The Evidence for a Decision-Making Theory of Visual Detection

J. A. Swets
W. P. Tanner, Jr.
T. G. Birdsall

Approved by
A. B. Macnee
March, 1955

ENGINEERING RESEARCH INSTITUTE
ANN ARBOR
THE EVIDENCE FOR A DECISION-MAKING THEORY OF VISUAL DETECTION

Technical Report No. 40
Electronic Defense Group
Department of Electrical Engineering

By: J. A. Swets
W. P. Tanner, Jr.
T. G. Birdsall

Approved by: A. B. Macnee

Project 2262

TASK ORDER NO. EDG-3
CONTRACT NO. DA-36-039 sc-63203
SIGNAL CORPS, DEPARTMENT OF THE ARMY
DEPARTMENT OF ARMY PROJECT NO. 3-99-04-042
SIGNAL CORPS PROJECT NO. 1948

February, 1955
The experiments reported in this paper were sponsored jointly by the Electronic Defense Group under Contract No. DA-36-039 Sc52654 and the Vision Research Laboratory under Contract No. DA-36-039 Sc52654 and Contract No. Nobs 53242. Therefore, this report appears also as a portion of Report 2144-20-T from the Engineering Research Institute, a report from the Optics and Vision Group of Project Michigan. Report 2144-20-T differs from the present report principally in that the relevance of the research to a classified military problem is indicated.
ACKNOWLEDGMENT

The authors wish to acknowledge the valuable contributions of some of our friends and associates without whose assistance this work would have been impossible. Dr. H. R. Blackwell, director of the Vision Research Laboratory, contributed freely of his time in discussions during every stage of the work. In permitting the use of his laboratory, he made possible the successful completion of the experiments. Dr. W. M. Kincaid, of the staff of the Vision Research Laboratory, exhibited a lively interest throughout the progress of this work. He was always available for consultation, and contributed many valuable suggestions. The authors take this opportunity to express their gratitude to Dr. Blackwell and Dr. Kincaid for their assistance.
TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

LIST OF TABLES

ABSTRACT

1. INTRODUCTION
 1.1 Related Articles
 1.2 A Decision-Making Theory of Visual Detection
 1.2.1 The Fundamental Problem
 1.2.2 Assumptions Made in Applying the Theory of Signal Detectability to the Behavior of the Human Observer
 1.2.3 The Definition of Criterion and Likelihood Ratio
 1.2.4 The Essence of the Theory of Signal Detectability
 1.3 Scope of Discussion
 1.4 The Incompatibility of a Decision-Making Theory of Visual Detection and Conventional Sensory Theory

2. THE EXPECTED-VALUE OBSERVER
 2.1 Data from the First Experiment
 2.2 Data from the Second Experiment
 2.3 The Approach to the Optimum Behavior

3. THE NEYMAN-PEARSON OBSERVER
 3.1 The Approach to the Announced Optimum Value of \(P(A) \)
 3.2 Other Analyses of the Data of this Study

4. THE A POSTERIORI PROBABILITY OBSERVER
 4.1 The Relationship between \(d(x) \) and \(f(x) \)

5. THE SECOND-CHOICE EXPERIMENT
 5.1 The Rationale for the Second-Choice Experiment
 5.2 Results
 5.3 A Note on the Variance Assumption

6. DISCUSSION
 6.1 The Possibility of a Threshold Theory
 6.2 Some Implications of the Proposed Model for Psychological Theory
 6.3 Some Implications for Practice
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$P_{SN}(A) \text{ vs. } P_N(A)$ with d' as the Parameter</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>$P_{SN}(A) \text{ vs. } P_N(A)$ for Observer 1 in the First Expected-Value Experiment</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>$P_{SN}(A) \text{ vs. } P_N(A)$ for Observer 2 in the First Expected-Value Experiment</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>$P_{SN}(A) \text{ vs. } P_N(A)$ for Observer 3 in the First Expected-Value Experiment</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>Raw Data, Average for all Observers in the First Expected-Value Experiment</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Raw Data Corrected for Chance, Average for all Observers in the First Expected-Value Experiment</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>$P_{SN}(A) \text{ vs. } P_N(A)$ for Observer 1 in the Second Expected-Value Experiment</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>$P_{SN}(A) \text{ vs. } P_N(A)$ for Observer 2 in the Second Expected-Value Experiment</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>$P_{SN}(A) \text{ vs. } P_N(A)$ for Observer 3 in the Second Expected-Value Experiment</td>
<td>26</td>
</tr>
<tr>
<td>10</td>
<td>$P_{SN}(A) \text{ vs. } P_N(A)$ for Observer 4 in the Second Expected-Value Experiment</td>
<td>27</td>
</tr>
<tr>
<td>11</td>
<td>Objective Probability vs. Subjective Probability for Observer 1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Objective Probability vs. Subjective Probability for Observer 2</td>
<td>39</td>
</tr>
<tr>
<td>13</td>
<td>Objective Probability vs. Subjective Probability for Observer 3</td>
<td>40</td>
</tr>
<tr>
<td>14</td>
<td>Objective Probability vs. Subjective Probability for Observer 4</td>
<td>41</td>
</tr>
<tr>
<td>15</td>
<td>The Second-Choice Data and Predictions for the Second-Choice Situation Under the Assumption that the N and $S \cdot N$ Distributions Are Gaussian and of Equal Variance</td>
<td>46</td>
</tr>
</tbody>
</table>
Fig. 16 The Second-Choice Data and Predictions for the Second-Choice Situation Under the Assumption that \(\frac{\Delta M}{\Delta \sigma} = 4 \) 49

Fig. 17 Block Diagram of the Expected-Value Observer 51

LIST OF TABLES

Table 1 Yes-No Data for Observer 1 in the First Expected-Value Experiment 18
Table 2 Yes-No Data for Observer 2 in the First Expected-Value Experiment 19
Table 3 Yes-No Data for Observer 3 in the First Expected-Value Experiment 20
Table 4 Data from 4 Observers in Second Expected-Value Experiment 28
Table 5 Neyman-Pearson Observer 33
Table 6 A Posteriori Probability Observer 35
Table 7 The Relationship between \(d(x) \) and \(f(x) \) 42
ABSTRACT

This is one of a series of papers concerned with the psychophysical application of the mathematical theory of signal detectability. This paper brings together all of the data on visual detection collected to date that bear directly on the case of the signal-known-exactly as treated by the theory of signal detectability. The general conclusion drawn from the experimental results reported is that the model provided by the theory of signal detectability or, more generally, by the theory of statistical decision, is applicable to the visual detection behavior of the human observer. That is to say, the human observer is capable of ordering values of the variable upon which detection depends well below the threshold level as this level is conventionally conceived. Further, the experiments show the observer to be capable of behaving in accordance with several kinds of optimum decision as defined within the theory of signal detectability. The general implications of the applicability of the model for sensory theory and psychophysical methods are discussed.
THE EVIDENCE FOR A DECISION-MAKING THEORY OF VISUAL DETECTION

1. INTRODUCTION

This is one of a series of papers concerned with the psychophysical application of the mathematical theory of signal detectability. This introductory section contains a short discussion of the references in which the theory of signal detectability is presented, and also contains references to other papers in the series on the psychophysical application of the theory of signal detectability. There follows, in this introductory section, a brief description of the theory of signal detectability and of the theory of visual detection based on it, and an outline of the scope of discussion of the present paper.

1.1 Related Articles

The application of the theory of signal detectability to visual detection by the human observer was first reported by Tanner and Swets in Technical Report No. 18 of the Electronic Defense Group (Ref. 22). This topic is also discussed elsewhere (Refs. 19, 23, 24). The most readily available source containing
a report of some of this work is the Psychological Review of November, 1954 (Ref. 25). A paper in the "Transactions of the I.R.E. Professional Group on Information Theory" (Ref. 1) contains a report of the work of Tanner and Norman relating the theory of signal detectability to auditory detection.

Several other papers in this series are currently being prepared. Technical Report No. 30 by Tanner, Swets, and Orsen (Ref. 26) is another paper relating the theory to data from auditory experiments. Technical Report No. 42 by Tanner, Birnsell, and Swets (Ref. 20) deals with the implications of this research for methods and analysis procedures in psychophysical testing.

The present paper brings together the data on visual detection collected to date that bear directly on the case of the signal-known-exactly as treated by the theory of signal detectability. Some of these data have been reported previously only in relatively inaccessible sources (Refs. 19, 22, 23, and 24); some of the data that were reported in a more available source (Ref. 25) were only briefly described there. In addition, some of the data presented below have not been previously reported in any form. It is the primary purpose of this paper to present all relevant available data; although the theory of signal detectability and the theory of visual detection based on it are reviewed, they are not discussed completely, and whereas the general implications for sensory theory, methods, and data analysis are discussed, they are not treated here in full detail.

2 A Decision-Making Theory of Visual Detection

In this section, the theory of signal detectability is reviewed as it relates to the problem of visual detection by the human observer. It should be pointed out, by way of introduction, that the theory of signal detectability is derived directly from the theory of statistical decision, the theory of testing statistical hypotheses. This latter theory is presented most completely by Wald
(Ref. 26); important papers published earlier include those by Wald (Ref. 27), Neyman (Ref. 15), and Neyman and Pearson (Ref. 14).

1.2.1 The Fundamental Problem. The fundamental problem in signal detectability involves a fixed observation interval; the observer is presented a "receiver input", a function of time for T seconds. He is asked to decide, on the basis of the observation, whether the receiver input arose from noise alone, or from signal plus noise, where the signal is known to be from a certain ensemble of signals.

This problem has an exact parallel in visual psychophysics. The observer in the most common visual psychophysical experiment, an experiment employing the so-called "yes-no" method, is asked to observe, at a particular time and a particular location in the visual field, a signal of a particular size, duration, and intensity. Ordinarily the size and duration of the signal, as well as its location and time of occurrence, are known by the observer; in certain instances, information about the intensity of the signal and the a priori probability of signal occurrence are also provided the observer. He is then asked to state, on the basis of the observation, whether or not a signal was presented.

1.2.2 Assumptions Made in Applying the Theory of Signal Detectability to the Behavior of the Human Observer. Given certain assumptions, asking the observer in a psychophysical experiment to state whether or not a signal was presented is equivalent to asking him to decide whether his observation arose from signal plus noise or from noise alone, or stated another way, to decide whether or not to accept the hypothesis that a signal existed. The primary assumption is that the value of the variable upon which detection depends, presumably neural activity, varies from instant to instant in a random fashion when no signal is present, and that the value of this variable produced by a signal of given strength is a so
randomly distributed. Although there is no need to conceptualize this variable in neurophysiological terms, it may be helpful, and the assumption stated is suggested by present knowledge of neurophysiology. So it may be maintained on a priori grounds, that if the problem of visual detection is the detection of signals having randomly distributed neural effects, in the presence of a background of random interference, then the theory of statistical decision, or in particular, the theory of signal detectability, constitutes a model of possible relevance to visual detection.

