AWARD NUMBER: W81XWH-11-1-0303

TITLE: The Role of Retinal Determination Gene Network (RDGN) in Hormone Signaling Transduction and Prostate Tumorigenes

PRINCIPAL INVESTIGATOR: Xiaoming Ju, MD

CONTRACTING ORGANIZATION: Thomas Jefferson University
Philadelphia, PA 19107

REPORT DATE: December 2015

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. **REPORT DATE**
 December 2015

2. **REPORT TYPE**
 Final Report

3. **DATES COVERED**
 30 Sep 2011 - 29 Sep 2015

4. **TITLE AND SUBTITLE**
 The Role of Retinal Determination Gene Network (RDGN) in Hormone Signaling Transduction and Prostate Tumorigenesis

5. **AUTHOR(S)**
 Kongming Wu, Xiaoming Ju

6. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 Thomas Jefferson University
 125 South 9th Street
 Philadelphia, PA 19107

7. **SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)**
 U.S. Army Medical Research and Materiel Command
 Fort Detrick, Maryland 21702-5012

8. **DISTRIBUTION / AVAILABILITY STATEMENT**
 Approved for public release; distribution unlimited

9. **ABSTRACT**
 These studies were conducted to determine the function of DACH1 in regulating prostate cancer growth in vitro and in vivo, and to determine the normal function of DACH1 in prostate development. We demonstrated that DACH1 suppresses prostate cancer cellular growth induced by ErbB2. We demonstrated similar mechanisms govern DACH1 restrain of prostate tumorigenesis promoted by Ras, c-Myc and c-Src. We identified the key molecular targets regulated by DACH1 in vitro and in vivo and showed using ChIP analysis the binding of DACH1 to key target genes. We used genetic deletion studies to identify the key function for DACH1 in restraining cytokine secretion. IL-8 and IL-6 are the key cytokines demonstrated to promote prostate cancer growth and we showed that DACH1 is the key endogenous mechanism governing restraint of prostate epithelial cell cytokine secretion (IL-8 and IL-6).

10. **SUBJECT TERMS**
 Retinal determination gene network (RDGN) pathway, dachshund, prostate cancer, androgen receptor (AR).

11. **SECURITY CLASSIFICATION OF:**
 U

12. **CONFIDENCE LEVEL OF ABSTRACT:**
 U

13. **LIMITATION OF ABSTRACT:**
 UU

14. **NUMBER OF PAGES:**
 13

15. **NAME OF RESPONSIBLE PERSON:**
 USAMRMC

16. **TELEPHONE NUMBER:**
 (include area code)

17. **LIMITATION OF ABSTRACT:**
 UU

18. **NUMBER OF PAGES:**
 13

19. **NAME OF RESPONSIBLE PERSON:**
 USAMRMC

email: Xiaoming.Ju@jefferson.edu
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Key Words</td>
<td>4</td>
</tr>
<tr>
<td>Overall Project Summary and Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>10</td>
</tr>
<tr>
<td>Conclusion</td>
<td>10</td>
</tr>
<tr>
<td>Publications, Abstracts, and Presentations</td>
<td>11</td>
</tr>
<tr>
<td>Inventions, Patents and Licenses</td>
<td>12</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>12</td>
</tr>
<tr>
<td>Other Achievements</td>
<td>12</td>
</tr>
<tr>
<td>References</td>
<td>12</td>
</tr>
</tbody>
</table>
INTRODUCTION

Prostate cancer is the most frequent malignancy and the second leading cause of cancer-related death among men in the United States. The retinal determination gene network (RDGN) pathway, consisting of the dachshund (dac), eyes absent (eya), eyeless, and sine oculis (so) (Six) genes, regulates cell fate determination in metazoans and is essential for retinal, kidney, and limb development on mouse. Recently, we reported that expression of DACH1 is lost in human prostate cancer tissues and restoration of DACH1 inhibited ligand induced AR activity. Although the abnormal expressions of RDGN genes have been reported in prostate cancer, the precise role of RDGN in prostate cancer is not clear. We aimed to determine the role of DACH1 in prostate cancer cellular growth and the role of Dach1 in prostate gland development and tumor progression.

KEYWORDS

Retinal determination gene network (RDGN) pathway, dachshund, prostate cancer, androgen receptor (AR).

