AD NUMBER

AD046111

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; Jan 1954. Other requests shall be referred to the Commanding Officer, Chemical Corps, Army Chemical Center, MD.

AUTHORITY

EA D/A ltr, 6 Oct 1972

THIS PAGE IS UNCLASSIFIED
Task 3. Analogs of Tetrahydrocannabinol for Chemical Corps Procurement Agency

Project No. 4-08-03-001
Contract No. CML-4564
Progress Report from December, 1953 thru January, 1954

SHELL DEVELOPMENT COMPANY
EMERYVILLE, CALIFORNIA

Approved for public release; distribution unlimited.
Bi-Monthly Report No. 9

on TASK 3

for

Chemical Corps Procurement Agency

Contract No. CML-4564

Period Covered: December, 1953 through January, 1954

Reported and Reviewed: D.E. Winkler
R.R. Whetstone

Participants: D.D. Campbell
R.J. Patten

Approved: W.E. Vaughan

SHELL DEVELOPMENT COMPANY
EMERYVILLE, CALIFORNIA

S-13570

Approved for public release; distribution unlimited.

SECRET
# TABLE OF CONTENTS

Abstract ........................................... page 1
Analogs of Tetrhydrocannabinol .................. 2
   Nitrogen Analogs .................................. 2
   Sulfur Analogs .................................... 2
   Changes in Alkyl Groups ......................... 3
Appendix .........................
Abstract

A thiopyran analog of tetrahydrocannabinol has been prepared in which the amyl group in the three position (I) has been substituted by methyl. The corresponding oxygen analog has been prepared as a reference standard.

The synthesis of a compound having an aminomethyl group in the three position has been carried to what is believed to be 1-hydroxy-9-methyl-7,8,9,10-tetrahydro-6-dibenzopyrone-3-acetic acid.

Another unsuccessful attempt was made to prepare a compound with an amino group in the one position.

The work on Task 3 is terminated with this report.
Analogs of Tetrahydrocannabinol

Nitrogen Analogs

Another attempt has been made to prepare a nitrogen analog of tetrahydrocannabinol (I) having a dimethylamino group in the one position.\(^a\)

The method tried involved the reaction of ethyl 5-methyl-cyclohexanone-2-carboxylate with 3-dimethylamino-5-arylphenol according to Long and Sears\(^b\) who use zinc chloride to effect the condensation of keto esters with dialkylaminophenol. The reaction was tried with and without a solvent - the two methods suggested in the patent. When a solvent was used the starting materials were recovered unchanged. Without a solvent a higher boiling material was produced which boiled over a wide range and was never successfully purified. The patent claims were tested by reacting our keto ester with m-dimethylaminophenol and a crystalline material was recovered. Ring closure probably did not occur between the amino and hydroxyl group but rather para to the amino group.

Sulfur Analogs

Since the preparation of 3-mercapto-5-arylphenol appeared improbable at this time,\(^c\) and it was possible to prepare 3-mercapto-5-methylphenol, it was decided to prepare a sulfur analog (II) having a methyl group in place of aryl in the three position.

---

\(a\) Winkler, D.E., Progress Report 8 (1953).

\(b\) Long, R.S., and Sears, C.A. (to American Cyanamid Co.) U.S. Patent 2,977,132.

This sulfur derivative was prepared by first adding 3-mercapto-5-methylphenol to pulegone to form a thioether\(^1\) and then cyclizing by refluxing in benzene solution with phosphorus oxychloride. We feel certain that the thioether and not the oxygen ether is formed in the first step in the above reaction for it has been demonstrated that phenol does not add to pulegone under the conditions used for adding the mercaptan group. The low sulfur value (85% of theory) for our final compound is probably due to the presence of arcinol in the 3-mercapto-5-methylphenol, which could have been formed during the diazotization of 3-amino-5-methylphenol. During the cyclization of the thioether the arcinol would have reacted with pulegone to form 1-hydroxy-3,6,6,9-tetramethyl-7,8,9,10-tetrahydro-6-dibenzo-pyran which is probably the impurity in our thiopyran. A better product might have been obtained if the thioether had been distilled before cyclization.

An alternate route to the thiopyran which involved the reaction of ethyl 5-methylcyclohexanone-2-carboxylate with 3-mercapto-5-methylphenol was tried but the yield of thiopyrone was too low to be attractive, so the conversion to thiopyran was not attempted.

To obtain a reference standard for use with the sulfur compound the oxygen analog was prepared by reacting the usual keto ester with arcinol to form a crystalline pyrone which was purified and converted to the pyran with methyl magnesium iodide.

Changes in Alkyl Groups

In a previous report\(^b\) the start of the synthesis of a compound having an aminothyl group in the three position of tetrahydrocannabinol (I) was described. At that time the synthesis was at the stage of 3,5-dimethoxyphenylacetic acid. This acid has now been converted to 3,5-dihydroxyphenylacetic acid, which has been condensed with ethyl 5-methyl-cyclohexanone-2-carboxylate in the presence of 85% sulfuric acid to form a crystalline material whose analysis is consistent with (III). Termination of the task has prevented further work.

\[\text{CH}_3\] \[\text{OH}\] \[\text{CH}_2\text{COOH}\]

\[\text{C}_6\text{H}_4\] \[\text{CH}_2\text{COOH}\]

(III)

\(^a\) Winkler, D.E., Progress Report 7 (1953).
\(^b\) Winkler, D.E., Progress Report 8 (1953).