An attempt to apply the theory of signal detectability to human behavior, therefore, implies the assumptions that the sensory systems function primarily to transmit information, and that the sensory systems are noisy channels. An additional assumption, made apparent in the following pages, is that the central mechanisms involved in decision making are capable of making optimal use of the information transmitted by sensory paths.

It is assumed, then, that the observer operates with a continuous variable, the values of which constitute "observations," and that any value of this variable may arise either from noise alone or from signal plus noise. It is assumed that, when the signal ensemble is known to the observer, the probability that a given observation represents noise alone, and the probability that this value arose from the signal-plus-noise distribution, can be estimated by him.

Thus, it is assumed that the observer in a "yes-no" experiment must establish a level of confidence, or criterion, and base his decision on the relation of the observation to this criterion.

1.2.3 The Definition of Criterion and Likelihood Ratio. According to the theory, the observer chooses a set of observations (the criterion A) such that an observation in this set will lead him to accept the existence of a signal, that
is, the observer accepts the hypothesis that signal plus noise existed during the
observation interval. All other observations are in the complement of the cri-
terion, CA; these are regarded by the observer as representing noise alone. SN
will be used to denote signal plus noise and N will denote noise alone. If there
are only a countable number of possible observations, each observation, x, having
probability \(P_{SN}(x) \) of occurrence if there is signal plus noise present, and prob-
ability \(P_N(x) \) of occurrence if noise alone is present, then the likelihood ratio
is defined as \(r(x) = \frac{P_{SN}(x)}{P_N(x)} \). Here, x will be considered continuous, and
probability density functions (frequency functions) \(f_{SN}(x) \) and \(f_N(x) \) are used;
accordingly \(r(x) = \frac{f_{SN}(x)}{f_N(x)} \). It is assumed that for every x the observer can
estimate \(r(x) \) which is the relative likelihood that x arose from signal plus noise
as compared to the possibility that x arose from noise alone.

A criterion may be evaluated in terms of the integrals of the density
functions over the criterion A, since the integral of \(f_{SN}(x) \) over A is the con-
ditional probability of detection, \(P_{SN}(A) \), and the integral of \(f_N(x) \) over A is the
conditional probability of a false alarm (a Type I error in statistical parlance),
\(P_N(A) \).

1.2.4 The Essence of the Theory of Signal Detectability

The essence of the theory of signal detectability is the definition of a class of criteria in
terms of likelihood ratio. Under each of several definitions of the optimum cri-
terion, the optimum is found to be in this class of likelihood-ratio criteria. A
criterion in this class is denoted \(A(\beta) \); that is, the criterion A contains all
observations with likelihood ratio greater than or equal to \(\beta \), and none of those
with likelihood ratio less than \(\beta \). The solution, then, with respect to a given
definition of optimum, is the exact value of \(\beta \) to be used. \(\beta \) is defined as the
operating level of the likelihood-ratio receiver.
It should be noted that the theory of signal detectability specifies
an optimum receiver that receiver whose output is either likelihood ratio or
some monotonic function of likelihood ratio. If the output of the receiver is
likelihood ratio, then the solution, for each definition of optimum, is the cri-
terion with the proper operating level β. If the receiver's output is some de-
cision function other than likelihood ratio, but a monotonic function of likeli-
hood ratio, then the optimum operating level is the value of the monotonic func-
tion at β. That is, if the receiver output is some function $d(x) = F^\prime(\theta)$,
where F is strictly monotonic, then the optimum criterion is specified by
$\beta = F(\beta)$, such that $d(x) \geq \beta \iff \theta(x) \geq \beta$. Thus, the theory of signal detecta-
bility may describe the behavior of the human observer if the human observer
operates with a continuous variable, or decision function, that is either likeli-
hood ratio or some monotonic function of likelihood ratio.

1.3 Scope of Discussion

Peterson, Birdsall, and Fox (Ref. 16) advance six definitions of optimum
and their solutions. Experiments have been performed, and are reported in the
next three sections of this paper, to test the ability of the human observer to
act in accordance with three of these definitions of optimum. These three defi-
nitions of optimum and their respective solutions are listed here.

1. Expected-Value Criterion -- that criterion that maximizes the total
expected value, where the individual values are:

\[V_{SN \cdot A} \quad \text{the value of a detection} \]
\[V_{N \cdot CA} \quad \text{the value of a correct rejection} \]
\[K_{SN \cdot CA} \quad \text{the cost of a miss} \]
\[K_{N \cdot A} \quad \text{the cost of a false alarm} \]
Solution: \(A(\beta) = \frac{P(N)}{P(SN)} \cdot \frac{V_{N+CA} + K_{N+CA}}{V_{SN-A} + K_{SN-CA}} \)

where \(P(N) \) and \(P(SN) \) are the \textit{a priori} probabilities.

2. The Neyman-Pearson Criterion — that criterion such that \(P_{SN}(A) \) is a maximum, while \(P_N(A) \leq k \).

Solution: \(A(\beta) \) where \(P_N[A(\beta)] = k \)

3. \textit{A Posteriori} Probability — not a criterion but the best estimate of the probability that the observation arose from signal plus noise.

\[
P_X(SN) = \frac{f(x)P(SN)}{f(x)P(SN) + P(N)}
\]

Other definitions of optimum, not considered explicitly here, for which the solution has been provided (Ref. 16) include the Weighted-Combination criterion, the criterion that maximizes \(P_{SN}(A) - v P_N(A) \); Siegert's Ideal Criterion, the criterion that minimizes total error; and the Information Criterion, the criterion that maximizes the reduction in uncertainty, in the Shannon sense (Ref. 18), as to whether or not a signal was sent. It should be pointed out, however, that the Weighted-Combination Criterion is the abstract criterion, of which the Expected-Value Criterion and Ideal Criterion are special cases. The Expected-Value Criterion is identical to the Weighted-Combination Criterion for the case where \(v = \beta \) and is identical to the Ideal Criterion for the case where

\[
\frac{V_{N+CA} + K_{N+CA}}{V_{SN-A} + K_{SN-CA}} = 1
\]
The fifth section of this paper contains the results of an experiment designed to determine the congruence of the behavior of the human observer and the definition of optimum behavior for the forced-choice situation, a definition of optimum that is not treated explicitly in the theory of signal detectability.

1.4 The Incompatibility of a Decision-Making Theory of Visual Detection and Conventional Sensory Theory

Anticipating to an extent that will facilitate subsequent description: the primary result of all the experiments performed is that the theory of signal detectability, or more generally, the theory of statistical decision, is applicable to the behavior of the human observer. That is to say, the experiments demonstrate that the human observer operates with a decision function that is either likelihood ratio or some monotonic function of likelihood ratio, and that the human observer tends to behave optimally.

This result implies, of course, the ability to discriminate among observations, or values of the decision function, that may result from noise alone. Thus, if a threshold (fixed operating level) exists, this threshold is low enough to be exceeded by noise alone an appreciable portion of the time. The concept of a threshold that is exceeded more than very rarely by noise alone is quite different from the concept of threshold that is an integral part of conventional sensory theory.

The primary purpose of this paper is the presentation of data; hence, this is not the place to attempt a detailed discussion of the notion of a threshold as it appears in sensory theory. It may be well, however, to adduce one or two instances of current methods in sensory experimentation in order to support the statement that the threshold as conceived in sensory theory is a relatively fixed level that is rarely, if ever, exceeded by noise alone.
Many studies of sensory processes do not employ trials in which no signal is presented. In these cases, it is clearly not regarded as important to assess the probability that the fixed level be exceeded by noise alone. In other studies, the experimenter may occasionally insert one or two trials in which no signal is presented (or occasionally turn off a continuous signal) in order to detect what are regarded as spurious responses, so that he may caution the observers against such responses. Such trials have been referred to as *vexirfehlen*, a term which may be reasonably translated as "catch signals". A refinement of the procedure in which catch signals are sporadically presented, one that is used rather frequently, is to fail to present signals on a larger proportion of trials in order to assess quite accurately the extent of "yes" responses on such trials. Then, however, not only is this information subtracted from the data, but the extent of "yes" response to catch signals is used in estimating the amount of spurious responses made to actual signals so that these, too, may be eliminated from the data. This use of the correction for chance in psychophysical experiments has been described in Ref. 25. Regarding the totality of "yes" responses to catch signals as spurious, and regarding such spurious responses to be equally likely for all values of signal intensity, is valid only if the threshold level is such that it is exceeded by noise alone on a negligible proportion of the trials.

The validity of the application of the chance correction to psychophysical data depends upon the validity of the assumption that "yes" responses to catch signals are spurious responses, or random guesses, and that these responses are independent of "sensory-determinate" responses. The theory advanced here, on the other hand, assumes a dependence between the conditional probability that an

1 H. R. Blackwell, unpublished manuscript.
observation arising from signal plus noise will be in the criterion and the conditional probability that an observation arising from noise alone will be in the criterion.

The data presented in this paper, to the extent that they are analyzed in this paper, do not indicate how far down into the noise the observers actually ordered their observations, that is, how low relative to the distribution of observations arising from noise alone a fixed threshold must be to be compatible with the data. It may be the case, then, that further analysis will show the present data or new data to be consistent with a fixed threshold, say, at the mean of the noise distribution, a threshold exceeded by noise alone approximately 50 percent of the time. It can be stated, on the basis of completed analyses of the present data which are to be reported in a paper which considers and evaluates several alternative models (Ref. 20), that a fixed threshold, if one exists, must be lower than plus one sigma from the mean of the noise distribution, that is, must be exceeded by noise alone more than 16 percent of the time. It is important that the reader note that, unless specifically stated otherwise, further references in this paper to the threshold refer to a threshold in the conventional sense, that is, to a threshold exceeded, to be conservative, less than 5 percent of the time by noise alone. The experiments were designed to detect a threshold at approximately this level if one existed.

2. THE EXPECTED-VALUE OBSERVER

An experiment concerning the ability of the human observer to maximize the total expected value is the one experiment discussed elsewhere in a readily accessible source (Ref. 25). This section supplements the discussion in Reference 25 in that it presents in more detail the data that were necessarily described only briefly there. In addition, this section contains the previously unpublished
results of further experimentation on the Expected-Value Observer that is superior in certain respects.

