UNCLASSIFIED

AD NUMBER

| AD044460 |

CLASSIFICATION CHANGES

| TO: | UNCLASSIFIED |
| FROM: | CONFIDENTIAL |

LIMITATION CHANGES

| TO: |
| Approved for public release; distribution is unlimited. Document partially illegible. |

| FROM: |
| Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; OCT 1954. Other requests shall be referred to Picatinny Arsenal, Dover, NJ. Document partially illegible. |

AUTHORITY

AGC D/A ltr 27 Dec 1974 ; AGC D/A ltr 27 Dec 1974

THIS PAGE IS UNCLASSIFIED
THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.
Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by

DOCUMENT SERVICE CENTER

KNOTT BUILDING - SYRACUSE, NY - OHIO
CONFIDENTIAL

TECHNICAL REPORT 2075

THE INFLUENCE OF THE SURFACE
CONTOUR OF AN EXPLODING BODY
ON FRAGMENT DISTRIBUTION

BY

WILLARD R. BENSON

OCTOBER 1954

This document contains information affecting the national
defense of the United States within the meaning of the
Espionage Laws, Title 18, U.S.C., Sections 793 and 794.
The transmission or the revelation of its contents in any
manner to an unauthorized person is prohibited by law.

SAMUEL FELTMAN AMMUNITION LABORATORIES
PICATINNY ARSENAL
DOVER, N. J.

ORDNANCE PROJECT TB1-0004
DEPT. OF THE ARMY PROJECT 572-01-004

COPY 20

CONFIDENTIAL

54AA 65047
THE INFLUENCE OF THE SURFACE CONTOUR
OF AN EXPLODING BODY ON FRAGMENT DISTRIBUTION

by

Willard R. Benson

October 1954

Picatinny Arsenal
Dover, N. J.

Technical Report 2075
Ordnance Project No TEB-0004
Dept of the Army Project No 572-01-004

Approved:

John D. Armitage
Col, Ord Corps
Director
Samuel Feltman
Ammunition Laboratories
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract and Conclusion</td>
<td>1</td>
</tr>
<tr>
<td>Symbols</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>General Solution for Axis Perpendicular to Target Surface</td>
<td>5</td>
</tr>
<tr>
<td>Simplification of General Solution</td>
<td>8</td>
</tr>
<tr>
<td>Exact Solution for the Surface that Produces Constant Fragment Density</td>
<td>11</td>
</tr>
<tr>
<td>Fragment Distribution for a Spherical Missile</td>
<td>12</td>
</tr>
<tr>
<td>General Solution for Axis Inclined to Target Surface</td>
<td>18</td>
</tr>
<tr>
<td>Appendix A - Surface that Produces Optimum Lethal Area Under Certain Assumptions</td>
<td>22</td>
</tr>
<tr>
<td>Appendix B - Application of Analysis to an Aerial Exploding Body</td>
<td>25</td>
</tr>
<tr>
<td>Appendix C - Comparison of a Sphere and the Kent-Hitchcock Contour for Lethal Area</td>
<td></td>
</tr>
</tbody>
</table>
OBJECT

To determine the influence of the surface contour of an exploding body on fragment distribution.

ABSTRACT

The effect of the surface contour of an aerial exploding body upon fragment distribution is derived for a surface of revolution of arbitrary shape.

CONCLUSION

The density of the fragment distribution at any position on a target area can be determined for any given symmetrical surface contour of a missile. Generally, this distribution will be a variable.

The primary interest in desiring an analytical expression for fragment distribution is to determine its effect on lethal area. Naturally, the most desirable contour would be that which gives the maximum lethal area for a given number of fragments.

From the equations derived in this report, it is possible to determine the fragment distribution of a missile, given the equation or coordinates of the missile surface. If the fragment distribution is known, the lethal area for the particular tactical application intended for the missile can be calculated by using the information furnished in various Ballistic Research Laboratories (BRL) reports. In many cases, the computations could be set up in tabular form, so that a computer could carry out the calculations without understanding the physics of the problem.
SYMBOLS

x - Variable distance along x axis
y - Variable distance along y axis
r - Distance from origin to element ds
α - Angle between r and the y axis
b - Distance from x axis to the center of the radius of curvature for any element ds
ρ - Radius of curvature for any element ds
Θ - Angle between ρ and the y axis
A - Distance from x axis to the lowest point of the body
h - Vertical distance from the lowest point of the body to the target surface T
a - A / h
ds - An infinitesimal arc length
d - Distance from the y axis to the x-intercept of the curve s
η - Distance from the y axis to any arbitrary point on the target surface

