The human microbiome comprises the communities of microbes carried in and on the body in health and disease, including trillions of bacteria, viruses, archaea, and fungi per individual. These microbiota, which defend us against pathogens and help digest our food, are personalized among individuals. The specific microbes present at any one habitat within an individual become relatively stable during the first several years of life, but change in as-yet-uncharacterized ways as a host is exposed to new environments, diets, locations, and social contacts. The microbial composition of a given individual might thus be linked to his genetic background or early life history, for example.
Report Title
Final Report: The Human Microbiome as a Multipurpose Biomarker

ABSTRACT
The human microbiome comprises the communities of microbes carried in and on the body in health and disease, including trillions of bacteria, viruses, archaea, and fungi per individual. These microbiota, which defend us against pathogens and help digest our food, are personalized among individuals. The specific microbes present at any one habitat within an individual become relatively stable during the first several years of life, but change in as-yet-uncharacterized ways as a host is exposed to new environments, diets, locations, and social contacts. The microbial composition of a given individual might thus be linked to his genetic background or early life history, for example, while the metabolism of those microbes would reveal more about his recent medical history or diet. The goals of this project are thus 1) to assess the structure of any microbial habitat and its potential for identifiability (including dietary history, medical history, biometric, demographics or environmental exposures) and 2) to determine the relationships and interactions between the microbial communities within a host.
Enter List of papers submitted or published that acknowledge ARO support from the start of the project to the date of this printing. List the papers, including journal references, in the following categories:

(a) Papers published in peer-reviewed journals (N/A for none)

<table>
<thead>
<tr>
<th>Received</th>
<th>Paper</th>
</tr>
</thead>
</table>

TOTAL: 6
Number of Papers published in peer-reviewed journals:

<table>
<thead>
<tr>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.00</td>
</tr>
<tr>
<td>17.00</td>
</tr>
<tr>
<td>10.00</td>
</tr>
<tr>
<td>11.00</td>
</tr>
<tr>
<td>12.00</td>
</tr>
<tr>
<td>13.00</td>
</tr>
<tr>
<td>14.00</td>
</tr>
<tr>
<td>15.00</td>
</tr>
<tr>
<td>16.00</td>
</tr>
<tr>
<td>20/11/2015</td>
</tr>
</tbody>
</table>

(b) Papers published in non-peer-reviewed journals (N/A for none)

<table>
<thead>
<tr>
<th>Received</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/19/2015 15.00</td>
<td>Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D, Huttenhower C, Izard J. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples, Genome Biology, (06 2012): 42. doi:</td>
</tr>
</tbody>
</table>
Nature, (06 2012): 207. doi:

Number of Papers published in non peer-reviewed journals:

(c) Presentations

Number of Presentations: 35.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

<table>
<thead>
<tr>
<th>Received</th>
<th>Paper</th>
</tr>
</thead>
</table>

TOTAL:

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts):

<table>
<thead>
<tr>
<th>Received</th>
<th>Paper</th>
</tr>
</thead>
</table>

TOTAL:

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):

(d) **Manuscripts**

<table>
<thead>
<tr>
<th>Received</th>
<th>Paper</th>
</tr>
</thead>
</table>

TOTAL: 1

Number of Manuscripts:

Books

Received Book

TOTAL:

Received Book Chapter

TOTAL:

Patents Submitted

Patents Awarded

Awards
1- ISCB Overton Prize (Harvard School of Public Health, 2015)
2- eLife Sponsored Presentation Series early career award (Harvard School of Public Health, 2014)
3- Presidential Early Career Award for Scientists and Engineers (Harvard School of Public Health, 2012)

Graduate Students

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>Discipline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emma Schwager</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Tiffany Hsu</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>FTE Equivalent:</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Total Number:</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Names of Post Doctorates

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>FTE Equivalent:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eric Franzosa</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Total Number:</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Sub Contractors (DD882)

Names of Faculty Supported

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>National Academy Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curtis Huttenhower</td>
<td>0.08</td>
<td></td>
</tr>
</tbody>
</table>

FTE Equivalent: 0.08
Total Number: 1

Names of Under Graduate students supported

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
</tr>
</thead>
</table>

FTE Equivalent:
Total Number:

Student Metrics

This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period: 0.00

The number of undergraduates funded by this agreement who graduated during this period with a degree in science, mathematics, engineering, or technology fields:...... 0.00

The number of undergraduates funded by your agreement who graduated during this period and will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:...... 0.00

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):...... 0.00

Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for Education, Research and Engineering:...... 0.00