The analysis of data, in terms of the theory of signal detectability, takes the form of plots of what are called ROC curves — Receiver Operating Characteristics. An ROC curve is a plot of the conditional probability of detection, \(P_D(A) \), against the conditional probability of false alarm, \(P_F(A) \). A complete curve is obtained if all possible values of operating level, or \(\beta \), are considered. Peterson and Birdsall (Ref. 15) have demonstrated that the optimum operating level is represented by a point on the ROC curve where its slope is \(\beta \).

The typical ROC curve, one that has occurred frequently in this work, is shown in Fig. 1. Frequently, as in this figure, a family of ROC curves is plotted with signal strength as the parameter. In this particular case, the parameter is \(d' \), the index used for the analysis of data in terms of the theory of signal detectability. \(^1\) It is defined as the difference between the means of the noise and signal-plus-noise distributions normalized to the standard deviation of the noise distribution that is, \(d' = \frac{M_{SN} - M_N}{\sigma_N} \). Thus, \(d' \) can be conceived of as a standard score, an \(\frac{X}{\sigma} \) measure, or again, it may be thought of as a (output) signal-to-noise ratio. A more complete description of \(d' \) and of the ROC curves may be found elsewhere (Refs. 15, 16, 20).

If a threshold exists, this fact is immediately apparent from the ROC curves. The conventional notion of a fixed criterion or threshold, in the terminology of this paper, implies the existence of a set of observations leading

1. \(d' \) is essentially a dependent variable; the paper on psychophysical methods (Ref. 20) treats explicitly the reasons for preferring it to the usual dependent variable in psychophysical experiments; namely, the calculated threshold or minimum detectable signal. The primary purpose of the present paper is to present the data upon which the recommendations made in the paper on psychophysical methods are based.
Fig. 1. $P_{SN}(A)$ vs. $P_N(A)$ with d' as the parameter.
to an extremely small probability of false alarm. The observer's criteria includes this set and may or may not include a random selection of other observations that is, "guesses". The ROC curve in this case, as pointed out elsewhere (22, 25), is a straight line from the left-hand vertical axis to the upper right-hand corner.

2.1 Data from the First Experiment

The ROC curves obtained from the first experiment on the Expected-Value Observer, the experiment discussed in reference 25, are displayed here in Figures 2, 3, and 4. Five values of signal intensity, including the zero-intensity signal or "blank", were used in this experiment. It may be seen from an examination of these plots that the data of the first experiment do not provide an adequate definition of the entire curve. As a matter of fact, even in the region where points have been obtained (roughly from $P_x(A) = 0.0$ to $P_x(A) = 50$), the curve is not well defined. This latter inadequacy may be, in part, to the small number of observations per point. A second factor which operated to cause dispersion of these points was the day-to-day variation in signal and background intensities which, unlike in the calculation of contrast thresholds, is not taken into account in the present analysis. The effects of both of these sources of variance were reduced, to a large extent, in the second Expected-Value experiment which is reported below.

Although entire ROC curves were not precisely defined by the data from the first experiment, these data are entirely adequate for the purpose of distinguishing between the predictions of a theory based on the model provided by the theory of signal detectability and the predictions which follow from the concept of a threshold or fixed criterion, the purpose for which they were used in Reference 25. It is clear, for example, that the straight lines fitted to the
FIG. 2. $P_{50}(A)$ vs. $P_0(A)$ FOR OBSERVER I IN THE FIRST EXPECTED-VALUE EXPERIMENT.
FIG. 3. $P_{SN}(A)$ VS $P_N(A)$ FOR OBSERVER 2 IN THE FIRST EXPECTED-VALUE EXPERIMENT.
FIG. 4. $P_m(A)$ vs. $P_n(A)$ for observer 3 in the first expected-value experiment.
data in Figures 2, 3, and 4 do not intersect the upper right-hand corner of the
graph, as required by the concept of a fixed threshold. These straight lines
appear, rather, to be arcs of the type of ROC curve predicted by the theory of
signal detectability. The data displayed graphically in Figures 2, 3, and 4 are
reported more precisely in Tables 1, 2, and 3.

On days 1 through 3, there were 50 presentations per day of each value of
signal intensity including the zero-intensity signal. On days 9 through 12,
there were 60 presentations per day at each intensity. On days 13 through 16,
there were 30 presentations per day of each value of signal intensity greater
than zero, and 180 blanks per day. This experiment, like the other experiments
reported in this paper, employed a circular target, 30 minutes of visual angle
in diameter, with a duration of 1/100 second, on a ten foot-lambert background.
The more general aspects of the procedure and apparatus involved in this experi-
ment and the other experiments reported in this paper are discussed in Reference
25 and in an article by Blackwell, Pritchard, and Ohmart (Ref. 4).

Tables 1, 2, and 3 also contain the data which serve as a basis for the
coefficients of correlation that are reported in References 22 and 25 and again
below, between $P_N(A)$ and calculated threshold. The implication of these corre-
lations is the same as the implication of the straight lines fitted to the data of
Figures 2, 3, and 4, namely, that a dependence exists between the conditional
probability that an observation arising from SN will be in the criterion and the
conditional probability that an observation arising from N will be in the cri-
terion — a condition that, as described elsewhere (Refs. 22, 24, 25), is incon-
sistent with the concept of threshold, or fixed criterion.

The product-moment correlations for the three observers between $P_N(A)$
and calculated threshold, based on the twelve sessions involving a payoff matrix
<table>
<thead>
<tr>
<th>DAY</th>
<th>P(SH)</th>
<th>V_{SH,A}</th>
<th>K_{SH,CA}</th>
<th>K_{H,4}</th>
<th>V_{H,CA}</th>
<th>P_{H}(A)</th>
<th>P_{S1M}(A)</th>
<th>P_{S2M}(A)</th>
<th>P_{S3M}(A)</th>
<th>P_{S4M}(A)</th>
<th>Contrast</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.50</td>
<td>0.62</td>
<td>0.76</td>
<td>0.90</td>
<td>0.94</td>
<td>0.68</td>
</tr>
<tr>
<td>2</td>
<td>1.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.44</td>
<td>0.46</td>
<td>0.74</td>
<td>0.84</td>
<td>0.94</td>
<td>0.73</td>
</tr>
<tr>
<td>3</td>
<td>1.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.18</td>
<td>0.40</td>
<td>0.64</td>
<td>0.76</td>
<td>1.00</td>
<td>0.68</td>
</tr>
<tr>
<td>4</td>
<td>1.8</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>2</td>
<td>0.29</td>
<td>0.32</td>
<td>0.48</td>
<td>0.80</td>
<td>0.96</td>
<td>0.81</td>
</tr>
<tr>
<td>5</td>
<td>1.8</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>2</td>
<td>0.44</td>
<td>0.30</td>
<td>0.54</td>
<td>0.86</td>
<td>0.98</td>
<td>0.74</td>
</tr>
<tr>
<td>6</td>
<td>1.8</td>
<td>1</td>
<td>-2</td>
<td>2</td>
<td>+2</td>
<td>0.12</td>
<td>0.26</td>
<td>0.32</td>
<td>0.68</td>
<td>0.98</td>
<td>0.73</td>
</tr>
<tr>
<td>7</td>
<td>1.8</td>
<td>1</td>
<td>-2</td>
<td>2</td>
<td>+2</td>
<td>0.36</td>
<td>0.42</td>
<td>0.58</td>
<td>0.72</td>
<td>0.96</td>
<td>0.71</td>
</tr>
<tr>
<td>8</td>
<td>1.8</td>
<td>1</td>
<td>-2</td>
<td>2</td>
<td>+2</td>
<td>0.38</td>
<td>0.44</td>
<td>0.50</td>
<td>0.74</td>
<td>0.98</td>
<td>0.73</td>
</tr>
<tr>
<td>9</td>
<td>1.8</td>
<td>1</td>
<td>-2</td>
<td>2</td>
<td>+2</td>
<td>0.30</td>
<td>0.42</td>
<td>0.53</td>
<td>0.82</td>
<td>1.00</td>
<td>0.78</td>
</tr>
<tr>
<td>10</td>
<td>1.8</td>
<td>1</td>
<td>-3</td>
<td>3</td>
<td>+3</td>
<td>0.20</td>
<td>0.37</td>
<td>0.53</td>
<td>0.75</td>
<td>0.97</td>
<td>0.75</td>
</tr>
<tr>
<td>11</td>
<td>1.8</td>
<td>1</td>
<td>-4</td>
<td>4</td>
<td>+4</td>
<td>0.17</td>
<td>0.27</td>
<td>0.47</td>
<td>0.73</td>
<td>0.98</td>
<td>0.78</td>
</tr>
<tr>
<td>12</td>
<td>1.8</td>
<td>1</td>
<td>-4</td>
<td>4</td>
<td>+4</td>
<td>0.07</td>
<td>0.08</td>
<td>0.17</td>
<td>0.53</td>
<td>0.89</td>
<td>0.91</td>
</tr>
<tr>
<td>13</td>
<td>1.4</td>
<td>1</td>
<td>-2</td>
<td>2</td>
<td>+2</td>
<td>0.05</td>
<td>0.07</td>
<td>0.30</td>
<td>0.63</td>
<td>0.97</td>
<td>0.86</td>
</tr>
<tr>
<td>14</td>
<td>1.4</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>+1</td>
<td>0.04</td>
<td>0.17</td>
<td>0.43</td>
<td>0.80</td>
<td>0.97</td>
<td>0.74</td>
</tr>
<tr>
<td>15</td>
<td>1.4</td>
<td>2</td>
<td>-1</td>
<td>+1</td>
<td></td>
<td>0.43</td>
<td>0.47</td>
<td>0.63</td>
<td>0.90</td>
<td>1.00</td>
<td>0.76</td>
</tr>
<tr>
<td>16</td>
<td>1.4</td>
<td>3</td>
<td>-3</td>
<td>-1</td>
<td>1</td>
<td>0.54</td>
<td>0.60</td>
<td>0.80</td>
<td>1.00</td>
<td>1.00</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Table 1

Yes-No Data for Observer 1 in the First Expected-Value Experiment
Table 1
Yes-No Data for Observer 1 in the First Expected-Value Experiment