\(\text{(-ay'} \times yy' \times x) \)

D - Diameter of the desired target area
CP - Distance from the center of curvature of any element ds to point a on the target surface (see Fig 1)
As - Surface area of the exploding body
A - Projected area of the fragment
N - Number of fragments per unit of the exploding body
K - Density of the fragment distribution - number of fragments per unit area impinging on the target surface
W - Weight of a fragment

Y^1 - dy/dx
Y^11 - d^2y/dx^2

B - (1 \times (y^1)^2 - ay^{11} \times yy^{11})

R - Distances fragment travels from missile surface to target
T - Target surface
P - dy/dx
INTRODUCTION

1. The expected number of fragment hits on a target depends on the fragment density at the target and the projected area offered by the target. Whether the target is incapacitated or not depends on the mass, velocity, and shape of the fragments, in addition to the number and location of hits. This report will be concerned with only one of these factors, the fragment distribution. Since the most important factor in controlling fragment distribution is the surface contour of the exploding body, the analytical approach to the effect of the surface contour is considered restricted by the following assumptions:

 a. A constant number of fragments per unit surface area of the exploding body.
 b. The fragments leave normal to the surface of the body.
 c. The velocities of the fragments are of such a high value that the influence of gravity can be neglected.
 d. The exploding body is considered stationary; that is, the body velocity is considered to be zero.

In order to obtain a simple mathematical solution to the problem, certain assumptions must be made. It is believed that the above assumptions are justifiable.

2. The first assumption, of course, can be controlled in the fabrication of the projectile.

3. The second assumption is certainly the most debatable. The location of the point of detonation will undoubtedly affect the normal radiation to some extent. If this influence is constant for a given design, however, as it should be, the fragment distribution, considering normal departure, should be susceptible to mathematical correction. All other influences on normal departure from a static body should be of a random nature and hence should fluctuate about the normal as an average.

4. The third assumption restricts the fragment paths to straight lines.
5. The fourth assumption is related to the second assumption in that any velocity of the body will affect the normal radiation of the fragments. In many cases, however, the velocity of the body will have little effect and can be neglected.

6. The mathematics of this paper were completed before the author realized that parts of it paralleled analytical work accomplished at the Ballistic Research Laboratories. The surface discussed in paragraphs 13-16 of this report is known as the Kent-Witchcock contour.*

7. In addition, H. K. Weiss ** of the Ballistic Research Laboratories has derived the optimum contour for certain tactical situations.

* Kent, R. H., "The Shape of a Fragmentation Bomb to Produce Uniform Fragment Densities on the Ground," BRL Report No. 762

** Weiss, Herbert K., "Optimum Angular Fragment Distributions for Air-Ground Warheads," BRL Report 829
DISCUSSION OF RESULTS

General Solution for Axis Perpendicular to Target Surface

8. General solution:

Consider that a missile of arbitrary shape, symmetrical about its axis, is detonated with its axis perpendicular to a plane target surface (see Fig 1). The density of the fragment distribution on the target surface T for any position η is given by

$$K = \frac{M dA_s}{dA_\eta}$$ \hspace{1cm} (1)

where

$$dA_s = 2\pi x ds$$ \hspace{1cm} (2)

and

$$dA_\eta = 2\pi \eta d\eta$$ \hspace{1cm} (3)

Substituting Equations 2 and 3 in Equation 1 gives

$$K = \frac{M x ds}{\eta d\eta}$$ \hspace{1cm} (4)
9. It now remains to find ds, η, and $d\eta$ as functions of x, y, y^1 and y^{11}

From Figure 1, it can be seen that

$$\eta = (R \rho) \sin \theta - (\rho \sin \theta - r \sin \alpha) \quad (5)$$

and that

$$(R \rho) = \frac{a - b}{\cos \theta} \quad (6)$$

Substituting Equation 6 in Equation 5, there results

$$\eta = (a - b) \tan \theta - \rho \sin \theta \sin \alpha \quad (7)$$

It is also noted that

$$b = r \cos \alpha - \rho \cos \theta \quad (6)$$

Substituting Equation 8 in Equation 7, there results

$$\eta = a \tan \theta - r \cos \alpha \tan \theta \sin \alpha \quad (9)$$

From elementary calculus the expression for the radius of curvature in rectangular coordinates is given by

$$\rho = -\left(\frac{1}{y} \left(\frac{y^1}{y} \right)^2\right)^{3/2} \quad (10)$$

