AD NUMBER

AD092462

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; 30 JUN 1955. Other requests shall be referred to Office of Naval Research, Arlington, VA 22203.

AUTHORITY

ST-A per ONR ltr, 26 Oct 1977

THIS PAGE IS UNCLASSIFIED
FINAL REPORT
ISOCHROMAN CHEMISTRY
Submitted 30 June 1955
NR 122-013
Contract NONR 06000
Initiated 25 May 1950
Termination 30 September 1954
Principal Investigator R. D. Sprenger
Contractor College of Puget Sound
The project "Isochroman Chemistry" has involved the study of new methods of synthesis and the reactions of isochroman (I) and selectively substituted isochroman.

Citrinin (II), an antibiotic mold metabolic product may be considered a substituted and oxidized isochroman and a considerable number of model compounds structurally related to citrinin have been prepared and biologically evaluated.

ACCOMPLISHMENTS AND PRESENT STATUS OF WORK

Two previously unreported methods of synthesis for isochromans have been developed and some thirty substituted isochromans have been prepared and characterized. Of the model compounds of citrinin prepared, some have shown biological activity, but none appears to show sufficient promise for a potential medicinal agent.

At the time of the expiration of the contract, two model compounds, 6,8-dihydroxyisochroman and 1-carboxyisochroman remain to be biologically tested. The structure of one of the bromo substituted isochromans has yet to be determined.

No para-methylene quinoid structures have been realized as yet altho a serious effort has been made to synthesize 6-aminoisochroman as a possible precursor.
Thus far no attempted synthesis has been successful but efforts are continuing with the hopes of studying representative methylene quinoids.

Although a considerable number of interesting avenues of related researches have been uncovered, it is felt that the basic objectives of the Project have been realized.
PERSONNEL

R. D. Sprenger: Principal Investigator Sept. 1950 - Sept. 1954

GRADUATE STUDENTS

<table>
<thead>
<tr>
<th>Name</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. L. Bean</td>
<td>Sept. 1950 - June 1951</td>
</tr>
<tr>
<td>J. L. Wietz</td>
<td>Sept. 1950 - June 1952</td>
</tr>
<tr>
<td>Harvey Aft</td>
<td>Sept. 1950 - June 1952</td>
</tr>
<tr>
<td>Frank Hayashi</td>
<td>Sept. 1950 - June 1952</td>
</tr>
<tr>
<td>Richard L. Rose</td>
<td>Sept. 1952 - June 1954</td>
</tr>
<tr>
<td>Richard E. Carlson</td>
<td>Sept. 1952 - June 1954</td>
</tr>
<tr>
<td>Donald K. Burns</td>
<td>Feb. 1954 - June 1955</td>
</tr>
</tbody>
</table>

STUDENT ASSISTANT

<table>
<thead>
<tr>
<th>Name</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philip Funke</td>
<td>June - Aug. 1954</td>
</tr>
</tbody>
</table>
LIST OF REPORTS, MANUSCRIPTS, ETC.

Annual Progress Report 1 Jan 1951 - 31 Dec. 1951
Semi-Annual Progress Report 1 Jan. 1952 - 20 June 1952
Annual Progress Report 1 Jan. 1953 - 31 Dec. 1953
Results of Biological Testing Jan. 1954

GRADUATE THESES

William C. Bean The Chemistry of Isochroman Master's Thesis - June 1951
Harvey Aft The Synthesis of Dihydroxy Substituted Isochromans Master's Thesis - June 1952
John J. Wietz The Synthesis and Characterization of 7 - Carboxy Isochroman Master's Thesis - June 1952
Frank Y. Hayashi The Synthesis and Characterization of Nitro and Amino Isochromans Master's Thesis - June 1952
Donald K. Burns Preparation of 6, 8-Dihydroxy Isochroman Master's Thesis - June 1952

IN PREPARATION

Richard E. Carlson The Synthesis and Characterization of Bromo-isochromans Master's Thesis
PREVIOUSLY UNREPORTED RESEARCH

During the past year, previous and subsequent to the termination date of the contract, particular efforts have been directed to the syntheses of 6,8-dihydroxyisochroman and a further study of the bromination of isochroman.

Altho several previous attempts that had been made to prepare the dihydroxy compound, none was satisfactory.

The compound was finally prepared by the following series of reactions

This apparently simple sequence of reactions was not realized without considerable difficulty. No compound beyond 1,4-dimethoxybenzoyl chloride had been reported and even up to this point, a re-investigation of reaction conditions was necessary in order to get adequate quantities of the starting materials.
Satisfactory characterization though derivatives was possible in all cases except 4,6-dimethoxy-2-(beta-hydroxyethyl)-benzaldehyde. The final product has not yet been completely characterized since this phase of work has just been completed. However, in the formation of bromo derivatives, it resembles the previously characterized 6-hydroxyisochroman. Further, the compound forms a stannic chloride adduct, a characteristic reaction of cyclic ethers and typical of isochroman and its derivatives.

BROMINATION OF ISOCHROMAN

As previously reported isochroman may form two bromo substitution products. Bromine does not enter the aromatic nucleus, but depending upon conditions and the purity of the isochroman, two different products are obtained.

Pure isochroman has been found to auto-peroxidize rapidly on standing, to form a diperoxide (IV)

\[\text{H}_2\text{C} - \text{C} \text{H} - \text{C} \text{H} - \text{C} \text{H} - \text{O} - \text{H} - \text{H}_2\]

When directly brominated with radiant energy, either freshly distilled isochroman or peroxide-containing isochroman give largely, if not exclusively, 1-bromoisochroman. The structure of this compound has been established by the following series of reactions

\[\text{H}_2\text{C} - \text{C} \text{H} - \text{C} \text{H} - \text{C} \text{H} - \text{O} - \text{H} - \text{H}_2 \xrightarrow{[\text{Br}_2]} \text{H}_2\text{C} - \text{C} \text{H} - \text{C} \text{H} - \text{C} \text{H} - \text{O} - \text{H} - \text{H}_2 \xrightarrow{\text{Mild}} \text{H}_2\text{C} - \text{C} \text{H} - \text{C} \text{H} - \text{C} \text{H} - \text{O} - \text{H} - \text{H}_2 \]

Since 3,4-dihydroisocoumarin (V) has been prepared previously by an entirely independent method, the identity of 1-bromoiso-
When freshly distilled, peroxide-free, isochroman is brominated with N-bromosuccinimide, there is produced along with 1-bromo-isochroman, in approximately equal amounts, an unstable 3 or 4-bromo-1-isochroman. This product spontaneously loses HBr to form 3,4-dehydroisochroman. (VI).

\[\text{H}_{2} \text{O} \xrightarrow{\text{NBS}} \text{H}_{2} \text{O} \xrightarrow{\text{HBr}} \text{(VI)} \]

Thus far, it has not been possible to determine the structure of the intermediate bromo isochroman because of its great instability. However, work is presently under way to offer a proof of its structure. The best evidence thus far indicates a 4-bromo compound is formed.

The compound, 3,4-dehydroisochroman, has shown the greatest biological activity of the isochroman derivatives prepared thus far. A current program is under way to prepare other derivatives related to it, with possible biological activity.

1-Carboxy-isochroman has been prepared by the following series of reactions:

\[\text{CN} \xrightarrow{\text{HClOH}} \text{CN} \xrightarrow{\text{H}_{2} \text{O}_{2}} \text{CONH}_{2} \]

This compound has been completely characterized, although its biological activity has not been evaluated.