<table>
<thead>
<tr>
<th>DAY</th>
<th>(P(SN))</th>
<th>(V_{SN-N})</th>
<th>(K_{SN-CA})</th>
<th>(K_{N-CA})</th>
<th>(P_{N})</th>
<th>(P_{1N})</th>
<th>(P_{2N})</th>
<th>(P_{3N})</th>
<th>(P_{4N})</th>
<th>(P_{5N})</th>
<th>(\text{Contrast Threshold})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>.38</td>
<td>.56</td>
<td>.76</td>
<td>.86</td>
<td>.98</td>
<td>.62</td>
<td>.66</td>
</tr>
<tr>
<td>2</td>
<td>.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>.46</td>
<td>.72</td>
<td>.64</td>
<td>.88</td>
<td>.98</td>
<td>.66</td>
<td>.77</td>
</tr>
<tr>
<td>3</td>
<td>.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>.17</td>
<td>.24</td>
<td>.56</td>
<td>.64</td>
<td>1.00</td>
<td>.76</td>
<td>.77</td>
</tr>
<tr>
<td>4</td>
<td>.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>.15</td>
<td>.12</td>
<td>.60</td>
<td>.72</td>
<td>.96</td>
<td>.77</td>
<td>.77</td>
</tr>
<tr>
<td>5</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>+2</td>
<td>.36</td>
<td>.54</td>
<td>.60</td>
<td>.92</td>
<td>.96</td>
<td>.63</td>
</tr>
<tr>
<td>6</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>+2</td>
<td>.18</td>
<td>.20</td>
<td>.40</td>
<td>.76</td>
<td>1.00</td>
<td>.77</td>
</tr>
<tr>
<td>7</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>+2</td>
<td>.24</td>
<td>.34</td>
<td>.56</td>
<td>.76</td>
<td>.92</td>
<td>.66</td>
</tr>
<tr>
<td>8</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>+2</td>
<td>.42</td>
<td>.50</td>
<td>.66</td>
<td>.68</td>
<td>.90</td>
<td>.68</td>
</tr>
<tr>
<td>9</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>+2</td>
<td>.23</td>
<td>.23</td>
<td>.47</td>
<td>.72</td>
<td>.95</td>
<td>.94</td>
</tr>
<tr>
<td>10</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>+2</td>
<td>.37</td>
<td>.43</td>
<td>.63</td>
<td>.85</td>
<td>.95</td>
<td>.76</td>
</tr>
<tr>
<td>11</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-3</td>
<td>+3</td>
<td>.42</td>
<td>.47</td>
<td>.65</td>
<td>.93</td>
<td>1.00</td>
<td>.74</td>
</tr>
<tr>
<td>12</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-4</td>
<td>+4</td>
<td>.25</td>
<td>.20</td>
<td>.42</td>
<td>.77</td>
<td>.97</td>
<td>.81</td>
</tr>
<tr>
<td>13</td>
<td>.4</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>+2</td>
<td>.04</td>
<td>---</td>
<td>---</td>
<td>.33</td>
<td>.80</td>
<td>1.07</td>
</tr>
<tr>
<td>14</td>
<td>.4</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>.03</td>
<td>.07</td>
<td>.27</td>
<td>.60</td>
<td>.97</td>
<td>.85</td>
</tr>
<tr>
<td>15</td>
<td>.4</td>
<td>+2</td>
<td>-2</td>
<td>-1</td>
<td>+1</td>
<td>.26</td>
<td>.20</td>
<td>.57</td>
<td>.80</td>
<td>.97</td>
<td>.77</td>
</tr>
<tr>
<td>16</td>
<td>.4</td>
<td>+3</td>
<td>-3</td>
<td>-1</td>
<td>+1</td>
<td>.35</td>
<td>.40</td>
<td>.50</td>
<td>.87</td>
<td>.97</td>
<td>.84</td>
</tr>
</tbody>
</table>

Table 2
Yes-No Data for Observer 2 in the First Expected-Value Experiment
TABLE 2
YES-NO DATA FOR OBSERVER 2 IN THE
FIRST EXPECTED-VALUE EXPERIMENT

<table>
<thead>
<tr>
<th>DAY</th>
<th>P(SN)</th>
<th>V_{SN}</th>
<th>K_{SM-CA}</th>
<th>K_{SN-A}</th>
<th>P_{H}</th>
<th>P_{S_{1H}}</th>
<th>P_{S_{2H}}</th>
<th>P_{S_{3H}}</th>
<th>P_{S_{4H}}</th>
<th>Contrast</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>.42</td>
<td>.54</td>
<td>.66</td>
<td>.86</td>
<td>1.00</td>
<td>.72</td>
</tr>
<tr>
<td>2</td>
<td>.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>.40</td>
<td>.30</td>
<td>.62</td>
<td>.90</td>
<td>1.00</td>
<td>.74</td>
</tr>
<tr>
<td>3</td>
<td>.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>.08</td>
<td>.08</td>
<td>.28</td>
<td>.60</td>
<td>.96</td>
<td>.84</td>
</tr>
<tr>
<td>4</td>
<td>.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>.03</td>
<td>.24</td>
<td>.32</td>
<td>.48</td>
<td>.96</td>
<td>.78</td>
</tr>
<tr>
<td>5</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>.20</td>
<td>.44</td>
<td>.64</td>
<td>.84</td>
<td>.96</td>
<td>.61</td>
</tr>
<tr>
<td>6</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>.18</td>
<td>.34</td>
<td>.38</td>
<td>.84</td>
<td>.96</td>
<td>.70</td>
</tr>
<tr>
<td>7</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>.08</td>
<td>.22</td>
<td>.48</td>
<td>.74</td>
<td>.98</td>
<td>.63</td>
</tr>
<tr>
<td>8</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>.18</td>
<td>.32</td>
<td>.46</td>
<td>.74</td>
<td>.94</td>
<td>.63</td>
</tr>
<tr>
<td>9</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>.17</td>
<td>.15</td>
<td>.47</td>
<td>.85</td>
<td>1.00</td>
<td>.76</td>
</tr>
<tr>
<td>10</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>.15</td>
<td>.35</td>
<td>.55</td>
<td>.90</td>
<td>.97</td>
<td>.66</td>
</tr>
<tr>
<td>11</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-3</td>
<td>.07</td>
<td>.10</td>
<td>.35</td>
<td>.75</td>
<td>.97</td>
<td>.81</td>
</tr>
<tr>
<td>12</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-4</td>
<td>---</td>
<td>.07</td>
<td>.22</td>
<td>.62</td>
<td>.95</td>
<td>.83</td>
</tr>
<tr>
<td>13</td>
<td>.4</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>---</td>
<td>.13</td>
<td>.17</td>
<td>.42</td>
<td>.93</td>
<td>.89</td>
</tr>
<tr>
<td>14</td>
<td>.4</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>---</td>
<td>---</td>
<td>.20</td>
<td>.37</td>
<td>.80</td>
<td>1.00</td>
</tr>
<tr>
<td>15</td>
<td>.4</td>
<td>+2</td>
<td>-2</td>
<td>-1</td>
<td>.24</td>
<td>.47</td>
<td>.77</td>
<td>.90</td>
<td>.97</td>
<td>.54</td>
</tr>
<tr>
<td>16</td>
<td>.4</td>
<td>+3</td>
<td>-3</td>
<td>-1</td>
<td>.49</td>
<td>.37</td>
<td>.77</td>
<td>.83</td>
<td>.97</td>
<td>.67</td>
</tr>
</tbody>
</table>

TABLE 3
YES-NO DATA FOR OBSERVER 3 IN THE
FIRST EXPECTED-VALUE EXPERIMENT

<table>
<thead>
<tr>
<th>DAY</th>
<th>P(SN)</th>
<th>V_{SN}</th>
<th>K_{SM-CA}</th>
<th>K_{SN-A}</th>
<th>P_{H}</th>
<th>P_{S_{1H}}</th>
<th>P_{S_{2H}}</th>
<th>P_{S_{3H}}</th>
<th>P_{S_{4H}}</th>
<th>Contrast</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>.42</td>
<td>.54</td>
<td>.66</td>
<td>.86</td>
<td>1.00</td>
<td>.72</td>
</tr>
<tr>
<td>2</td>
<td>.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>.40</td>
<td>.30</td>
<td>.62</td>
<td>.90</td>
<td>1.00</td>
<td>.74</td>
</tr>
<tr>
<td>3</td>
<td>.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>.08</td>
<td>.08</td>
<td>.28</td>
<td>.60</td>
<td>.96</td>
<td>.84</td>
</tr>
<tr>
<td>4</td>
<td>.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>.03</td>
<td>.24</td>
<td>.32</td>
<td>.48</td>
<td>.96</td>
<td>.78</td>
</tr>
<tr>
<td>5</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>.20</td>
<td>.44</td>
<td>.64</td>
<td>.84</td>
<td>.96</td>
<td>.61</td>
</tr>
<tr>
<td>6</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>.18</td>
<td>.34</td>
<td>.38</td>
<td>.84</td>
<td>.96</td>
<td>.70</td>
</tr>
<tr>
<td>7</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>.08</td>
<td>.22</td>
<td>.48</td>
<td>.74</td>
<td>.98</td>
<td>.63</td>
</tr>
<tr>
<td>8</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>.18</td>
<td>.32</td>
<td>.46</td>
<td>.74</td>
<td>.94</td>
<td>.63</td>
</tr>
<tr>
<td>9</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>.17</td>
<td>.15</td>
<td>.47</td>
<td>.85</td>
<td>1.00</td>
<td>.76</td>
</tr>
<tr>
<td>10</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>.15</td>
<td>.35</td>
<td>.55</td>
<td>.90</td>
<td>.97</td>
<td>.66</td>
</tr>
<tr>
<td>11</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-3</td>
<td>.07</td>
<td>.10</td>
<td>.35</td>
<td>.75</td>
<td>.97</td>
<td>.81</td>
</tr>
<tr>
<td>12</td>
<td>.8</td>
<td>+1</td>
<td>-1</td>
<td>-4</td>
<td>---</td>
<td>.07</td>
<td>.22</td>
<td>.62</td>
<td>.95</td>
<td>.83</td>
</tr>
<tr>
<td>13</td>
<td>.4</td>
<td>+1</td>
<td>-1</td>
<td>-2</td>
<td>---</td>
<td>.13</td>
<td>.17</td>
<td>.42</td>
<td>.93</td>
<td>.89</td>
</tr>
<tr>
<td>14</td>
<td>.4</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>---</td>
<td>---</td>
<td>.20</td>
<td>.37</td>
<td>.80</td>
<td>1.00</td>
</tr>
<tr>
<td>15</td>
<td>.4</td>
<td>+2</td>
<td>-2</td>
<td>-1</td>
<td>.24</td>
<td>.47</td>
<td>.77</td>
<td>.90</td>
<td>.97</td>
<td>.54</td>
</tr>
<tr>
<td>16</td>
<td>.4</td>
<td>+3</td>
<td>-3</td>
<td>-1</td>
<td>.49</td>
<td>.37</td>
<td>.77</td>
<td>.83</td>
<td>.97</td>
<td>.67</td>
</tr>
</tbody>
</table>
(Days 5-16), are \(-.37(p = .245), -.60(p = .039)\) and \(-.81(p = .001)\). For the three subjects combined, \(p = .0008\).