Also from Figure 1, it is seen that

$$\frac{dy}{dx} = \tan \theta \quad (11)$$

Therefore,

$$\sin \theta = -\frac{y^1}{(1 - (y^1)^2)^{1/2}} \quad (12)$$

10. By using Equations 10, 11, and 12, and since $y = r \cos \alpha$ and $x = r \sin \alpha$, Equation 9 can be written as

$$\eta = -ay^1 \not{x} \not{y^1} \not{x} \quad (13)$$
The following shows how η varies with x, y and y^l

$$\frac{d\eta}{dx} = \frac{\partial \eta}{\partial y} \frac{dx}{dy} \frac{\partial \eta}{\partial y} \frac{dx}{dy^l}$$

(14)

or

$$\frac{d\eta}{dx} = \frac{\partial \eta}{\partial y} \frac{\partial y^l}{\partial dx} \frac{\partial \eta}{\partial y^l} \frac{\partial dx}{\partial y}$$

(15)

Considering Equation 13, Equation 15 becomes

$$\frac{d\eta}{dx} = (1 - (y^l)^2 - ay^l - yy^l) \frac{dx}{dy^l}$$

(16)

Furthermore, ds can be expressed as

$$ds = (1 - (y^l)^2)^{1/2} \frac{dx}{dy^l}$$

(17)

Finally, substituting Equations 13, 16, and 17 in Equation 4, there results

$$K = \frac{x (1 - (y^l)^2)^{1/2}}{[x - (a-y) y^l] [1 - (y^l)^2 - (a-y)y^l]}$$

(18)

From Equations 13 and 18, the density of the fragment distribution on target T can be obtained at any position η for any given surface contour of the exploding body.

11. The expression for the fragment distribution (K_n) normal to its path R at point p can be expressed simply as:

$$K_n = \frac{K}{\cos \theta}$$

(19)

or since $\cos \theta = \frac{1}{(1 - (y^l)^2)^{1/2}}$

(20)

and considering Equation 18

$$K_n = \frac{\eta x (1 - (y^l)^2)}{[ax + (a-y) y^l \frac{dx}{dy^l}] [1 - (y^l)^2 - ay^l - yy^l]}$$

(21)

whereas $\eta = -ay^l - yy^l - x$

(22)
Simplification of General Solution

12. Although the solution obtained in the previous section is mathematically correct, in many cases it can be expressed in a form that is much simpler and nearly as accurate. This can be done by stating that:

\[R \gg \rho \]

therefore \[\eta = (R) \sin \theta = a \tan \theta = ay^1 \]

(23)

and

\[a\eta = -ay^1 \frac{dy}{dx} \]

(24)

As a result, Equation 4 can be written

\[x = \frac{\alpha x(1 \sqrt{y^1})^{1/2}}{a^2 y^1 y^1} \]

(25)

(26)

also \[K\eta = \frac{\alpha x(1 \sqrt{y^1})^2}{a^2 y^1 y^1} \]

(27)

Where in both cases \[\eta = -ay^1 \]

(28)

This solution would no longer be justifiable for any surface for which \[\rho \longrightarrow \infty \] , such as a plane or a cone.

Exact Solution for the Surface that Produces Constant Fragment Density

13. In some cases, the most desirable surface is one that produces a fragment distribution of constant density when radiating upon the target area \(T^* \). The ideal approach to this problem would be to formally solve the nonlinear differential Equation 12, treating \(K \) as a constant. This equation of course is satisfied by the surface \(y = \) constant. There should, however, be another solution that would

* See Appendix A
result in a curved surface, the surface in which we are interested. This can be obtained by solving the approximate Equation 26, treating \(K \) as a constant, and keeping in mind the restrictions imposed upon this equation**. The order of approximation of the solution of Equation 26 can be obtained by substituting the derived surface in Equation 18, thus obtaining the exact density of the fragment distribution produced by this surface. Equation 26 can be written as

\[
\frac{K a^2}{A} \frac{dp}{dx} = x \left(1 - p^2\right)^{1/2}
\] (29)

where \(p = \frac{dy}{dx} \)