The number of undergraduates funded by your agreement who graduated during this period and intend to work for the Department of Defense 0.00

The number of undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: 0.00

Names of Personnel receiving masters degrees

<table>
<thead>
<tr>
<th>NAME</th>
<th>Total Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oh, Keunyoung (Kevin)</td>
<td>1</td>
</tr>
</tbody>
</table>

Names of personnel receiving PHDs

<table>
<thead>
<tr>
<th>NAME</th>
<th>Total Number:</th>
</tr>
</thead>
</table>

Names of other research staff

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>Total Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afrah Shafquat</td>
<td>0.33</td>
<td>2</td>
</tr>
<tr>
<td>George Weingart</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>FTE Equivalent:</td>
<td>0.64</td>
<td></td>
</tr>
</tbody>
</table>

Sub Contractors (DD882)
Inventions (DD882)

Scientific Progress

See Attachment

Technology Transfer

CCREPE's implementation as an R/Bioconductor package (see http://huttenhower.sph.harvard.edu/ccrepe) has been carried out in collaboration with Weingart Informatics, an independent software development contractor in San Francisco. This has allowed academic development and validation of the algorithm to be carried out efficiently by students and postdoctoral fellows, while Dr. Weingart has provided industry-quality code, unit testing, packaging, documentation, and distribution. He has begun work on a broader software platform for human microbiome analysis, the bioBakery virtual environment, which may be a target for future industry partnership in the lab.
Our final technical report for this project includes 1) a method for uniquely identifying human individuals by way of their personal microbial communities using metagenomic codes, 2) a novel Bayesian method (CCREPE) to identify robust correlation and co-exclusion patterns in compositional data, 3) a generative Bayesian model, SparseDOSSA, for generating microbial community data with known covariation and association patterns, and 4) the PICRUSt method and software for metagenome inference from taxonomic profiles using ancestral state reconstruction. Open-source software implementations for all four main results are available at http://huttenhower.sph.harvard.edu/idability, http://huttenhower.sph.harvard.edu/ccrepe, http://huttenhower.sph.harvard.edu/sparsedossa, and http://huttenhower.sph.harvard.edu/picrust, respectively, with additional material at http://huttenhower.sph.harvard.edu/galaxy and http://bitbucket.org/biobakery. Our final publication list includes 14 manuscripts (PMIDs 25964341, 24629344, 23013615, 26157614, 25303518, 22699609, 22699610, 26418763, 25587358, 22904687, 22698087, 24843156, 23975157, and 22807668) and two currently in preparation (CCREPE and SparseDOSSA).

Problem Statement
The human microbiome comprises the communities of microbes carried in and on the body in health and disease, including trillions of bacteria, viruses, archaea, and fungi per individual. These microbiota, which defend us against pathogens and help digest our food, are personalized among individuals. The specific microbes present at any one habitat within an individual become relatively stable during the first several years of life, but change in as-yet-uncharacterized ways as a host is exposed to new environments, diets, locations, and social contacts. The microbial composition of a given individual might thus be linked to his genetic background or early life history, for example, while the metabolism of those microbes would reveal more about his recent medical history or diet. The goals of this project are thus 1) to assess the structure of any microbial habitat and its potential for identifiability (including dietary history, medical history, biometric, demographics or environmental exposures) and 2) to determine the relationships and interactions between the microbial communities within a host.

Results Summary
Identifying personal microbiomes using metagenomic codes

Large-scale investigations of the human microbiome have revealed great variability in the body site-specific taxonomic composition of organisms across healthy individuals. However, it was not previously known whether this variability is sufficiently nonrandom to uniquely identify individuals within a population, nor whether it is also sufficiently stable to continue uniquely identifying individuals over long time periods (weeks, months, or years). We answered these questions by developing a hitting set-based coding algorithm, which defined body site-specific metagenomic codes: sets of microbial taxa or genes prioritized to uniquely and stably identify individuals. Codes capturing strain variation in clade-specific marker genes were able to distinguish among hundreds of individuals at an initial sampling time point. In comparisons with follow-up samples collected 30-300 days later, ~30% of individuals could still be uniquely pinpointed using metagenomic codes from a typical body site.

Codes based on the gut microbiome were exceptionally stable and pinpointed >80% of individuals. The failure of a code to match its owner at a later time point was largely explained...
by the loss of specific microbial strains (at current limits of detection) and was only weakly associated with the length of the sampling interval. In addition to highlighting patterns of temporal variation in the ecology of the human microbiome, this work demonstrated the feasibility of microbiome-based identifiability for the first time, a result with important ethical implications for microbiome study design.