The dependence of false-alarm rate and calculated threshold is also illustrated, though somewhat crudely, in Figures 5 and 6. These plots represent the data of days 5-16 for all three observers. The portion of data comprising each of the curves was selected to be relatively homogeneous with respect to \(P(N)\). Figure 5 shows the raw data; the proportion of positive responses is plotted as a function of \(\Delta I\), the signal intensity. Figure 6 shows the same data after application of the chance correction; here the calculated threshold (the value of \(\Delta I\) corresponding to the corrected proportion of .50) is seen to be dependent upon \(P(N)\) in the predicted direction. The observer, apparently, can adjust his criterion. If he operates with a lower value of \(\beta\), the proportion of correct detections will be increased by an amount that is not completely eliminated by the coincident increase in the size of the chance correction factor, \(P(N)\).

2.2 Data from the Second Experiment

Since the data from the first experiment did not suffice to trace out a complete ROC curve, a second experiment was conducted to obtain a broader range of values of \(P(N)\). A different set of observers was used in this experiment, and only one value of signal intensity was employed. The data for the four observers are shown in Figures 7 through 10. Each point represents a two-hour observing session including 200 presentations of signal and 200 observations in which no signal was presented; that is, \(P(S|N)\) was held at .50 throughout this second experiment. Changes in \(\beta\), and thus in \(P(N)\), were effected entirely by changes in the relative values and context with which an Expected-Value Observer operates. The data from which Figures 7 through 10 were plotted are presented in Table 4. The column
FIG. 5. RAW DATA, AVERAGE FOR ALL OBSERVERS IN THE FIRST EXPECTED-VALUE EXPERIMENT.
FIG. 6. RAW DATA CORRECTED FOR CHANCE, AVERAGE FOR ALL OBSERVERS IN THE FIRST EXPECTED-VALUE EXPERIMENT.
FIG. 7. $p_{\text{SN}}(A)$ VS. $p_{\text{SN}}(A)$ FOR OBSERVER 1 IN THE
SECOND EXPECTED-VALUE EXPERIMENT.
FIG. 8. $P_N(A)$ vs. $P_{SN}(A)$ for Observer 2 in the second expected-value experiment.
FIG. 10. $P_{SM}(A)$ VS. $P_{SN}(A)$ FOR OBSERVER 4 IN THE SECOND EXPECTED-VALUE EXPERIMENT.

$P_{N}(A)$ VS. $P_{SN}(A)$ ASSUMING $M \sigma = 4$

WHERE $d' = \frac{M_{SN} - M_{N}}{\sigma_{N}}$.
<table>
<thead>
<tr>
<th>Day</th>
<th>β</th>
<th>Announced Optimum</th>
<th>Observer 1</th>
<th>Observer 2</th>
<th>Observer 3</th>
<th>Observer 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$P_{\text{H}}(A)$</td>
<td>$P_{\text{H}}(A)$</td>
<td>$P_{\text{H}}(A)$</td>
<td>$P_{\text{H}}(A)$</td>
<td>$P_{\text{H}}(A)$</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>.23</td>
<td>.32</td>
<td>.23</td>
<td>.18</td>
<td>.18</td>
</tr>
<tr>
<td>2</td>
<td>.50</td>
<td>.42</td>
<td>.50</td>
<td>.25</td>
<td>.12</td>
<td>.35</td>
</tr>
<tr>
<td>3</td>
<td>.25</td>
<td>.58</td>
<td>.65</td>
<td>.41</td>
<td>.33</td>
<td>.49</td>
</tr>
<tr>
<td>4</td>
<td>.16</td>
<td>.68</td>
<td>.78</td>
<td>.66</td>
<td>.59</td>
<td>.74</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>.12</td>
<td>.05</td>
<td>.11</td>
<td>.01</td>
<td>.17</td>
</tr>
<tr>
<td>6</td>
<td>4.00</td>
<td>.05</td>
<td>.06</td>
<td>.03</td>
<td>.02</td>
<td>.12</td>
</tr>
<tr>
<td>7</td>
<td>1.50</td>
<td>.15</td>
<td>.20</td>
<td>.19</td>
<td>.15</td>
<td>.14</td>
</tr>
<tr>
<td>8</td>
<td>6.00</td>
<td>.02</td>
<td>.02</td>
<td>.02</td>
<td>.06</td>
<td>.06</td>
</tr>
<tr>
<td>9</td>
<td>8.00</td>
<td>.00</td>
<td>.02</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>10</td>
<td>2.50</td>
<td>.09</td>
<td>---</td>
<td>---</td>
<td>.04</td>
<td>.05</td>
</tr>
<tr>
<td>11</td>
<td>.75</td>
<td>.28</td>
<td>.19</td>
<td>.18</td>
<td>.14</td>
<td>.34</td>
</tr>
<tr>
<td>12</td>
<td>.75</td>
<td>.28</td>
<td>.29</td>
<td>.25</td>
<td>.24</td>
<td>.34</td>
</tr>
<tr>
<td>13</td>
<td>3.00</td>
<td>.00</td>
<td>.03</td>
<td>.00</td>
<td>.02</td>
<td>.04</td>
</tr>
</tbody>
</table>

Table 4

Data from 4 observers

In second expected-value experiment
in Table 4 labeled "Announced Optimum $P_N(A)" will be discussed later in this section of the paper.

It may be seen in Figures 7 through 10 that the experimentally determined points are reasonably well fitted by the type of ROC curve predicted by the theory subscribed to here. It is equally apparent that points are not well fitted by a straight line intersecting the point $P_N(A) = P_{\text{err}}(A) = 1$. It is important to note, in this connection, that the theoretical ROC curves plotted in Figures 7 through 10 are not exactly the same as those plotted in Figure 1. The exact form of the theoretical ROC curves portrayed in Figure 1, as pointed out in Reference 25, is dependent upon the assumption that the distributions of N and $S + N$ are Gaussian and of equal variance. It was apparent at the time of writing of Reference 25 that the assumption of equal variance was not entirely adequate; the nature of the variance assumption, however, was not critical for the purposes of that paper, and the equal-variance assumption was accepted to facilitate analysis. The theoretical curves shown here in Figures 7 through 10, which are fitted quite well by the data plotted there, were drawn under the assumption that the ratio of the increment in the mean to the increment in the standard deviation is equal to 4. The implication for analysis procedures of a dependence between signal strength and variance is discussed in the paper on methods (Ref. 20).

2.3 The Approach to the Optimum Behavior

The fact that the data obtained in the two Expected-Value experiments is fitted more adequately by the type of ROC curve consistent with the theory of signal detectability than by the straight-line ROC curve consistent with the fixed threshold notion implies that the human observer can vary his criterion. The question remains as to how closely he approaches the optimum criterion.
To establish the applicability of the theory of signal detectability, it is necessary to demonstrate only that the observer's operating level is some monotonic function of β. When sampling error is taken into account, the restriction is more lenient; in this case, it is sufficient to demonstrate a significant correlation between the observer's operating level and β. It is interesting, however, to determine how closely the observer's operating level approaches that specified by β.

In the first experiment, the observers were informed of the various values taken on by the elements of the β-equation (see page 6); i.e., the \textit{a priori} probabilities, the values and costs. They were not made aware of the way in which these elements determine a value of β, nor did they know that the single number, β, taken in conjunction with an ROC curve, yields the optimum false-alarm rate. They were informed, after each experimental session, of their false-alarm rate, the proportion of correct detections of each of the four signal intensities, and the payoff. The correlations obtained in this study between β and false-alarm rate indicate that these observers tended toward the optimum setting of the criterion. For the three observers, the rank-order correlations were .70, .46, and .71; a correlation of .68 is significant at the .01 level of confidence.

The first study demonstrated that the human observer quite naturally adjusts his criterion in a way approaching optimum. With this as background, the second experiment was performed with the observers having a fairly complete knowledge of its purposes. The second study attempted to determine how closely the observers could approximate the optimum false-alarm rate, as specified by β, given a knowledge of it. Hence the column in Table 4 labeled "Announced Optimum $P_{i}(A)$". The experimenter's ability to announce a value of $P_{i}(A)$ approaching the optimum value, before the ROC curves of the observers had been determined directly,
depends upon the fact that, as reported in references 22 and 23, forced-choice and yes-no response procedures yield consistent values of \(d'\). The observers in the second study, like those in the first, had been trained under the forced-choice procedure, so estimates of \(d'\) were available.

A comparison of the column in Table 4 labelled "Announced Optimum \(P_M(A)\)" and the columns containing the \(P_M(A)\) obtained from each observer indicate how well the observers reproduced the value announced as optimum. The rank-order correlations between the announced optimum and obtained values of \(P_M(A)\) are \(.94, .97, .96,\) and \(.98\). Two of the observers served in twelve sessions; the other two served in thirteen sessions. The rank-order coefficient associated with a probability of \(.01\), given twelve pairs of measures, is \(.68\). In this study, the observers were informed of their proportion of false alarms after each group of fifty trials. The study of the Neyman-Pearson Observer, reported in the next section of this paper, provides additional evidence for the rather remarkable ability of the observer to reproduce a given false-alarm rate.

3. THE NEYMAN-PEARSON OBSERVER

3.1 The Approach to the Announced Optimum Value of \(P_M(A)\)

A different set of four observers served in this experiment. The observers were informed of the a priori probability of signal occurrence \(P(M) = .72\) was held throughout the experiment), but instead of operating in terms of values and costs, they attempted to satisfy a restriction placed on the proportion of false alarms.

The restriction on the proportion of false alarms took the form of a stipulation for the observers of the acceptable number of "yes" responses to the fourteen "no-signal" presentations in each block of fifty presentations. The
observers were instructed to respond positively to approximately \(n \) or \(n + 1 \) of the fourteen "no-signal" presentations (\(n \), for the four successive conditions of the experiment, equaled 3, 0, 6, and 9 respectively), so that any proportion of false alarms, across several blocks of fifty presentations, within a given range of .05 satisfied the restriction. A given restriction on \(P_n(A) \) was effective across eighteen blocks of fifty trials. There were then four conditions, each with a different acceptable range for \(P_n(A) \); thus, the primary data consist of four values of \(P_n(A) \) for each observer, with each of these four values based on 292 "no-signal" presentations. The acceptable range for \(P_n(A) \) for the four conditions are shown as column headings in Table 5; the false-alarm rates obtained from the four observers appear as cell entries. Note that the largest deviation from the range announced as acceptable is .04. These data, then, also suggest that the observer is able to vary, and quite precisely, the cutoff point on the continuum of observations.