Transforming

\[
\frac{k a^2}{A} \int (1 - p^2)^{-1/2} (2 p dp) = \int x dx
\] (30)

Upon integrating

\[
\frac{k a^2}{A} \left(1 - p^2\right)^{1/2} = \frac{x^2}{2} + C
\] (31)

\[11\] Now consider the boundary condition

\[
p \Big|_{x=0} = 0. \quad \text{Then:} \quad C = \frac{k a^2}{A}
\] (32)

Substituting for \(C \) in Equation 31 gives

\[
\frac{k a^2}{A} \left(1 - p^2\right)^{1/2} = \frac{x^2}{2} + \frac{k a^2}{A}
\] (33)

Squaring the above equation on both sides and solving for \(p^2 \) there results

\[
p^2 = \frac{M^2}{4 k^2 a^4} \left(x^2 + 2ka^2\right)^2 - 1
\] (34)

Simplifying and solving for \(p \) gives

\[
p = -\left(\frac{x^2}{2} + \frac{a}{2}\right)^{1/2} \frac{x}{A}
\] (35)

** It is of interest to note that the solution \(y = \) constant no longer satisfies this equation.
Where the negative sign is chosen outside the radical to conform with the chosen coordinate system and
\[\frac{2kA^2}{\gamma} = A_1^2 \]
remembering that \(p = dy/dx \), Equation 35 becomes

\[y = -\int \left(\frac{x^2}{A_1^2} - 2 \right)^{1/2} \frac{x}{A_1} \, dx \quad (36) \]

Upon integrating

\[y = \frac{-A_1}{3} \left(\frac{x^2}{A_1^2} - 2 \right)^{3/2} + C_1 \quad (37) \]

15. Consider, now, the boundary condition

\[y) = 0 \quad \text{where} \quad A_1 \quad \text{is now considered} \quad \Theta. \]

\[x \to 0 \quad \Rightarrow \quad 0 = \frac{-A_1}{3} \quad \text{or} \quad c_1 \quad (38) \]

or

\[c_1 = 0 \quad \Rightarrow \quad \frac{A_1}{3} \quad (39) \]

Substituting \(c_1 \) from Equation 41 into Equation 39 leads to the desired surface (Equation 40), which will produce a constant density of fragments, subjected to the assumptions made in paragraph 12.

\[y = \frac{-A_1}{3} \left(\frac{x^2}{A_1^2} - 2 \right)^{3/2} - 23/2 \] \((\text{See Fig 3}) \quad (40) \]

where \[A_1 = a \left[\frac{2k}{\gamma} \right]^{1/2} \]
and \[\eta = a \left(\frac{x^2}{A_1^2} - 2 \right)^{1/2} \frac{x}{A_1} \quad (41) \]

16. If for practical construction reasons (for example to allow space for a fuze well), a diameter \(d \) at the apex of the surface must be inoperative, it would be desirable to use the boundary \(p = 0 \) when \(x = D/2 \) when solving for the constant \(C_1 \) in order to cut down on the dead space on the target surface.
Using this boundary condition in conjunction with Equation 31, there results

\[c = \frac{A_1^2}{2} - \frac{D_2^2}{2} \]

Consequently

\[\frac{A_1^2}{2} (1 - \frac{r^2}{2})^{1/2} = \frac{x^2}{2} - \frac{A_1^2}{2} - \frac{D_2^2}{2} \]

and

\[r^2 = \frac{(x^2 + 1 - D_2^2)^2 - 1}{A_1^2} \]

or

\[y = \int \left[(x^2 + 1 - \frac{D_2^2}{A_1^2})^2 - 1 \right]^{1/2} dx \]

Equation 44 is the solution in integral form for this particular case. Given constants \(D \) and \(A_1 \), the desired surface is easily obtained by numerical integration.

Fragment Distribution for a Spherical Missile

17. The equation for a circle in polar coordinates is

\[y = \cos \theta \]
\[x = \sin \theta \]

where \(r \) is a constant. When revolved about a diameter a spherical surface is generated.