In order to construct metagenomic codes that are stable over time, we first identified properties of individual microbial features (OTUs, genes, and genomic regions) that lead to their repeated detection over multiple sampling time points (Fig. 1). Features with low prevalence in the population tended to disappear with the passage of time, making them poor choices for maximizing code stability; abundant features were more likely to be stable over time. Trends in prevalence, abundance, and persistence were conserved across different body sites and across features assayed by different technologies, and they were also consistent regardless of whether features were defined as 16S rRNA gene-based OTUs, metagenomic marker gene sequences, or one-kilobase genomic window abundances (genomic regions).

To construct codes for each sample and feature type, we divided all features into three categories within each individual: (i) confidently detected, (ii) confidently absent, and (iii) ambiguous. These categories were defined by a pair of cutoffs that varied by feature type. For example, an OTU was considered confidently detected if its relative abundance met or exceeded 0.001 (0.1%), confidently absent if its relative abundance was below 10-5 (0.001%), and ambiguous otherwise. We defined the features comprising the metagenomic code of an individual to have two critical properties: (i) all code features were confidently detected in that individual at the first sampling time point, and (ii) at least one code feature was confidently absent in each other individual in the population (thus making their ensemble unique to the encoded individual).

To construct a code for an individual X, we first ranked the confidently-detected features of X in order of increasing “abundance gap,” which we defined as the abundance of the feature in X minus its next-highest observed abundance in the population. This ranking scheme prioritized the inclusion of abundant features, which were initially determined to be most stable, and penalized the inclusion of features ambiguously detected in other individuals, which would be more likely
to produce false positives at future time points. We then added features from this ranked list to a putative code, at each step “flagging” individuals in the population for whom the next-highest ranked feature was confidently absent (features that would fail to flag new individuals contribute no new information and are skipped). The algorithm terminates when (i) all other individuals have been flagged (i.e. the putative code contains at least one feature that is confidently absent in each other individual, thus making it a unique code) or (ii) we run out of ranked features before flagging all other individuals, in which case we have failed to construct a code for X. Optionally, after assembling a unique code (case i), we can continue adding features to the code until a desired minimum size is reached (7 features in our evaluations). A minimum code size adds robustness to noise and, effectively, error correction to avoid false positives.

Our coding algorithm was able to construct unique codes for almost all individuals by focusing on metagenomically-unique marker genes. These codes were stable in roughly half of the population between the first and second sampling time points (True Positive Rate, TPR = 50%), with relatively low false positive rates. The isolated stool body site was an exception, having a TPR closer to 80%. False negatives were due largely to the disappearance of one or more of the microbial taxa contributing metagenomic features to the code. Notably, the likelihood of a false negative did not appear to depend sensitively on the time sampling interval, as a few weeks to nearly a year were roughly equivalent. Codes based on gene-level features consistently outperformed OTU-based codes. Relative to gene-level features, OTU-level codes not only depended upon more taxa, but also required the inclusion of less-abundant taxa (which tended to be less stable) to achieve uniqueness. On the other hand, gene-level codes were able to incorporate multiple distinguishing features from the most abundant taxa of an individual, and were therefore more robust to temporal variation. Comparing metagenomic codes to a validation cohort of previously-unseen subjects suggested that codes would tend to remain unique in populations of order-of-magnitude hundreds of individuals.

The results of this study were published in PNAS (PMID 25964341) in collaboration with Brendan Bohannon (University of Oregon) and Katherine Lemon (Forsyth Institute). It was presented at the 2015 Dana-Farber Cancer Institute Biostatistics and Computational Biology seminar series, the 2015 BioC Bioconductor annual meeting, the 2015 Canadian Institute for Health Research International Speaker seminar series, the 2015 Simons Foundation Symposium on Genomics in Single Cells and Microbiomes, the 2015 Harvard CATALYST Understanding Biomarker Science workshop, the 2015 Channing Division of Network Medicine Theodore L. Badger Lecture series, the 2014 University of Oregon Institute for Theoretical Sciences seminar series, the 2014 Statistical and Applied Mathematical Sciences Institute Bioinformatics Opening Workshop, the 2014 META Center for Systems Biology symposium, the 2014 Dalhousie University Centre for Comparative Genomics and Evolutionary Bioinformatics and Microbiome User Group, the 2014 Keystone Symposium on Exploiting and Understanding Chemical Biotransformations in the Human Microbiome, and the 2014 Intelligent Systems for Molecular Biology (ISMB) conference. The project was led by research associate Dr. Éric Franzosa.