It is true that the data presented in the previous paragraph, to the extent that they were reported there, could have been obtained if the "threshold concept were valid. If the observer were given immediate knowledge of correctness of response, any false-alarm rate could be approximated, for example, by saying "yes" until the given proportion of false alarms was achieved and then saying "no" on the rest of the presentations. This would entail, however, a severe depression of \(d' \). In this study, the observers were given knowledge of correctness of response only after each block of 50 presentations, and the values of \(d' \) were not depressed.

1.2 Other Analyses of the Data of this Study

In this study, twelve values of signal intensity were used, in addition to the "blank" or "zero-intensity signal". This rather large number of signal
values was employed in an attempt to define more adequately the shape of the psychophysical curve. The results of the analysis of curve shape will be discussed in the paper dealing with psychophysical methods (Ref. 20).

The nature of the ROC curves resulting from this study cannot be adequately determined since only four points were obtained for each curve; that is, for each value of d' or signal intensity. Neither can the degree of correlation between P(S|A) and calculated threshold be estimated since only four pairs of measures were obtained. Thus, the results of this study could not stand alone as evidence for the existence of a variable criterion, or stated more generally, as evidence that the observer's decision function is a monotonic function of likelihood ratio. It is believed, however, that the other four experiments reported herein are sufficient to establish this point.

4. THE A POSTERIORI PROBABILITY OBSERVER

The same four observers who served in the second Expected-Value experiment served in this study of the ability of the human observer to report a posteriori probability. In this experiment, P(S|A) = .50. The task posed for the observers was to place each observation in one of six categories of a posteriori probability. Here again, the ability to order the observations down into the noise is required.

One analysis of the data is reported in Table 6. The categories of a posteriori probability with which the observers worked head the columns. The boundaries of the categories were chosen in conference with the observers; they believed that they would be able to operate reasonably with this particular scheme. The cell entries show the proportion of the observations placed in a given category that were, in fact, observations of signal-plus-noise; note that each of the
<table>
<thead>
<tr>
<th>Announced Categories</th>
<th>0.0 - 0.04</th>
<th>0.05 - 0.19</th>
<th>0.20 - 0.39</th>
<th>0.40 - 0.59</th>
<th>0.60 - 0.79</th>
<th>0.80 - 1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observer 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.20</td>
<td>.28</td>
<td>.45</td>
<td>.49</td>
<td>.76</td>
<td>.97</td>
<td></td>
</tr>
<tr>
<td>.23</td>
<td>.24</td>
<td>.42</td>
<td>.46</td>
<td>.84</td>
<td>.95</td>
<td></td>
</tr>
<tr>
<td>.20</td>
<td>.23</td>
<td>.28</td>
<td>.61</td>
<td>.77</td>
<td>.95</td>
<td></td>
</tr>
<tr>
<td>Observer 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.11</td>
<td>.28</td>
<td>.47</td>
<td>.70</td>
<td>.92</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>.14</td>
<td>.16</td>
<td>.50</td>
<td>.36</td>
<td>.96</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>.18</td>
<td>.19</td>
<td>.38</td>
<td>.64</td>
<td>.91</td>
<td>.96</td>
<td></td>
</tr>
<tr>
<td>Observer 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.16</td>
<td>.31</td>
<td>.76</td>
<td>.56</td>
<td>.65</td>
<td>.94</td>
<td></td>
</tr>
<tr>
<td>.22</td>
<td>.38</td>
<td>.33</td>
<td>.24</td>
<td>.70</td>
<td>.92</td>
<td></td>
</tr>
<tr>
<td>.21</td>
<td>.21</td>
<td>.42</td>
<td>.43</td>
<td>.36</td>
<td>.82</td>
<td></td>
</tr>
<tr>
<td>Observer 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.26</td>
<td>.71</td>
<td>.88</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>.27</td>
<td>.77</td>
<td>.91</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>.33</td>
<td>.53</td>
<td>.75</td>
<td>.78</td>
<td>.95</td>
<td>.95</td>
<td></td>
</tr>
</tbody>
</table>
observers served in three experimental sessions. Thus, the entry in the upper left-hand corner indicates that 20 percent of the observations placed in the lowest probability category by Observer 1, in the first session, were observations of signal-plus-noise; 25 percent of the observation placed in the next category were observations of signal-plus-noise, and so forth. In nine of twelve cases, i.e., in nine of the twelve rows of Table 6, a rank-order correlation of unity exists between the estimated *aposteriori* probability and the relative frequency of observations arising from signal-plus-noise, indicating an ordering of observations. Each of these correlations has an associated probability of less than .05. All of the three cases showing a correlation of less than unity are attributable to a single observer, Observer 3.

4.1 The Relationship between \(d(x) \) and \(f(x) \)

It is possible, using the data from this experiment, to determine the relation existing between the observer's decision function, \(d(x) \) and likelihood-ratio, \(f(x) \). For this experiment, with \(P(SN) = .50 \), the equation for *aposteriori* probability, given in the introductory section of this paper, reduces to

\[
P_x(SN) = \frac{f(x)}{f(x) + 1}.
\]

Since \(P_{SN}(A) \) and \(P_N(A) \) can be estimated for the boundaries of the six categories, \(d' \) can be determined. A knowledge of \(P_N(A) \) (relative to each boundary) and \(d' \) allows a graphic determination of the value of \(f(x) \) corresponding to each boundary since the critical value of \(f(x) \) for a given value of \(P_N(A) \) equals the slope of the ROC curve at the point which corresponds to that value of \(P_N(A) \). Thus \(P_x(SN) = \frac{f(x)}{f(x) + 1} \) can be determined for each operating level employed by the observer. The values of \(\frac{f(x)}{f(x) + 1} \) obtained in this way for the observer will correspond directly to the probability values marking off the categories — if the observer is operating with a decision function, \(d(x) \), that is equal to \(f(x) \), and according to the optimum relation between \(P_x(SN) \) and \(f(x) \).
Figures 11, 12, 13, and 14 show plots of the probability values corresponding to boundary categories versus $P_x(SW) = \frac{I(x)}{I(x) + 1}$ determined from the data for the four observers. Observers 1 and 2 appear to be operating with $d(x)$ similar to $I(x)$ and approximately according to knowledge of the optimum relation between $P_x(SW)$ and $I(x)$. This result should probably not be generalized beyond the condition of $P(SW) = P(N) = 0.5$. It should be remembered, however, that the observers were exposed to this task for only four experimental sessions, with feedback after each session limited to the information reported in Table 6. With respect to Observers 3 and 4, it is not clear whether they are operating with a $d(x)$ quite unlike $I(x)$, or with an imperfect approximation to the optimum relation between $P_x(SW)$ and $d(x)$, or both.

It is possible to determine more exactly the relation between $I(x)$ and $d(x)$ for the four observers. The observer's decision function, $d(x)$, can be set equal to $\frac{I(x)}{v}$ and the value of v determined. Then the cutoff values of $P_x(SW)$ used by the observers are described by

$$P_x(SW) = \frac{I(x)}{I(x) + 1}$$

where p is set equal to the boundaries of the categories. One interesting question is whether the weights, v's, are constant for each observer. The values of v corresponding to each category boundary, for each session and for each observer, are given in Table 7.

1. Observers 1, 3, and 4 reported a posteriori probability in a single session preceding the three sessions reported in Table 6. Since different categories were used, this session was considered as practice, and the data excluded from the analysis.
FIG. II. OBJECTIVE PROBABILITY VS. SUBJECTIVE PROBABILITY FOR OBSERVER 1.

\[P_{x|SN} = \frac{f(x)}{\bar{z}(x)+1} \]
FIG. 12. OBJECTIVE PROBABILITY VS. SUBJECTIVE PROBABILITY FOR OBSERVER 2.
FIG. 13. OBJECTIVE PROBABILITY VS. SUBJECTIVE PROBABILITY FOR OBSERVER 3.
FIG. 14. OBJECTIVE PROBABILITY VS. SUBJECTIVE PROBABILITY FOR OBSERVER 4.
TABLE 7 -- THE RELATIONSHIP BETWEEN $a(x)$ and $f(x)^+$

<table>
<thead>
<tr>
<th>Category Boundaries</th>
<th>Observer and Day</th>
<th>.05</th>
<th>.20</th>
<th>.40</th>
<th>.60</th>
<th>.80</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 1</td>
<td>2.9</td>
<td>1.7</td>
<td>1.3</td>
<td>2.2</td>
<td>---</td>
</tr>
<tr>
<td>Obs. 1</td>
<td>Day 2</td>
<td>3.2</td>
<td>2.0</td>
<td>1.4</td>
<td>2.2</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Day 3</td>
<td>2.5</td>
<td>1.6</td>
<td>1.3</td>
<td>1.4</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Day 1</td>
<td>3.2</td>
<td>2.2</td>
<td>2.3</td>
<td>4.0</td>
<td>---</td>
</tr>
<tr>
<td>Obs. 2</td>
<td>Day 2</td>
<td>.95</td>
<td>2.0</td>
<td>3.5</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Day 3</td>
<td>1.9</td>
<td>1.7</td>
<td>1.9</td>
<td>2.7</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Day 1</td>
<td>5.3</td>
<td>3.8</td>
<td>1.7</td>
<td>1.2</td>
<td>1.4</td>
</tr>
<tr>
<td>Obs. 3</td>
<td>Day 2</td>
<td>6.4</td>
<td>2.6</td>
<td>1.4</td>
<td>1.2</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Day 3</td>
<td>4.0</td>
<td>1.6</td>
<td>.7</td>
<td>.4</td>
<td>.3</td>
</tr>
<tr>
<td></td>
<td>Day 1</td>
<td>28.5</td>
<td>20.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Obs. 4</td>
<td>Day 2</td>
<td>34.2</td>
<td>36.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Day 3</td>
<td>30.4</td>
<td>11.6</td>
<td>6.9</td>
<td>4.7</td>
<td>---</td>
</tr>
</tbody>
</table>

The weights for some of the higher categories are indeterminate since the critical value of $f(x)$ approaches infinity as $P_N(A)$ approaches 0.0.
To determine the degree to which \(w \) approximates a constant for each session and each observer, a given fixed value of \(v \) can be chosen for each observer, and used to determine \(P_x(SW) = \frac{f(x)}{f(x) + w} \). If the "true" values of \(w \) are approximately constant for a given observer, then a plot of the points, representing category boundaries versus \(P_x(SW) = \frac{f(x)}{f(x) + w} \) (with \(w \) fixed), should be adequately fitted by a straight line intersecting the points \((0,0)\) and \((1.00, 1.00)\). That is, each of the lines in Figures 11 through 14 should correct to the diagonal. This, however, is not the result. Using fixed values of \(w \) resulted in a plot of points for Observers 1 and 2 that are only slightly better fitted by the diagonal line than are the points shown in Figures 11 and 12. A fixed value of \(w \) greatly improves the correspondence of the diagonal line and the plotted points for Observer 4 — for Days 1 and 2. The correspondence for Observer 3 is not improved noticeably by the transformation.