It follows that

\[y_1 = \frac{dy}{d\theta} = \frac{\sin \theta}{\cos \theta} = \tan \theta \]

and

\[y_11 = \frac{dy}{dx} = \frac{-\sec^2 \theta}{r \cos \theta} = \frac{-\sec^2 \theta}{r} \]

Substituting the values for \(x, y_1, \) and \(y_11 \) in Equation 26, there results

\[K = \frac{Mr^2}{a^2} \cos^3 \theta \]

CONFIDENTIAL
Letting \(\frac{4r^2}{a^2} = \lambda \)

then

\[K = \lambda \cos^3 \theta \] \hspace{1cm} (49)

and expressed as a dimensionless ratio

\[\frac{K}{\lambda} = \cos^3 \theta \] \hspace{1cm} (50)

General Solution for Axis Inclined to Target Surface

18. The solution obtained in paragraphs 8 to 11 is restricted in that the axis of the missile must be perpendicular to the target surface. Obviously, this is not always the case, and it becomes of interest to find out how the fragment distribution varies when the missile axis is inclined to the target surface.
19. Consider Figure 2. The plane (eo'd) is perpendicular to line (oo'). It is desired to find the fragment density distribution on plane (go'd) which is inclined to line (oo'). The density K on plane (eo'd) at any point b is given by Equation 18, or by Equation 26 if the simplified solution is justified. The fragment density normal to R at point a is therefore

$$K_{na} = \frac{K}{\cos \theta} \frac{(eb)^2}{(oa)^2} \quad (51)$$

However, (ob) can be expressed as

$$(ob) = \frac{a}{\cos \theta} \quad (52)$$

and (oa) as

$$(oa) = a \sin \left(\frac{\theta}{2} / \alpha \right) = a \cos \alpha \left(\sin \left(\frac{\pi}{2} - \theta - \alpha \right) \cos (\theta / \alpha) \right) \quad (53)$$

K_{na} can therefore be expressed as

$$K_{na} = \frac{K \cos^2 (\theta / \alpha)}{\cos^2 \theta \cos \alpha} \quad (54)$$

and the fragment density on plane (go'd) at point a as

$$K_a = \frac{K \cos^3 (\theta / \alpha)}{\cos^3 \theta \cos^2 \alpha} \quad (55)$$

It is more convenient to express the angle α as a function of ϕ, the angle the missile axis (oo') makes with the normal to the target surface (go'd), and β the angle between planes (ogo') and (oco'). This can be done as follows

$$\sin \phi = \frac{bh}{bc} \quad (56)$$

But $bc = a \tan \theta \cos \beta \quad (57)$

and $bh = a \tan \theta \sin \alpha \quad (58)$

13
Consequently \[\sin \alpha = \sin \phi \cos \beta \] (59)

20. In order to locate the position of our new fragment distribution (o'a) in terms of (o'b) must also be determined. From Figure 2, it is observed that:

\[\frac{\sin \left(\frac{\theta}{2} \right)}{2} = \sin \left(\frac{\theta}{2} - \phi - \alpha \right) \] (60)

or

\[\frac{\cos \phi}{\cos \left(\theta / \alpha \right)} = \frac{\sin \left(\frac{\theta}{2} - \phi - \alpha \right)}{\sin \left(\frac{\theta}{2} - \phi - \alpha \right)} \] (61)

The \((o'b) \) is \(\eta \) of the general solution in paragraphs 8 to 11, so by letting \((o'a) = \eta' \)

there results

\[\eta' = \frac{\eta \cos \phi}{\cos \left(\theta / \alpha \right)} \] (62)

The fragment density and location can be determined on the inclined target plane by using Equations 55, 59, and 62, as long as the distribution is known on the plane normal to the missile axis.

21. Since the striking velocity of a fragment is a function of the length of path traveled, the length of the new fragment path is also of interest. It can be expressed as

\[\frac{oa}{ob} = \frac{a \cos \alpha}{\cos \left(\theta / \alpha \right)} = \frac{h \cos \alpha}{\cos \left(\theta / \alpha \right)} \] (63)

The length of the fragment path divided by the length of the path to the normal target plane is therefore

\[\frac{oa}{ob} = \cos \theta \cos \alpha \] (64)

22. Equations 55, 59, and 62 must be used to determine the effect of inclining the axis of the shape derived in paragraph 17. These equations are:

\[K = \frac{K \cos^3 \left(\theta / \alpha \right)}{\cos^3 \theta \cos^2 \alpha} \]

\[\sin \alpha = \sin \phi \cos \beta \] (65)

\[\frac{\eta' \eta \cos \phi}{\cos \left(\theta / \alpha \right)} \]

where for this particular problem \(K \) is a constant.