S-15570
For an alternate route, 3,5-dihydroxyphenylacetic acid has been condensed with pulegone. An acidic material of higher molecular weight was recovered but due to the termination of the project it has not yet been purified.
## APPENDIX

1. 1-Hydroxy-3-n-Amyl-6,6,9-Trimethyl-7,8,9,10-Tetrahydrophenanthridine Hycrochloride ........................................... page 1
2. 3-Dimethylamino-5-Amylyphenol ........................................ 2
3. 3-Amino-5-Methylphenol .................................................. 3
4. 3-Mercapto-5-Methylphenol ................................................ 4
5. 1-Hydroxy-3,6,6,9-Tetramethyl-7,8,9,10-Tetrahydro-6-Dibenzothiopyryl ................................. 5
6. 1-Hydroxy-3,9-Dimethyl-7,8,9,10-Tetrahydro-6-Dibenzopyrone ......................................................... 6
7. 1-Hydroxy-3,6,6,9-Tetramethyl-7,8,9,10-Tetrahydro-6-Dibenzopyran ......................................................... 7
8. 3,5-Dimethoxyphosphorylacetic Acid ....................................... 8
9. 3,5-Dihydroxyphenylacetic Acid .......................................... 9
10. 1-Hydroxy-9-Methyl-7,8,9,10-Tetrahydro-6-Dibenzopyrone-3-Acetic Acid .......................... 10
1-Hydroxy-3-ethyl-6,6,9-Trimethyl-7,8,9,10-Tetrahydrophenanthridine Hydrochloride, C19H32ClN

An excess of gaseous HCl was passed into a solution of 52 g of 1-hydroxy-3-ethyl-6,6,9-trimethyl-7,8,9,10-tetrahydrophenanthridine in 1000 g of benzene at room temperature. The hydrochloride precipitated as a viscous oil from which the HCl-saturated benzene was decanted after three hours at room temperature. The phenanthridine hydrochloride was oven dried to an amorphous solid. The yield was 57 g or 98%.

Anal. calc'd for C19H32ClN: C, 72.0; H, 9.22; N, 4.00; Cl, 10.15.
    Found:  C, 71.1; H, 9.3;  N, 3.9; ionic
              Cl, 10.1.

S-13570.
3-Dimethylamino-5-Arylphenol, C₁₉H₁₉ON

bp 141-5°C/0.2 mm

A mixture of 35 g. of 4-methyl-3,5-dihydroxybenzene, 27 g. of dimethylamine, 40 g. of water and 12 g. of 85% phosphoric acid was shaken in a steel bomb for twelve hours at 175°C. The excess dimethylamine was removed under vacuum, and the product dissolved in 500 ml of ether, and extracted with 500 ml of 1NHCl. The amine was precipitated by adding sodium bicarbonate, extracted with ether, washed with water and Claisen distilled. A 50% conversion to product was recovered.

Analysis: For C₁₉H₁₉ON: C, 76.3; H, 10.2; N, 6.76.

Found: C, 74.9; H, 9.9; N, 6.5.
3-Amino-5-Methylphenol, C₇H₅ON

mp 135-6°C

A solution of 192 g of orcinol, 112 g of diammonium phosphate, 200 ml of 28% ammonium hydroxide, and 300 ml of water was shaken in a steel bomb for 12 hours at 175°C. The excess ammonia was removed under vacuum, and the product taken up in 1 l of ether and extracted with 150 ml of concentrated HCl in 1 l of water. The 3-amino-5-methylphenol was purified from the acid solution with sodium bicarbonate, and after cooling, filtering, washing, and drying, 124 g (80% yield) of product was recovered. It can be purified by recrystallization from water.

 Anal. calc'd for C₇H₅ON: N, 11.37
 Found: N, 11.2

S-13570
A solution of 47 g (0.34 mol) of 3-mercapto-5-methylphenol, 51 g (0.34 mol) of pulegone and 2 ml of piperidine was allowed to stand overnight at room temperature and then heated for four hours at 100°C. The tig ether was taken up in 600 ml of benzene, washed twice with water, dried under a phase separating head, and after adding 17 ml (0.18 mol) of POCl₃ it was refluxed gently for nine hours in a water bath. The product was then washed thoroughly with water and distilled. A precipitate was discarded and the fraction boiling at 160-180°C at 0.02 mm was collected. The low sulfur value is believed to be due to the presence of 1-hydroxy-3,6,6,9-tetramethyl-7,8,9,10-tetrahydro-6-dibenzopyran as explained in the body of this report.