It may be noted, however, that there is the suggestion (in Table 7) of a consistent pattern between "subjective probability" and "objective probability" that is, of a pattern in the relation between \(w \) and the category boundaries. The \(w \)'s for the last two sessions for Observer 1 show the same rank-order. For Observer 3, the values of \(w \) rank from left to right for each of the three sessions with a single exception.

3. THE SECOND-CHOICE EXPERIMENT

In this experiment, a variation of the forced-choice method of response was employed to demonstrate the ability of the observer to order observations.\(^1\)

\(^1\) This experiment was suggested by R. T. Norman, formerly a member of the Electronic Defense Group, now at Princeton University.
In the version of the forced-choice method most commonly used, the observer knows that on each trial the signal will occur in one of four short, successive time intervals, and he is forced to choose in which of these intervals he believes the signal occurred. If the observer can order observations, then to behave optimally he must select the interval with the greatest associated observation. If the observer behaves optimally, then the probability that a correct answer will result for a given value of \(d' \), for the four-choice or four-interval situation, is given by the equation:

\[
P(c) = \int_{-\infty}^{\infty} [F(x)]^3 g(x)dx
\]

where \(F(x) \) is the area of the noise distribution and \(g(x) \) is the ordinate of the signal-plus-noise distribution. The value of \(P(c) \) corresponding to each value of \(d' \) is shown by the middle curve of Fig. 15. This curve is plotted under the assumption that the distributions of \(N \) and \(S + N \) are Gaussian and of equal variance.

2.1 The Rationale for the Second-Choice Experiment

Consider the situation where the observer is required to indicate a second choice as well as a first choice. What is the probability of a correct second choice on those trials on which the first choice is incorrect?

The conventional notion of a threshold — as pointed out above and, in more detail, in Reference 25 — is essentially that the mechanism of detection is one that triggers when the observation exceeds a critical amount, and loses all discrimination among observations falling short of this amount. For the (four-choice) forced-choice situation where the observer is required to indicate a second choice as well as a first choice, this conception of the mechanism leads to the prediction that, when the first choice is incorrect, the probability that the second choice will be correct is .33. According to this
view, in other words, the second choice is made from among three intervals on a chance basis.

On the other hand, according to the conception of the human observer as operating in terms of likelihood ratio, the observer is capable of ordering the four observations associated with the four intervals. If this is the case, the proportion of correct second choices, on those trials in which an incorrect first choice is made, should be greater than .33. The relationship between this predicted probability and d' is given by the expression

$$
\frac{\int_{-\infty}^{\infty} [F(x)]^2 \left[1 - F(x)\right] g(x) \, dx}{\int_{-\infty}^{\infty} [F(x)]^3 g(x) \, dx}
$$

where the symbols have the same meaning as in Equation 1 above. This relationship is plotted in Figure 15 under the assumption that the distribution of N and $S + N$ are Gaussian and of equal variance.

5.2 Results

We collected from four observers; two of them had served previously in the second Expected-Value experiment whereas the other two had only received the forced-choice training. Each of the observers served in three experimental sessions. Each session included 150 trials in which both a first and second choice were required. The resulting twelve proportions of correct second choices are plotted against d' in Figure 15. The values of d' were determined by using the proportions of correct first choices as estimates of $P(c)$ and reading the corresponding values of d' from the middle curve of Fig. 15. Although a single value of signal intensity was used, the values of d' differed sufficiently from one observer to another to provide an indication of the congruence of the
FIG. 15. THE SECOND-CHOICE DATA AND PREDICTIONS FOR THE SECOND-CHOICE SITUATION UNDER THE ASSUMPTION THAT THE N AND S+N DISTRIBUTIONS ARE GAUSSIAN AND OF EQUAL VARIANCE.
data with the predicted functions. Additional variance in the es. mates of d' resulted from the fact that, for two observers, a constant distance from the signal was not maintained. (The function predicted by the theory of signal detectability for the proportion of correct first choices in a three-choice, or three interval, situation is included in Fig. 15 to indicate that this function is not the same as the predicted function of the probability of a correct second choice, given an incorrect first choice, for the four-choice situation).

A systematic deviation of the data from a proportion of .33 clearly exists. Considering the data of the four observers combined, the proportion of correct second choices is .46. The deviation of this obtained proportion from .33 is highly significant, the X^2 obtained (43.66) is more than twice the $X^2(19.0)$ associated with a probability of .00001.

Two control conditions aid in interpreting these data. The first of these allowed for the possibility that requiring the observer to make a second choice might depress his first-choice performance. During the experiment, blocks of 50 trials in which only a first choice was required were alternated with blocks of 40 trials in which both a first and second choice were required. Pooling the data from the four observers, the proportions of correct first choices for the two conditions are .550 and .651, a difference that is obviously not significant.

A preliminary experiment in which data were obtained from a single observer for five values of signal intensity also serves as a control. This experiment substantiates the predicted correlation between the probability of a correct second choice and signal intensity that derives from the theory of signal detectability. 150 observations were made at each value of signal intensity. The relative frequencies of correct second choices for the lowest four values of signal intensity were, in increasing order of signal intensity, 26/117 (.22).
For the highest value of signal intensity, none of five second choices were correct. Thus, the proportion of correct second choices is seen to be correlated with a physical measure of signal intensity as well as with the theoretical measure (d') — this eliminates the possibility that the correlation found with a constant value of signal intensity, involving d' as one of the variables (Figure 15), is an artifact of theoretical manipulation. The second-choice data, then, demonstrate clearly the untenability of the assumption of a fixed criterion or threshold.

It may be seen from Fig. 15 that second-choice data also deviate systematically from the predicted function derived from the theory of signal detectability. This discrepancy results from the inadequacy of the assumption — of equal variance of the noise and signal-plus-noise distributions — upon which the predicted functions in Fig. 15 are based. It was pointed out above and in Reference 25 that the equal-variance assumption was accepted in the early stages of data collection in order to facilitate analysis, in spite of existing indications of its inadequacy. It was also pointed out above that more recent data on the Expected-Value Observer (see Figures 7-10 and accompanying text) indicate that a valid assumption would be the assumption that the ratio of the increment in the mean to the increment in the standard deviation, $\Delta M / \Delta \sigma$, is equal to 4. Figure 16 shows the second-choice data and the predicted four-choice and second-choice curves derived from the theory of signal detectability under the assumption that $\Delta M / \Delta \sigma = 4$. In view of the variance associated with each of the points (each first-choice d' was estimated on the basis of 300 observations and each second-choice proportion on less than 100 observations) the congruence of the data and the predicted function shown in Fig. 16 is quite remarkable.
FIG. 16. THE SECOND-CHOICE DATA AND PREDICTIONS FOR THE SECOND-CHOICE SITUATION UNDER THE ASSUMPTION THAT $\frac{\Delta M}{\Delta \sigma} = 4$.

The second-choice data and predictions for the second-choice situation under the assumption that $\frac{\Delta M}{\Delta \sigma} = 4$.

The graph shows the relationship between the probability of choosing correctly ($P(C)$) and the decision criterion (d') for a 4-choice and 2nd-choice situation. The fixed criterion is indicated at 0.33.
5.3 A Note on the Variance Assumption

The particular assumption made in this paper about the variance of the noise and signal-plus-noise distributions, namely that $\frac{\sigma_n^2}{\sigma_s^2} = 4$, needs qualification in two respects. First, it is very likely specific to the experimental conditions employed. Second, it is to be regarded as only provisionally applicable to the present data.

If the variance of these sampling distributions is a function of sample size, then it may be presumed that their variances are different for different signal durations, or observation times, and for signals of different sizes. If the variance of the noise and signal-plus-noise distributions decreases with increases in signal size and duration, then an assumption concerning the increase in variance with increasing signal intensity is applicable only to data collected using a single duration and size of signal. Since the various experiments reported here employed identical signal conditions, it was possible to assess the adequacy of a single variance assumption for different forms of data, for "yes-no" data in Section 2 and for forced-choice data in Section 5. Although positive results were obtained from this check of internal consistency, it should not be inferred that the particular assumption will describe the results of experiments involving different physical parameters.

Also, as indicated, that the assumption that $\frac{\sigma_n^2}{\sigma_s^2} = 4$ derives from the data reported here is advanced with certain provisions. Other assumptions have not been thoroughly explored. It may be that ratios equal to certain other constants will fit the reported data even better, and that several other constant ratios will fit the data as well. The sensitivity of the assumed ratio to the existing data has not as yet been determined. It is likely that more precise data is required for the purpose of determining the relative adequacy of different variance assumptions.

These problems are presently being explored; the results will be reported in the paper concerned with methods of data analysis (Ref. 20).
The general conclusion drawn from the experimental results reported above is that the model provided by the theory of signal detectability (Refs. 15, 16) or more generally, by the theory of statistical decision (Refs. 13, 14, 27, 28) is applicable to the detection behavior of the human observer. This model will produce data like those observed.

This type of model has come to be called a "computer model". The term "computer", in this connection, is meant very generally; it includes anything that processes information in a precisely defined way. Quastler's discussion of the nature of the computer model is pertinent here.

"The computer model may be a system of equations. It may be a black-box diagram with boxes labelled 'receiver', 'memory', 'transducer', 'decision', etc. It may be a piece of hardware. It may have many or few components; it may be determinate or stochastic. Neither the size nor the type nor the physical nature of the model matter. All that does matter is that it should serve as a framework to organize past and future experience" (Ref. 17).

It became clear to the authors, as the series of experiments reported above was being carried out, that the model described served admirably the function of organizing past and future experience. The block-diagram representation of the model of the Expected-Value Observer, after Quastler (Ref. 17), is shown in Figure 17.

![Block Diagram of the Expected-Value Observer](image)

FIG. 17. BLOCK DIAGRAM OF THE EXPECTED-VALUE OBSERVER
The same diagram applies to the Neyman-Pearson Observer when the input to the criterion computer \((P(SN), V's, \text{and } K's) \) is replaced by \(P_N(A(\beta)) = k \).