14
23. For a given angle ϕ, x_a/x and η'/η could be plotted as functions of ϕ for various angles β. If desired, a set of tables or graphs could be drawn up in this manner. It would then be a rather simple process to compute the lethal area as a function of the angle of inclination.

Inclusions:
1 - 2 Figures 3 and 4
5 - 7 Appendices A, B, and C
(Appendix B contains Tables 1 and 2)
SURFACE CONTOUR OF THE MISSILE WHOSE FRAGMENTS STRIKE THE GROUND WITH CONSTANT DENSITY.
(Kent-Hitchcock Contour)

\[A = \alpha \left(\frac{2^{k}}{N} \right) \]

\[y/A = \frac{1}{2} \left(\frac{x}{A} + 2 \right) \left(\frac{x}{A} - 2 \right) \]

FIG. 3 CONFIDENTIAL
Confidential

Fragmert Distribution of a Spherical Shell upon a Plane Target Surface

FIG. 4 CONFIDENTIAL
APPENDIX A

SURFACE THAT PRODUCES OPTIMUM LETHAL AREA UNDER CERTAIN ASSUMPTIONS
(This problem was solved by Mr. H. K. Weiss*)

The assumptions stated in the "Introduction" are assumed to hold, and in addition the axis of the missile is considered perpendicular to the target surface. The expected number of hits on a target can be expressed as:

$$E_h = \frac{M_0}{r^2} A_\theta$$ \hspace{1cm} (1a)

where M_0 = fragments per unit area per unit distance from the burst point, at angle θ

r = distance the fragments travel to the target

A_θ = exposed area of the target

The expected number of disabling hits is

$$E_k = E_h P_{hk}$$ \hspace{1cm} (2a)

where P_{hk} is the conditional probability that a hit will disable the target. This is usually a function of the mass, velocity, and the presented area of a fragment. For mathematical simplicity, P_{hk} will be treated as a constant. This means that all the fragments are considered to have the same disabling potential.

By using the Poisson approximation, the probability of disabling the target is

$$P_k = 1 - e^{-P_k}$$ \hspace{1cm} (3a)

The number of disabled targets is $\sum \sum [\sigma P_k \, dx\, dy]$ where σ is the number of targets per unit area. If σ is considered constant, it can be brought outside the integral. The integral term is then defined as the lethal area (A_L).

$$A_L = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_k \, dx\, dy$$ \hspace{1cm} (4a)

* Weiss, H. K. op. cit.
If the lethal area is multiplied by the density of the targets, therefore, the number of targets disabled will be obtained. Equation 5a can be expressed in polar coordinates as

$$A_L = 2\pi a^2 \int (1 - e^{-E_k}) \sin \theta \sec^3 \theta \, d\theta$$

(5a)

where

- \(a\) = height of burst
- \(\theta\) = angle between missile axis and fragment path

It is convenient at this point to make the following change of variables

$$W = \cos \theta$$

and

$$dW = -\sin \theta \, d\theta$$

Equation 5a becomes

$$A_L = -2\pi a^2 \int (1 - e^{-E_k}) W^{-3} \, dW$$

(6a)

Furthermore

$$E_k = E_h \frac{P_{hk}}{r^2} = N(\theta) A(\theta) \frac{P_{hk}}{r^2}$$

(7a)

However

$$r = \frac{a}{\cos \theta} = \frac{aw}{1}$$

Therefore

$$E_k = \frac{N(\theta) A(\theta)}{a^2} W^2 P_{hk}$$

(8a)

If it is also considered that the exposed area varies as the \(\cos \theta\), as would a flat target, \(I_0\) can be expressed as

$$A_0 = A \cos \theta = Aw$$

(9a)

Hence

$$E_k = \frac{M_w A W^3}{a^2} P_{hk}$$

(10a)

and

$$A_L = -2\pi a^2 \int (1 - e^{-\frac{M_w A W^3}{a^2}} P_{hk}) W^{-3} \, dW$$

(11a)

A small increment of area at some position \(W\), over a band width \((\Delta W)\) is

$$\Delta A_L = -2\pi a^2 (1 - e^{-\frac{M_w A W^3}{a^2}} P_{hk}) W^{-3} \Delta W$$