Co-occurrence and Co-exclusion Patterns in the Human Microbiome

CCREPE (Compositionality Corrected by REnormalization and PErmutation) has evolved since its inception during this project from an ad hoc approach to a posteriori investigation of associations in microbial community data (initially named ReBoot) to a generalizable Bayesian method for any composition data. Briefly, typical correlation measures such as Pearson or Spearman correlation produce false positives (referred to as spurious correlations) when applied
to compositional data, i.e., measurements in which all values sum to a fixed constant. Proportions, in which fractions sum to 1 or 100%, are a common example; these arise frequently in ecology, since for example microbial taxa are only measurable as counts or as fractions of total community composition. CCREPE corrects the nominal statistical significance of putative correlations in such data in order to report only the significance of association above and beyond that expected due to compositionality alone.

CCREPE’s Bayesian model (Fig. 2) assumes that a single composition, \(C_i = (C_{i,1}, ..., C_{i,p})^T \), is generated by the normalization of a basis, \(X_i = (X_{i,1}, ..., X_{i,p})^T \). That is,

\[
C_i = \frac{X_i}{\sum_j X_{i,j}}
\]

We also assume that samples are i.i.d., such that \(X_i \sim F_X(\cdot) \) and therefore \(C_i \sim F_C(\cdot) \). Note that \(F_C(\cdot) \) is determined from \(F_X(\cdot) \) by the transformation from \(X_i \) to \(C_i \) via normalization. The covariance and correlation structures of the basis are denoted by \(\Sigma_X = [\sigma_{X,j,j'}] \) and \(R_X = [\rho_{X,j,j'}] \), respectively, and the covariance and correlation of the composition by \(\Sigma_C = [\sigma_{C,j,j'}] \) and \(R_C = [\rho_{C,j,j'}] \). Thus, in order to determine which compositional correlations are significant in the basis, we assess the null hypothesis that \(\rho_{X,j,j'} = 0 \) (or, equivalently, \(\sigma_{C,j,j'} = 0 \)) for features \(j \) and \(j' \), remembering that in real data only the composition and not the basis is observed.

Given that \(X \sim F_X(\cdot) \) with covariance \(\Sigma_X = [\sigma_{X,j,j'}] \) and expectation \(\mu_X \), a Taylor expansion around \(\mu_X \) yields the approximate covariance for \(g(X) = \frac{X}{\Sigma_j X_j} \), denoted by \(\Sigma_C = [\sigma_{C,j,j'}] \).

Defining \(\omega = \left(\frac{\mu_{X,1}}{\Sigma_j \mu_{X,j}}, ..., \frac{\mu_{X,p}}{\Sigma_j \mu_{X,j}} \right) \), this gives:

\[
\Sigma_C = \left(\frac{1}{\sum_j \mu_{X,j}} \right)^2 (I - \omega \omega^T) \Sigma (I - \omega \omega^T)^T
\]

allowing us to predict the behavior of the compositional correlation from the basis parameters that generate it. In particular, for two features in the case where \(\sigma_{X,j,j'} = 0 \) and \(j \neq j' \), then:

\[
\sigma_{C,j,j'} = \left(\frac{1}{\sum_j \mu_{X,j}} \right)^2 \left[\frac{\mu_{X,j} \mu_{X,j'}}{\sum_j \mu_{X,j}^2} \sum_j \sigma_{X,j,j} - \frac{\mu_{X,j}}{\sum_j \mu_{X,j}} \frac{\mu_{X,j}}{\sum_j \mu_{X,j}} \sigma_{X,j,j'} - \frac{\mu_{X,j'}}{\sum_j \mu_{X,j}} \frac{\mu_{X,j'}}{\sum_j \mu_{X,j}} \sigma_{X,j,j'} \right]
\]

Thus the covariance \(\sigma_{C,j,j'} \) will be large and positive if both features take up a large proportion of the composition but their variability is small relative to the total variability in the basis. Conversely, covariance will be large and negative if both features take up a large portion of the

![Figure 2: Plate diagram for the CCREPE Bayesian model of significant associations in compositional data. Unobserved correlations \(\Sigma \) in an underlying basis \(R \) are generated from mean \(\mu \) and standard deviation \(\sigma \), yielding a distribution of true abundances that is assumed to be lognormal (LN). Only the normalized compositions \(C \) are observed.](image)
composition and a large portion of the total variability, as this arrangement reduces the composition (approximately) to one of two parts. Finally, compositional covariance will also be large and negative if one feature takes up a small portion of the composition with large variability but the other takes up a large portion with small variability, because the feature with large variability forces the other to move in the opposite direction after normalization (Fig. 3).