In the case of the A posteriori Observer, there is, of course, no criterion computer, and the decision computer is replaced by a computer which makes the transformation from \(I(x) \) to \(P_X(SN) \), having \(I(x) \) and \(P(SN) \) as input and \(P_X(SN) \) as output. To represent the forced-choice situation, the criterion computer is eliminated, and the decision computer merely selects the greatest of the input likelihood ratios as its output.

Each of the five experiments reported above demonstrates that the human observer operates with information in the form of likelihood ratio, and tends toward optimum behavior. These experiments provide convincing evidence of the applicability of the proposed model to the problems of visual detection. The relevance of the model is also supported by its congruence with auditory data (Ref. 26). There is, however, still another imposing reason for treating sensory problems in terms of the model, namely, that the model provides a unification of the data obtained with forced-choice and yes-no methods of response. If psychophysical data is collected and analyzed in accordance with this model, performance in the forced-choice situation can be predicted from yes-no data, and vice versa. Evidence presented elsewhere (Refs. 22, 25) shows that the estimates of \(d' \) from the two response procedures are highly consistent.

It is interesting to note, parenthetically, that the present account is not among the first to model psychophysical theory after developments in the theory of statistical decision. Fechner, the founder of psychophysics, was appreciably influenced by Bernoulli who first suggested computing expectations in terms of satisfaction units. As Boring (Ref. 5) relates the story, Bernoulli's interest in games of chance led him to formulate the concept of "mental fortune"; a change
in mental fortune he believed to vary with the ratio that the change in physical fortune has to the total fortune. This mathematical relation between mental and physical terms was the relation that Fechner sought to establish with his psychophysics.

6.1 The Possibility of a Threshold Theory

It will be well to consider again, after the presentation of the data, the possible validity of a theory incorporating the threshold concept. It is clear that the assumption of a threshold as previously conceived, one that is very rarely exceeded by noise alone, is not reasonable. At this time, however, the existence of a threshold well down into the noise distribution cannot be discredited. To take a single example, the data, representing values of \(P_{\text{th}}(A) \) above a point between .10 and .30, that are fitted to the R.O.C. curves in Figures 7 through 10 may be adequately fitted by a straight line through \(P_{\text{th}}(A) = P_{\text{th}}(A) = 1.0 \); these data, then, do not preclude postulation of a threshold in the neighborhood of the mean of the noise distribution. Further analyses of the second-choice data, in relation to thresholds at various levels in the noise distribution, are being undertaken and will be reported elsewhere (Ref. 20).

It should be noted, however, that determination of the level of the noise distribution at which a threshold may possibly exist is neither critical nor useful. A threshold at such a level is not a readily workable concept. The primary virtue of a threshold that is rarely exceeded by noise alone is that it facilitates mathematical treatment of the data, chiefly by being consistent with the usual correction for chance. It has been demonstrated above, however, that mathematical manipulations must not involve assumptions incompatible with a noise distribution much of which exceeds a threshold, if a threshold is to be postulated; at this point then, adhering to a threshold concept complicates the
mathematics. As a matter of fact, a threshold at a level well within the range of the noise distribution, is, for all practical purposes, not measurable. The forced-choice methodology is a case in point; the observer conveys less information than he is capable of conveying if only a first choice is required. That the second choice contains a significant amount of information has been demonstrated; it is not unlikely that the third choice will convey information. Thus it is very difficult for an experimenter to determine when enough information has been extracted from forced choices to yield a sufficiently low estimate of the threshold. In addition, the existence of such a threshold is of no consequence to the application of the theory proposed here; to take an example, "yes-no" data resulting from a suprathreshold operating level depends on the operating level but is completely independent of the threshold value.

6.2 Some Implications of the Proposed Model for Psychological Theory

The applicability of the model provided by the theory of signal detectability stands in opposition to the view that the so-called sensory phenomena are independent of control by general psychological variables, a view that is consistent with the concept of the threshold. The theory built upon this model takes into account the influence on detection behavior of "non-sensory" central determinants.

In conventional theory, the decision concerning the existence of a signal is assumed to depend entirely upon the threshold being exceeded, and the threshold level is assumed to be independent of control by other variables that might influence the attitude or set of the observer. A successful application of the theory of signal detectability to psychophysical data leads to the replacement of the threshold concept by a concept of criterion range of acceptance; the way in which the control of this range is conceptualized acknowledges the relevance of variables that influence set.
In the framework of a statistical theory, it is necessary to make an assumption which permits the definition of behavior, or the prescription of predicted behavior. The concept of the threshold has served this purpose. The assumption that the threshold is relatively invariant permits making predictions which can be tested experimentally. In the theory presented here, where the position of the cutoff between acceptance and rejection of the existence of a signal (the operating level) is assumed to be under the control of the observer, it is necessary to define the method of control exerted by the observer on the operating level.

The assumption that the observer tends toward the optimum behavior provides the necessary definition. Thus, in the typical yes-no experiment, the observer may be conceived of as regulating the operating level in terms of \textit{a priori} probabilities and the values and costs associated with the various types of correct and incorrect answers, in such a way as to maximize the total expected gain. (It should, perhaps, be pointed out that these values and costs do exist in the typical yes-no experiment, whether or not they are explicitly translated into numerical values).

In the forced-choice experiment, optimum behavior requires that no operating level be assumed, and that the interval with the greatest associated observation be selected. Although there has been a general discontent among psychologists with the concept of a fixed operating level or threshold, there has not been advanced previously a way of defining the mode of control exerted by the individual over a variable operating level. It is the chief virtue of the model provided by the theory of signal detectability that it specifies operating level variability.

6.3 Some Implications for Practice

The results of these experiments, of the Expected-Value experiments in particular, give an account for Blackwell's (Ref. 3) finding that forced-choice data are more reliable than yes-no data. In the yes-no experimental setting, when the usual caution against making false-alarm responses is included, the operating
level may vary over a wide range, with the variation having no direct reflection in the data. False-alarm rates of .01, .001, and .0001, for example, are not discriminable in an experimentally feasible number of observations. This fact may also account for the failure to detect previously the operation of a mechanism with a variable operating level.

The results presented above account also for the often-reported\(^1\) finding that the forced-choice procedure yields lower calculated thresholds than does the yes-no procedure. Conventionally, observers are cautioned against making false-alarm responses in yes-no experiments. It is very likely that the stigma attached to "hallucinating" serves to depress \(P_N(A)\) in those test settings not including an explicit warning to avoid false alarms. The inverse relationship between \(P_N(A)\) and calculated threshold predicted by the theory of signal detectability is discussed in Reference 25. Data substantiating this predicted relationship include the correlations reported above and in Reference 25 between \(P_N(A)\) and calculated threshold, and that shown in Figure 5 above. Plots of \(P_{SN}(A)\) vs. \(P_N(A)\) which do not fit a straight line through \(P_{SN}(A) = P_N(A) = 1.00\) (such as in Figures 7-10) provide another way of saying the same thing. The relationship between \(d'\) and \(P_N(A)\) at "threshold" is described in more detail in the forthcoming paper on methods (Ref. 20).

In spite of the view that "sensory" phenomena are peripherally determined, the necessity of assuming a constancy of "set" across people and over time in psychophysical experiments has been generally accepted. Effecting this constancy is a primary function, at least in the yes-no experiments, of the verbal instructions. The theory of signal detectability and the experiments reported have advanced a check on the assumption of constancy of set with respect to the most important aspect of set in yes-no experiments, namely, the location of the

\(^1\) See, for example, Blackwell (Ref. 3) and Goldiamond (Ref. 9). Miller (Ref. 12) reviews earlier literature on "subliminal perception" that is relevant to this point.
cutoff between acceptance and rejection of the existence of a signal. This re-
search has demonstrated that a measurable estimate of $P_H(A)$ can be, and should be, produced in yes-no experiments. By the same token, theoretical support has been provided for the advisability of using the forced-choice procedure whenever possible. With this technique, the observer is not faced with the problem of locating and maintaining the stability of an operating level, and thus a source of variance in the data is removed. Since a method for unifying forced-choice and yes-no data has been provided (Refs. 22, 25), forced-choice technique can be used even when an estimate of performance in the yes-no situation is desired. The practical import of this is that data pertinent to yes-no situations, that is more reliable, can be obtained with greater economy. This topic is treated in more detail in the paper on methods (Ref. 20).

That the condition of the organism affects perception has been demonstrated previous to the studies reported here. The theory of Ames and his co-
workers (Ref. 1), the "new look" theory of Bruner and Postman (Ref. 6), and the theories of Hebb (Ref. 11), Brunsvik (Ref. 7), and Woodworth (Ref. 29) have taken into account the effect of "non-sensory" central determinants. The present account, however, goes beyond the stage of demonstration; it provides operational and theoretical specifications of the "conditions". The present account, then, satisfies the desiderata discussed by Graham (Ref. 10): the conditions of the organism are specified at other than the conversational level; the conditions are defined in the theory and anchored to operations at both ends. Since the variables which determine these conditions are expressed quantitatively, the quantification of an important group of instruction stimuli has been achieved. Said another way, this research proceeds a step in the direction of specifying conditions of the organism, due to instructions, as parameters of observable stimulus-response relations.
REFERENCES

DISTRIBUTION LIST

1 copy
Director, Electronic Research Laboratory
Stanford University
Stanford, California
Attn: Dean Fred Terman

1 copy
Commanding General
Army Electronic Proving Ground
Fort Huachuca, Arizona
Attn: Director, Electronic Warfare Department

1 copy
Chief, Engineering and Technical Division
Office of the Chief Signal Officer
Department of the Army
Washington 25, D. C.
Attn: SIGJM

1 copy
Chief, Plans and Operations Division
Office of the Chief Signal Officer
Washington 25, D. C.
Attn: SIGP-5

1 copy
Countermeasures Laboratory
Gilfillan Brothers, Inc.
1815 Venice Blvd.
Los Angeles 6, California

1 copy
Commanding Officer
White Sands Signal Corps Agency
White Sands Proving Ground
Las Cruces, New Mexico
Attn: SIGWS-CM

1 copy
Commanding Officer
Signal Corps Electronics Research Unit
9560th TSU
Mountain View, California

75 copies
Transportation Officer, SCAL
Evans Signal Laboratory
Building No. 42, Belmar, New Jersey

C/O SCAL Accountable Officer
Inspect at Destination
Title No. 22824-PH-54-91(1701)
1 copy
H. W. Welch, Jr.
Engineering Research Institute
University of Michigan
Ann Arbor, Michigan

1 copy
Document Room
Willow Run Research Center
University of Michigan
Willow Run, Michigan

11 copies
Electronic Defense Group Project File
University of Michigan
Ann Arbor, Michigan

1 copy
Engineering Research Institute Project File
University of Michigan
Ann Arbor, Michigan