OVERALL PROJECT SUMMARY

These studies were conducted to determine the function of DACH1 in regulating prostate cancer growth in vitro and in vivo, and to determine the normal function of DACH1 in prostate development. We demonstrated that DACH1 suppresses prostate cancer cellular growth induced by ErbB2. We demonstrated similar mechanisms govern DACH1 restrain of prostate tumorigenesis promoted by Ras, c-Myc and c-Src. We identified the key molecular targets regulated by DACH1 in vitro and in vivo and showed using ChIP analysis the binding of DACH1 to key target genes. We used genetic deletion studies to identify the key function for DACH1 in restraining cytokine secretion. IL-8 and IL-6 are the key cytokines demonstrated to promote prostate cancer growth and we showed that DACH1 is the key endogenous mechanism governing restraint of prostate epithelial cell cytokine secretion (IL-8 and IL-6).

1. To evaluate the physiological role of endogenous DACH1 in an ErbB2 induced prostate tumor model;
2. To examine the role of DACH1/Eya1/Six1 in prostate cancer cell AR signaling transduction, proliferation, migration and invasion in vitro;
3. To investigate the role of DACH1/eya/Six1 in tumor growth in vivo using xenograft models
4. To analyze the expression of DACH1, Eya1 and Six1 during the process of human prostate tumor development
Aim 1. Evaluate the physiological role of DACH1 in prostate gland development and ErbB2-induced prostate tumor. Investigating the role of DACH1 as a physiological co-repressor of AR will be conducted on transgenic mice in which the Dach1 gene is flanked by loxP sites (Dach1^{fl/fl}) and crossed with Probasin-Cre (Pb-Cre) to generate double transgenic mice, those mice will be crossed with Probasin-erbB2Δ (Pb-erbB2) transgenic mice to create triple transgenic mice, Dach1^{fl/fl}/Pb-Cre/ Pb-erbB2.

A). In order to determine the role of Dach1 in tumorigenesis we examined the functional interactions with the tumor suppressor p53. P53 is deleted or mutated in late stage metastatic prostate cancer. We showed Dach1 physically bound to p53 and enhanced p53-mediated signal transduction (1). We showed the C- terminus of Dach1 was required for binding to p53 (1). In unrelated studies we showed this interaction was important to restrain lung cancer growth.

B). We showed that acetylation of Dach1 was a key determinant of p53 binding to DACH1 and identified the Dach1 acetylation sites (2). Dach1 evaded binding to mutation of p53 that arise in prostate cancer. Genome wide analysis showed that Dach1 and p53 bound to a subset of similar genes. DACH1 phosphorylation at serine residue (S439) inhibited p53 binding and phosphorylation at p53 amino-terminal sites (S15, S20) enhanced DACH1 binding. DACH1 binding to p53 was inhibited by NAD-dependent deacetylation via DACH1 K628 (2). In studies unrelated to the current grant we showed that Dach1 inhibited breast cancer in a p53-dependent manner.

C) In order to examine the mechanisms governing DACH1 function we had sort to identify DACH binding proteins. We identified YB-1 as a DACH1 associated protein (3). Y box–binding protein 1 (YB-1) is an oncogenic factor associated with the induction of EMT. In normal murine and human tissues YB-1...
resides in the cytoplasm found in complexes with translationally inactive mRNA. The cap-independent translational activation of Snail and other developmentally regulated transcription factors occurs via a cytoplasmic pool of YB-1. The YB-1 protein consists of three key domains; a C-terminal domain (CTD), which contributes to DNA/RNA binding (4), a highly conserved cold shock domain (CSD), which forms an antiparallel β barrel to facilitate binding to nucleic acids as a chaperone protein, and a non conserved variable N-terminal domain characterized by four alternating clusters of basic and acidic amino acids, which is both alanine and proline rich and is thought to be involved in transactivation. The C-terminus of YB-1 was sufficient for binding DACH1 and the YB-1 CSD domain was incapable of binding DACH1 (Fig.1). Dachshund (DACH1), suppressed EMT via repression of cytoplasmic translational induction of Snail by inactivating the Y box–binding protein (YB-1). In the nucleus, DACH1 antagonized YB-1–mediated oncogenic transcriptional modules governing cell invasion. In additional studies unrelated to the central theme of this grant we showed that DACH1 blocked YB-1–induced mammary tumor growth and EMT in mice.

D). Conditional Dach1 gene knockout in the prostate demonstrates a role for endogenous Dach1 as an inhibitor of proliferation via cyclin D1. In order to examine the mechanisms by which Dach1 regulated apoptosis and cellular proliferation in the prostate we conducted immunohistochemical staining for the cell cycle proteins cyclin D1 and cyclin A1. The abundance of these two cyclins was substantially increased in the Dach1— prostate epithelial cells in both the ventral and anterior prostate (5).