![Figure 3: Deriving conditions under which spurious correlations emerge.](image)

Three examples that capture the causes of spurious correlation (A) in compositional data between (B) two features of high abundance and high proportional variance, (C) two features of high abundance and low proportional variance, and (D) one feature of high abundance, one low, and high proportional variance. Either high mean μ or standard deviation σ is sufficient, the latter surprisingly so even in cases where feature means are low.

Over the course of developing CCREPE, we also derived a novel ecological similarity measure to use with it, the NC- or N-dimensional Checkerboard score. The NC-score extends the checkerboard score from binary presence-absence variables to ordinal values by re-defining patterns of co-variation and co-exclusion as follows:

1. We define a co-variation pattern as a 2x2 submatrix of the form
 $$\begin{bmatrix} a & b \\ c & d \end{bmatrix} | a < b, c < d \},$$
 or its converse
 $$\begin{bmatrix} a & b \\ c & d \end{bmatrix} | a > b, c > d \},$$
 where $a, b, c, d \in [0, n-1]$. Biologically, this pattern describes two microbes that co-vary in concert between two samples, i.e. are positively associated.

2. Similarly, we define a co-exclusion pattern as a 2x2 submatrix of the form
 $$\begin{bmatrix} a & b \\ c & d \end{bmatrix} | a > b, a > c, d > c, d > b \},$$
 or its converse
 $$\begin{bmatrix} a & b \\ c & d \end{bmatrix} | a < b, a < c, d < c, d < b \},$$
 where $a, b, c, d \in [0, n-1]$. Biologically, this pattern describes two microbes with different relative abundances between two samples, i.e. negatively associated. In the special binary case of $n = 2$, these two patterns collapse to the standard checkerboard unit. Otherwise, NC-score is equivalent to Kendall’s tau calculated on “binned” abundances rather than ranks, which we perform by default using thresholds of “zero” (relative abundance = 0), “very low” (> 0, < 1E-4), “low” (> 1E-4, < .01), “medium” (> .01, < .25), and “high” (> .25, < 1).
Finally, we have applied CCREPE to two relevant microbial datasets, approximately 5,500 16S rRNA gene taxonomic profiles derived from the Human Microbiome Project as published in 2012, and to approximately 2,000 metagenomic species-level taxonomic profiles derived from newly sequenced metagenomes spanning the same subjects analyzed using MetaPhlAn2. The former, published as PMID 22807668, included a global network of 3,005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout the human microbiome. This network revealed strong niche specialization, with most microbial associations occurring within body sites and a number of accompanying inter-body site relationships. Microbial communities within the oropharynx grouped into three distinct habitats, which themselves showed no direct influence on the composition of the gut microbiota. Conversely, niches such as the vagina demonstrated little to no decomposition into region-specific interactions. Diverse mechanisms underlay individual interactions, with some such as the co-exclusion of Porphyromonaceae family members and Streptococcus in the subgingival plaque supported by known biochemical dependencies. These differences varied among broad phylogenetic groups as well, with the Bacilli and Fusobacteria, for example, both enriched for exclusion of taxa from other clades. Comparing phylogenetic versus functional similarities among bacteria, dominant commensal taxa (such as Prevotellaceae and Bacteroides in the gut) often competed, while potential pathogens (e.g. Treponema and Prevotella in the dental plaque) are more likely to co-occur in complementary niches.

With the latest Bayesian model for CCREPE, we assessed species-level profiles from ~2,000 metagenomes (Fig. 4). This yielded a much smaller network of 104 within- and between-site associations, almost all within-site, spanning 115 site-specific clades. Overall, these recapitulated the basic characteristics of earlier 16S-based networks, including little between-site interaction and few "hub" microbes (scale-freeness). We also observed a cluster of co-variation in stool, which contained microbes known to be involved in the health of the gut microbiome, including Escherichia coli and several clades IV and XIVa Clostridia. These new methods will allow the derivation of significant co-variation networks from high-dimensional compositional data, particularly the detection of species and, eventually, sub-species level ecological interactions within the human microbiome and other microbial communities.

Figure 4: Species-level microbial associations significant by CCREPE in ~2,000 HMP1-II metagenomes. Since publication of approximately 700 body-wide metagenomes during the Human Microbiome Project, an additional ~1,300 metagenomes have been sequenced spanning 100 individuals at three time points each. CCREPE was run on the residuals of a random effects model accounting for repeated measures to identify significant associations between taxa within and across body sites.