Anal calc'd for C₁₇H₂₀O₃: C, 74.3; H, 8.08; S, 11.7.
Found: C, 74.5; H, 8.1; S, 9.9.
1-Hydroxy-3,9-Dimethyl-7,8,9,10-Tetrahydro-6-Dibenzoylprone,
C₁₅H₁₄O₃

mp 56-7°C

The procedure of Adams and Baker was followed with the exception that equal molar amounts of keto ester, orcinol, and POCl₃ were used. A 70% yield of product, recrystallized from ethanol, was recovered. The highest melting point which we were able to obtain on an aluminum block was 256-7°C. Adams reported 262-3°C.

Anal Calc'd for C₁₅H₁₄O₃: C, 73.7; H, 6.62
Found: C, 73.2; H, 6.6

---
1-Hydroxy-3,6,6,9-tetramethyl-7,8,9,10-tetrahydro-6-dibenzo[\(\text{C}_{17}\text{H}_{22}\text{O}_{2}\)]

bp 145-155°C/0.02 mm

\[\begin{align*}
\text{CH}_3 & \quad \text{OH} \\
\text{CH}_3 & \quad \text{CH}_3 + \text{CH}_3 \text{MgI} \\
\text{C} & \quad \text{O} & \quad \text{C} & \quad \text{O} \\
\text{CH}_3 & \quad \text{OH} & \quad \text{CH}_3 \\
\end{align*}\]

The procedure followed was similar to that used in the preparation of 1-hydroxy-3-secondary nonyl-6,6,9-trimethyl-7,8,9,10-tetrahydro-6-dibenzo[\text{C}] (\text{C}_{17}\text{H}_{22}\text{O}_{2})^a)

Anal. calc'd for \(\text{C}_{17}\text{H}_{22}\text{O}_{2}\): C, 79.0; H, 8.60.
Found: C, 78.7; H, 8.6

2,5-Dimethoxyphenylacetic Acid, C_{10}H_{12}O_4

mp 100.5-101°C

\[
\begin{align*}
\text{OCH}_3 & - \text{COCH}_3 + \text{C}_4\text{H}_5\text{CN} + S \rightarrow \text{CH}_2\text{CSC}_4\text{H}_6\text{ON} \\
\text{OCH}_3 & - \text{CH}_2\text{COOK} \rightarrow \text{CH}_2\text{COOH}
\end{align*}
\]

The Kindler modification of the Willgerodt reaction as used by Neumann\(^1\) and Schwenk\(^2\) was employed for this synthesis. A mixture of 50.5 g (0.28 mol) of 3,5-dimethoxyphenyl methyl ketone, \(C\), 13.5 g (0.12 mol) of sulfur and 36.5 g (0.42 mol) of morpholine was brought slowly to boiling and then refluxed fourteen hours. The crude thiazomorpholine was hydrolyzed by refluxing for twelve hours with 74 g of KOH in 740 ml of water. After springing with HCl, the crude acid was filtered and purified by recrystallizing from water with the aid of decolorizing carbon. A 69% yield of acid was recovered.

Anal. calc'd for C_{10}H_{12}O_4: C, 61.2; H, 6.17

Found:  C, 60.9; H, 6.2

\(^1\) Neumann, H.S., J. Org. Chem. 9, 521 (1944).


\(^3\) Preparation similar to butyl ketone, Winkler, D.E., Progress Report 5 (1953).
3,5-Dihydroxyphenylacetic Acid, C₆H₄O₄

mp 128-128.5°C

A solution of 8.5 g (0.43 mol) of 3,5-dimethoxyphenylacetic acid, 440 ml of 48% HBr, 440 ml of acetic acid, and 42 ml of H₂O (sp. gr. 1.7) was refluxed for 16 hours according to the method of Levine for the preparation of o-hydroxyphenylacetic acid. About half of the solvent was removed under vacuum and the remainder diluted with 1 l of water and extracted with three 1 l portions of ether. An 82% yield of crude acid was obtained which could be purified by dissolving in ethyl acetate and precipitating with benzene or chloroform.

Anal calc'd for C₆H₄O₄: C, 57.1, H, 4.80.

Found: C, 57.2; H, 4.9

1-Hydroxy-9-Methyl-7,8,9,10-Tetrahydro-6-Dibenzopyrone-3-Acetic Acid, C_{16}H_{16}O_{5}  

mp 240-41°C

![Chemical Structure]

The method of Desai\(^a\) for the condensation of methyl ß-resorcylate with ethyl cyclohexanone-2-carboxylate was used.

A solution of 2.0 g of 3,5-dihydroxy-phenyiacetic acid and 2.0 g of ethyl 5-methylcyclohexanone-2-carboxylate in 20 g of 80% sulfuric acid was allowed to stand five days at room temperature. Upon pouring into 200 g of ice and water a precipitate formed which was filtered and washed. The yield was 3 g of crude material. After three recrystallizations from 40% ethanol, 1.0 g was recovered which melted at 240-41°C.

Anal calc'd for C_{16}H_{16}O_{5}: C, 66.7, H, 5.60.  
Found: C, 66.4, H, 5.5.

---

\(^a\) Desai, R.D., Gaitonde, M.M., Mehdì Hanson, S., and Shah, R.C., Indian Acad of Sci 22 345 (1947).