Aim 2. Examine the role of DACH1 in prostate cancer cell AR signaling transduction, proliferation, migration and invasion in vitro:

We next examined the role of DACH1 to restrain AR negative and AR positive prostate cancer cell contact independent growth. In PC3 cells DACH1 inhibited colony formation (Fig 2a) requiring the DS domain of DACH1. The predominant effect of DACH1 was to reduce the number of new colonies, consistent with a role for DACH1 to restrain prostate cancer stem cells that give rise to new colonies. We next examined the effect of DACH1 on the proliferation of the AR+ve C4-2 cells. The C4-2 prostate cancer cells are a well characterized model of androgen-independent prostate cancer. The PI3K pathway is constitutively active in

Figure 2. DACH1 inhibits AR-negative prostate cancer cell proliferation and contact independent growth by the DS domain. A) Colony forming assays were conducted with PC3 stable cell lines expressing control vector, DACH1 or DS with colonies stained using crystal violet and B) colony number or C) colony size determined using N=5 separate experiments. D) C4-2 cells expressing either control vector DACH1 or the DACH1 ΔDS mutant were assessed for DACH1 abundance by immuno-histochemistry. DAPI and immunofluorescence for DACH1 is shown. Western blot is shown of the cells with an antibody directed to the N-terminal FLAG tag. E) The cellular proliferation rate of C4-2 cells expressing DACH1 or mutant DS was determined by either MTT assay or F) cell counting. Data are mean ±SEM for N=5 throughout.
C4-2 due to the loss of the tumor suppressor PTEN, which is also deleted or inactivated in up to 70% of advanced androgen-independent prostate cancers. DACH1 or the DACH1 ∆DS domain mutant was expressed in the C4-2 cells (Fig. 2D), as evidenced by IHC to the DACH1 protein. Western blot analysis to the N-terminal tag of DACH1 demonstrated similar levels of the exogenous DACH1 or DACH1 ∆DS proteins (Fig. 2D). Expression of DACH1 reduced C4-2 cellular proliferation as assessed by the MTT assay and cell counting (Fig. 2E and F). DACH1 reduced proliferation approximately 50% at 6 days.

Aim 3: Investigate the role of DACH1 in tumor growth in vivo.

IDACH1 expression was reduced in metastatic human prostate cancer. To determine whether endogenous DACH1 regulated the secretion of the cytokine signaling mRNA module identified in human prostate cancer cells in tissue culture, the prostatic epithelium of the bitransgenic mice (Dach1fl/fl probasin Cre) was analyzed. A cytokine array analysis demonstrated increased secretion of CXCL signaling in the Dach1fl/fl Probasin-Cre bitransgenic mice PECs in culture. The increased abundance of IL6 and KC (homolog of human IL8) in Dach1−/− PEC was confirmed by quantitative ELISA (Fig. 3A and B). The abundance of IL6 was increased approximately 1,000-fold (Fig. 3A) and the abundance of KC was also increased by approximately 1,000-fold (Fig. 3B).
6-fold in Dach1−/− versus Dach1 wild-type versus knockout mice show a 3-fold difference in abundance (Fig. 3D and E). The Dach1−/− PEC of the ventral prostate showed an approximately 250% increase in both cellular migratory distance (data not shown) and velocity (Fig. 3C). The addition of media from the Dach1−/− PEC enhanced migration of Dach1+/+ PEC (Fig. 3C, lanes 1 vs. 2) and media from Dach1−/+ PEC reduced migration of Dach1−/− PEC (Fig. 3C, lanes 9 vs. 10). This finding suggested that endogenous Dach1 inhibits the secretion of factors that promote PEC cellular migration (Fig. 3F). The addition of IL6 or CXCLI (KC, murine homolog of IL8) enhanced migration of Dach1−/− PEC. Addition of an immunoneutralizing antibody to IL6 or CXCLI reduced the migration of Dach1+/+ PEC (Fig. 3C).

Aim 4. Analyze the expression of DACH1, Eya1 and Six1 in human prostate tumor samples.

We had previously begun an investigation to determine whether a clinical correlation existed for reduction of DACH1 expression in metastatic prostate cancer. In our previous studies of clinical databases we demonstrated the relative abundance of DACH1 was reduced in prostate cancer compared with benign prostate disease, with significant further reduction in metastatic prostate cancer samples. As we had shown in tissue culture that Dach1 repressed IL-6 and IL-8 we examined the relative abundance of these two parameters in the same prostate cancer sample of individual patients (Fig 4. A,C). We then displayed the data in a 2 dimensional matrix (Fig. 4B,D). Consistent with the model in which DACH1 repressed expression of IL-8 and IL-6 in matched individual samples there was a substantial increase in the quadrant in which low DACH1 expression correlated with high IL-8 or high IL-6 expression (Fig. 4 B,D).