The manuscript describing CCREPE is currently in preparation by lead Ph.D. student Emma Schwager, and during the course of the project period it has included contributions from software developer Dr. George Weingart and M.S. student Craig Bielski. CCREPE has been presented at the 2014 Intelligent Systems for Molecular Biology (ISMB) conference, the 2014 Program in Quantitative Genomics conference, the 2014 Statistical and Applied Mathematical Sciences
A Hierarchical Probabilistic Model of Microbial Community Structure: Sparse Data Observations for the Simulation of Synthetic Abundances (sparseDOSSA)

While many statistical methods have been developed to facilitate analysis of metagenomic data, to date there have been few efforts to benchmark these methods in an accurate and systematic manner - a critical challenge to the developers of these methods as well as the methods’ end-users. To address this and to provide a generalizable model of microbial community profiles, we developed SparseDOSSA (Sparse Data Observations for the Simulation of Synthetic Abundances): a hierarchical model of microbial ecological population structure. SparseDOSSA is capable of simulating realistic metagenomic data with known correlation structures and thus provides a gold standard to enable benchmarking of statistical metagenomics methods.

SparseDOSSA’s model captures the marginal distribution of each microbial feature as a truncated, zero-inflated log-normal distribution, with parameters derived in turn from a parent log-normal distribution (Fig. 5). The model can be effectively fit to reference microbial datasets in order to parameterize their microbes and communities, or to simulate synthetic datasets of similar population structure (including the optional addition of known correlation structures). We demonstrated SparseDOSSA’s utility in three applications: 1) accurately modeling microbial community diversity profiles using a small number of fit parameters trained on baseline (healthy) human microbial communities and communities from inflammatory bowel disease (IBD) patients; 2) generating synthetic communities with simulated environmental and ecological correlation structures; and 3) recapitulating the results of an earlier clustering analysis describing microbial response to diet type in mice. These applications comprise the most common downstream analyses applied in metagenomic sequencing experiments, and thus demonstrate SparseDOSSA’s utility as a general-purpose aid for evaluating statistical methods in microbial community analysis.
We validated SparseDOSSA’s ability to accurately fit and simulate microbial communities with ecological patterns recapitulating those in a variety of real community types, by comparing the distribution of microbespecific means and beta-diversity profile in simulated data to the real data that are used to train the model. This ultimately allows us and others to quantitatively benchmark analysis methods for microbiome features, their ecological properties, and their associations with environment and host phenotypes. We first assessed the degree to which SparseDOSSA’s fitted two-layer model captured the marginal variation of microbial community taxonomic profiling data across all microbes. To that end, we first compared the trend of rank average abundance of all microbes in two real datasets (Morgan Genome Bio 2012, 250 samples and 158 genera, and HMP Nature 2012, 16S posterior fornix subset) to those of simulated datasets generated by the model fitted on these real datasets. The fitting was repeated using both the naïve and fully Bayesian fitting procedures, with simulated datasets generated based on SparseDOSSA’s two-layer model setting parameters to be the estimates from the fitting step and with the same dimension as the real dataset. This verified the model’s ability to capture the variation pattern of marginal microbial community profiles and the validity of our naïve fitting method as a fast approximation of the full Bayesian fitting method (Fig. 6).

Figure 5: SparseDOSSA provides a generative hierarchical Bayesian model for microbial community taxonomic profiles. This comprises a two-layer structure in which each layer is controlled by a lognormal distribution. Individual microbial features (second layer) are assumed to be drawn from a lognormal distribution with marginal mean \(\mu_i \) and standard deviation \(\sigma_i \). In combination with feature-specific sparsity (i.e. expected fraction of zeros) \(p_i \), \(Y_{i,j} \) is generated as the number of reads of feature \(i \) in sample \(j \). To generate the overall distribution of the population of microbial features, \(\beta, \beta' \) are parameters connecting the marginal mean parameters to the marginal standard deviation parameters and marginal sparsities, respectively, and \(\mu_0, \sigma_0 \) are the mean and standard deviation of the overall lognormal distribution (first layer). Rectangles denote replication of the model within the rectangle, i.e. plate structure, with the number of replication is labeled at the bottom-right corner.

