Modeling: Predict Thermal Integrity using GC×GC-TOFMS Data

- Leave One Out Cross Validation (LOOCV):
 - N models generated, each with $N-1$ datasets
 - Datasets include CRAFTI, TPO, and GC×GC data
 - Each resulting model used to predict behavior for fuel left out during model generation
 - Statistical/graphical comparison of predicted vs. measured values

- Top 300 F-Ratio tiles used

- New parameter defined based on PCA, F-Ratio efforts:
 Thermal Integrity Index (TII):
 \[TII \propto \left(\Delta P_{\text{max}} \times C_{A,\text{exit}} \right)^{-1} \]

- Good model agreement
 - Not inclusive of all compositional influences
 - Does not account for ΔP_{init}

Similar predictive models developed for test article pressure drop, wall temperature, carbon deposit
Summary

- A compositionally diverse set of rocket kerosene fuels was acquired and systematically evaluated.
- A compact, rapid fuel thermal integrity assessment (CRAFTI apparatus) was developed and used to quantify fuel performance. Qualification criteria:
 - Operates at conditions relevant to intended application
 - Produces meaningful data quickly using small fuel quantity
 - Performance data collected with adequate repeatability
 - Discriminate between otherwise indistinguishable fuels
 - Results are traceable to existing experiments
 - Possesses characteristics of a standard test method
- Chemometric analyses applied to multiparametric datasets
 - Improvements in understanding of physicochemical influences and impacts of deposit formation were made
 - Predictive, composition-based models were developed – these models are adaptable to additional datasets and expandable to diversified fuel sets:
 - Pressure drop, wall temperature, carbon deposit, etc.
Thank You for Your Attention