![Figure 4. The relationship between DACH1 and IL-6, IL-8 in metastatic prostate cancer.](image)

Gene expression data for individual patients is linked by green lines shown for (A) IL6 or (C) IL-8 with normalized data shown in 2D grid (B,D)
References

KEY RESEARCH ACCOMPLISHMENTS

- Endogenous Dach1 was shown to be the key restraint for prostate cytokine secretion in normal prostate using Cre excision of Dach1 in transgenic mouse prostate (genetic deletion of Dach1 in the prostate reduced IL-8 and IL-6 by 10,000 fold) (Chen et al. Cancer Res 2015, May).
- Endogenous Dach1 was shown to convey restrain to prostate epithelial cell proliferation in vivo using Ki67 immunostaining
- Expression of Dach1 was shown to block prostate cancer cell proliferation in tissue culture and tumor growth in vivo in both androgen receptor positive and AR negative prostate cancer cell lines.
- DACH1 restrained cytokines and chemokines in prostate cancer cells
- DACH1 restrained prostate cancer cell migration via IL-6 and IL8
- Mutations of DACH1 were identified in human kidney disease, which altered expression of TGFb (Schild et al 2013 below)

CONCLUSION

Summarize the importance and/or implications with respect to medical and/or military significance of the completed research including distinctive contributions, innovations, or changes in practice or behavior that has come about as a result of the project. A brief description of future plans to accomplish the goals and objectives shall also be included.

The current studies identified the molecular mechanisms governing Dach1 post translational modification (acetylation and phosphorylation)
- The current studies showed Dach1 binds and regulates two key proteins governing tumorigenesis (p53, YB-1) and identifies the function interaction domains
- The current studies demonstrated that these interactions between Dach1 and associated proteins (with YB1 and p53) contribute to growth of other cancer (breast and lung).
- The current studies provide important evidence that DACH1 restrains prostate cellular growth in vivo in the whole animals
- The current studies provide important evidence that DACH1 restrains prostate cellular migration and invasion in vivo.
- The current studies provide important evidence that DACH1 restrains prostate cellular migration and invasion in vivo via the production of cytokines (IL-8 and IL-6).
- The current studies provide fundamental new information about the mechanisms restraining IL-8 and IL-6 secretion in the prostate by identifying DACH1 as the key mechanism. IL-8 and IL-6 have been linked to prostate cancer risk and prostate cancer progression however the mechanisms that lead to increased secretion of IL-8 and IL-6 were previously unknown. As we showed DACH1 expression is lost in prostate cancer progression, DACH1 may function in part as a tumor suppressor through restraining cytokine secretion.

Future studies will examine the role of Eya and Six in this regulatory function of DACH1 and to continue the studies with the transgenic mice as originally proposed.
Peer-Reviewed Scientific Journals

Invited Articles

Abstracts
List presentations made during the last year

INVENTIONS, PATENTS AND LICENSES

• Invention disclosure to Thomas Jefferson DACH1 Regulates Stem Cells (TJU Ref: PES_RIC.004)

REPORTABLE OUTCOMES

1. Research product: Bi transgenic mice which delete DACH1 in prostate epithelial cells (Probasin-Cre/Dach1 fl/fl)
2. Prostate cancer cell lines were generated (PC3-DACH1, PC3-DACH1 ∆DS)
4. Scientific discovery that: Dach1 represses prostate tumorigenesis promoted by Ras, c-Myc and c-Src.
5. Scientific discovery that: We identified the key molecular targets regulated by DACH1 in vitro and in vivo and showed using ChIP analysis the binding of DACH1 to key target genes.
6. Scientific discovery that: We used genetic deletion studies to identify the key function for DACH1 in restraining cytokine secretion. IL-8 and IL-6 are the key cytokines demonstrated to promote prostate cancer growth and we showed that DACH1 is the key endogenous mechanism governing restraint of prostate epithelial cell cytokine secretion (IL-8 and IL-6).

OTHER ACHIEVEMENTS

1. Bi transgenic mice were generated Probasin-Cre/Dach1 fl/fl
2. Prostate cancer cell lines were generated (PC3-DACH1, PC3- DACH1 ∆DS)
3. Submitted RO1 grant application

NIH R01 CA 086072-12 (PESTELL)
03/01/00 - 08/28/14
$386,250/yr (Total $1,931,250)
Androgen Receptor Function in Prostate Cancer
Specific Aim: To determine the role of cyclin D1 and androgen receptor mutations in prostate cancer cellular growth.

REFERENCES PUBLISHED

•