Figure 6: The SparseDOSSA model accurately captures feature mean distributions and beta diversities of microbial communities. A) Rank abundances of log-transformed feature specific means for data from Morgan et al
and from SparseDOSSA simulated data based on this, using naive estimates and the pointwise 95% posterior interval derived from fully Bayesian fitting of the same model. B) MDS analysis on Bray-Curtis distances of taxonomic profiles from 190 vaginal microbial communities in the Human Microbiome Project split into a training subset (95 samples) for model fitting, a validation set (95 samples), and 95 simulated samples from the resulting SparseDOSSA model (all containing 172 microbial features).

When used as a model for simulating realistic microbial community data, one major function of SparseDOSSA is to impose a known "phenotypic response" in synthetic microbial features. This is done by capturing the overall diversity pattern of a community and subsequently also inducing artificial correlations between features and sample properties such as environment or phenotype. We verified the model’s ability to include detectable categorical feature-metadata associations in its simulated output by artificially associating nine randomly chosen features and a binary environmental metadata with 250 samples and the Morgan et al dataset as template. All synthetic associations were detected among the 17 features of greatest effect size, with no false negatives. Interestingly, several apparent false positives (i.e. features that are spuriously differentially abundant) occur at this level of significance, caused not by the SparseDOSSA model but by the known effects of compositionality (i.e. relative abundance normalization) in ecological data. Simulated associations with a synthetic continuous metadata were similarly successful, including the model's ability to correctly capture sparsity patterns in microbial features (Fig. 7).

Figure 7: Simulating categorical or continuously valued population variability among microbial community samples. A) Differences of mean relative abundances between two classes of a simulated binary metadata based on Morgan et al, along with the empirical inter-quartile range of all features as contrasted between metadata levels. B) Correlation of one feature into which an association to a continuously variable metadata has been spiked (Y axis) with that metadata’s value (X axis).

The SparseDOSSA manuscript is currently under review as written by project lead Ph.D. student Boyu Ren and research scientist Dr. Eric Franzosa, with contributions over the course of the project from undergraduate research assistants Joseph Moon and Yiren Lu. SparseDOSSA has been presented at the 2015 Dana-Farber Cancer Institute Biostatistics and Computational Biology seminar series and at the 2014 Statistical and Applied Mathematical Sciences Institute Program on Beyond Bioinformatics.
Inferring microbial community metagenomes from marker gene sequences

Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community’s functional capabilities. We developed PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information alone, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Phylogeny and function are thus sufficiently linked that this ‘predictive metagenomic’ approach has begun to provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available (Fig. 8).

Figure 8: The PICRUSt workflow. PICRUSt is composed of two high-level workflows: gene content inference (top) and metagenome inference (bottom). Beginning with a reference phylogeny and a gene content table, gene content inference predicts genes for each taxon with unknown content, including marker gene copy. Metagenome inference takes a taxonomic profile, where taxa correspond to tips in the reference tree, as well as the copy number of the marker gene in each taxon and its gene content and outputs a metagenome table on a per-sample basis.

We developed PICRUSt to predict the functional composition of a microbial community’s metagenome from its 16S profile. This is a two-step process. In the initial ‘gene content inference’ step, gene content is precomputed for each organism in a reference phylogenetic tree. This reconstructs a table of predicted gene family abundances for each organism (tip) in the 16S-based phylogeny. Because this step is independent of any particular microbial community sample, it is pre-calculated only once. The subsequent ‘metagenome inference’ step combines the resulting gene content predictions for all microbial taxa with the relative abundance of 16S rRNA genes in one or more microbial community samples, corrected for expected 16S rRNA gene copy number, to generate the expected abundances of gene families in the entire community.

The value of PICRUSt depends on the accuracy of its predicted metagenomes from marker gene samples and the corresponding ability to recapitulate findings from metagenomic studies. The performance of PICRUSt was first evaluated using the set of 530 HMP samples that were analyzed using both 16S rRNA gene and shotgun metagenome sequencing. We treated HMP metagenomic samples as a reference and calculating the correlation of PICRUSt predictions from paired 16S samples across 6,885 resulting orthologous groups. Predictions had high agreement with metagenome sample abundances across all body sites (Spearman \(r = 0.82, p<0.001 \)). As a targeted example, we also tested PICRUSt’s accuracy in specifically predicting the abundance of
glycosaminoglycan (GAG) degradation functions, which are more abundant in the gut than elsewhere in the body. Using the same differential enrichment analysis on both PICRUSt and metagenomic data yielded identical rankings across body sites and very similar quantitative results, suggesting that PICRUSt predictions can be used to infer biologically meaningful differences in functional abundance from 16S surveys even in the absence of comprehensive metagenomic sequencing.