(12a)
If \(M \) is now increased at the point \((\mathbf{W})\), over the band width \((\delta \mathbf{W})\)
the increase in \((\delta AL)\) is
\[
\delta(\delta A_L) = \left[2 \tau A P_hk \frac{-M_w AW^3}{a^2} \right] \delta \mathbf{W} \delta M (13a)
\]
but since the total number of fragments must not increase, \(\delta M \)
must be subtracted at some other point \((\mathbf{W}_2)\). At that point
\[
\delta(\delta A_L)_2 = \left[2 \tau A P_hk \frac{-M_w AW^3}{a^2} \right] \delta \mathbf{W} \delta M (14a)
\]
The necessary condition for \(M_w \) to be the surface that produces
maximum lethal area is
\[
\delta(\delta A_L)_1 - \delta(\delta A_L)_2 = 0 (15a)
\]
Therefore
\[
2 \tau A P_hk \frac{-M_w AW^3}{a^2} P_hk = C = \text{constant (16a)}
\]
or
\[
\frac{M_w AW^3 P_hk}{a^2} = \ln \left[\frac{2 \tau A P_hk}{C} \right] (17a)
\]
or
\[
M_w = \left[\frac{a^2}{AP_hk} \ln \left(\frac{2 \tau A P_hk}{C} \right) \right] W^{-3} (18a)
\]
Let
\[
\frac{a^2}{AP_hk} \ln \left(\frac{2 \tau A P_hk}{C} \right) = A'
\]
Then
\[
M_w = A' W^{-3} (19a)
\]
or
\[
M_w = A' \sec^3 \theta (20a)
\]

CONFIDENTIAL
Consider now the Kent-Hitchcock contour. It fulfilled the requirements that $K = \text{constant}$ where

$$K = \frac{M_0 \sin \theta \, d \theta}{\eta \, d \eta}$$

(21a)

or

$$K = \frac{M_0 \sin \theta \, d \theta}{\eta \, d \eta}$$

(22a)

But

$$\eta = a \tan \theta$$

$$d \eta = a \sec^2 \theta \, d \theta$$

Therefore

$$K = \frac{M_0 \sin \theta \, d \theta}{a^2 \tan \theta \, \sec^2 \theta \, d \theta}$$

(23a)

or M_0 can be expressed as

$$M_0 = Ka^2 \sec^3 \theta$$

(24a)

Equation 24a has the form of Equation 20a. Therefore, the Kent-Hitchcock contour is the contour that produces optimum lethal area under the restrictions of this particular problem.
APPENDIX B

APPLICATION OF ANALYSIS TO AN AERIAL EXPLODING BODY

Problem

To find the proper surface contour of an aerial exploding body that will produce a fragment distribution of constant density over the target surface \(T \) under the following restrictions:

1. Height \((h) \) of the exploding body above target = 20 ft
2. Desired density of the fragment distribution \((k) \) over the target \(T = 1.67 \) fragments/ft\(^2\)
3. Desired diameter \((D) \) of target = 40 ft
4. Fragment weight = 2.5 grains
5. Surface area of fragment \(A_f = 0.01175 \) in\(^2\)
6. Fragment distribution \((M) \) on body surface =

\[
\frac{1}{0.01175} = 85.106 \text{ fragments/in}^2
\]

The surface which satisfies this problem is that of Equation 40. For simplicity, however, let \(a = h \) and therefore \(A = 0 \). Equation 40 would then reduce to

\[
y = \frac{-A}{2} \left[(x^2 - 2)^{3/2} - (2)^{3/2} \right] \quad \text{(1b)}
\]

In order to establish the boundary of the body in the \(x \) direction, an additional equation concerning the surface area of the body is needed. This is expressed mathematically as

\[
As = \int_0^x \pi (1 / (y^2)^{1/2}) \ dx \quad \text{(2b)}
\]

where from Equation 33 it can be shown that

\[
(1 / (y^2)^{1/2}) = \left(\frac{x^2}{M} \right)^{1/2} \quad \text{(3b)}
\]

22
Equation 2b can therefore be expressed as

\[A_s = 2 \int_{x_0}^{\infty} \frac{(x^2 / x^2)}{A^2} \, dx \]

(4b)

Upon integrating

\[A_s = \frac{\left(x_0^{1/2} / x_0^2 \right)}{2A^2} \]

(5b)

Equation 5b can be expressed as

\[x_0^{1/2} / 2A^2 x_0^2 - \frac{2A^2 A_s}{\pi} = 0 \]