Next, we then evaluated the prediction accuracy of PICRUSt in metagenomic samples from a broader range of habitats including mammalian guts, soils from diverse geographic locations, and a phylogenetically complex hypersaline mat community (Fig. 9). These habitats represent more challenging validations than the human microbiome, as they have not generally been targeted for intensive reference genome sequencing. Because PICRUSt benefits from reference genomes that are phylogenetically similar to those represented in a community, this evaluation allowed us to quantify the impact of increasing dissimilarity between reference genomes and the metagenome.

![Figure 9: PICRUSt accuracy across various environmental microbiomes.](image)

To characterize this effect, we developed the Nearest Sequenced Taxon Index (NSTI) to quantify the availability of nearby genome representatives for each microbiome sample. NSTI is the sum of phylogenetic distances for each organism in the taxonomic profile to its nearest sequenced reference genome, measured in terms of substitutions per site in the marker (i.e. 16S rRNA) gene and weighted by the frequency of that organism in the profile. As expected, NSTI values were greatest for the phylogenetically diverse hypersaline mat microbiome (mean NSTI=0.23 +/- 0.07 s.d.), least for the well-covered HMP samples (mean NSTI=0.03 +/- 0.02 s.d.), mid-range for the soils (mean NSTI=0.17 +/- 0.02 s.d.) and varied for the mammals (mean NSTI=0.14 +/- 0.06 s.d.). Also as expected, the accuracy of PICRUSt in general decreased with increasing NSTI across all samples (Spearman r=-0.4, p<0.001) and within each microbiome type (Spearman r=-0.25 to -0.82, p<0.05). For a subset of mammal gut samples (NSTI<0.05) and all of the soil samples that we tested, PICRUSt produced accurate metagenome predictions (Spearman r=0.72 and 0.81, respectively, both p<0.001). Both the mammal and hypersaline metagenomes were shallowly sequenced at a depth expected to be insufficient to fully sample the underlying community’s genomic composition, thus likely causing the accuracy of PICRUSt to appear artificially lower for these communities. Although the lower accuracy on the hypersaline
microbial mats community (Spearman r =0.25, p<0.001) confirms that PICRUSt must be applied with caution to the most novel and diverse communities, the ability to calculate NSTI values within PICRUSt from 16S data allows users to determine whether their samples are tractable for PICRUSt prediction prior to running an analysis. Moreover, the evaluation results verify that PICRUSt provides useful functional predictions for a broad range of environments beyond the well-studied human microbiome.

PICRUSt was published in Nature Biotechnology (PMID 23975157) in 2013 and has been cited approximately 150 times since then, thanks to lead authors postdoctoral fellows Drs. Morgan Langille and Jesse Zaneveld, with contributions over the course of the project from Ph.D. student Joshua Reyes and collaborators Drs. Rob Knight (UCSD) and Rob Beiko (Dalhousie). It has been presented in a wide variety of venues including:

• "High-precision Functional Profiling of Microbial Communities and the Human Microbiome." 41st Annual Northeast Bioengineering Conference. Albany, NY, 2015
• "A Tour of the bioBakery: Computational Tools for Microbial Community Analysis." Broad Institute Medical and Population Genetics seminar. Cambridge, MA, 2015 (presented by Eric Franzosa)
• "The microbiome in IBD and analysis methods for microbial communities." International Inflammatory Bowel Disease Genetics Consortium meeting. Barcelona, Spain, 2015
• "Metagenomics, metatranscriptomics, and multi’omic integration." Massachusetts General Hospital Center for the Study of Inflammatory Bowel Disease research symposium. Boston, MA, 2014
• "High-precision methods for metagenomic and metatranscriptomic profiling." New York University Medical School seminar. New York, NY, 2014
- "Computational Approaches for the Human Microbiome in Health and Disease," 12th Biennial Congress of the Anaerobe Society of the Americas. Chicago, IL, 2014
- "Identifiability of the Human Microbiome," Dalhousie University Centre for Comparative Genomics and Evolutionary Bioinformatics and Microbiome User Group. Halifax, Canada, 2014
- "Bug bytes: bioinformatics for the human microbiome in health and disease," University of Michigan Molecular and Clinical Epidemiology of Infectious Diseases (MAC-EPID) symposium. Ann Arbor, MI, 2013
- "High-precision functional profiling of metagenomes and metatranscriptomes," Enterics Research Investigational Network Cooperative Research Center meeting. Traverse City, MI, 2013