(6b)

where

\[A^2 = \frac{2k \pi^2}{A} = \frac{2(1.67)(20)^2}{0.5108} = 15.698 \text{ in}^2 \]

and in this particular problem

\[A_s = \frac{\pi D^2}{4} \cdot kA_f = \frac{(20)^2}{4} \cdot (1.67)(0.01175) \approx 24.658 \text{ in}^2 \]

Substituting these values in Equation 6b and solving for \(x_0 \) by using the quadratic formula, it is found that

\[x_0 = 2.550 \text{ in.} \]

By substitution of the value of \(A \) in Equation 4O, the desired surface becomes

\[y = -1.3205 \left[(0.06370x^2 / 2)^{3/2} - 2.8284 \right] \]

(7b)

from which

\[y^1 = -0.25237 \cdot (0.06370x^2 / 2)^{1/2} \]

(8b)

and

\[y^{11} = -0.01608 \cdot (0.06370x^2 / 2)^{-1/2} - 0.25237 \cdot (0.06370x^2 / 2)^{1/2} \]

(9b)

In order to find the exact density of fragment distribution on the target surface produced by Equation 7b, it is only necessary to substitute the above expressions in Equation 18. The results of
this substitution are presented in Table 1. It can be seen that the density of the fragment distribution is approximately 2% to 4% below the desired density of the fragment distribution. It is also seen that the target area is 3% larger than specified. This result suggests that the derived surface equation (1b) can be corrected to give improved results. It is proposed that the density of the fragment distribution be increased 3% by specifying that $K_1 = 1.03K$

Then

$$A^2 = 2(1.03\text{ ka}^2 = (1.03)(15.698) = 16.169$$

$$A = 4.021$$

Hence, the corrected equation for y becomes

$$y = -1.34030 (0.06135x^2 / 2)^{3/2} - 2.8204$$ \hspace{1cm} (10b)$$

and

$$y^1 = -2.4869x (0.06135x^2 / 2)^{1/2}$$ \hspace{1cm} (11b)$$

$$y^{11} = -0.1538x^2 (0.06135x^2 / 2)^{-1/2} - 2.4869$$

\hspace{1cm} (12b)$$

Table 2 gives the improved results. The density of the fragment distribution now varies from +1/2% to -1%, while the target area is in error by less than 1/2%
From Appendix A it was shown that the Kent-Hitchcock contour produced the maximum lethal area for the type of problem considered. It remains of interest however to find how much greater this lethal area is than a conventional sphere. Consider the problem where the target radius (L) equals the burst height (a).

The distribution of fragments from a sphere is

\[K_s = K_0 \cos^3 \theta \]

\[\text{Fig 5} \]

The number of fragments over the target surface of radius L is

\[K_s = 2\pi K_0 \int_0^L \cos^3 \theta \, r \, dr = 2\pi K_0 \int_0^L \frac{L^3}{(r^2 + L^2)^{3/2}} \, r \, dr \]

\[(2c) \]

Where \(K_0 \) is a constant that is a function of the burst height, radius of the sphere, and fragments per unit area on the sphere surface.

The number of fragments over the target surface of radius L from the Kent-Hitchcock contour is simply

\[N_{kh} = N_{kh} \pi L^2 \]

\[(3c) \]
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.4</th>
<th>0.8</th>
<th>1.2</th>
<th>1.6</th>
<th>2.0</th>
<th>2.4</th>
<th>2.55</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>x^2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>$(0.06370x^2)^{1/2}$</td>
<td>2.0000</td>
<td>2.0102</td>
<td>2.0408</td>
<td>2.0917</td>
<td>2.1631</td>
<td>2.2560</td>
<td>2.3669</td>
<td>2.4142</td>
</tr>
<tr>
<td>$(0.06370x^3)^{3/2}$</td>
<td>1.6112</td>
<td>1.6180</td>
<td>1.4290</td>
<td>1.4463</td>
<td>1.4710</td>
<td>1.5010</td>
<td>1.5380</td>
<td>1.5540</td>
</tr>
<tr>
<td>$(0.06370x^3)^{-1/2}$</td>
<td>2.8286</td>
<td>2.8512</td>
<td>2.9181</td>
<td>3.0253</td>
<td>3.1830</td>
<td>3.3818</td>
<td>3.6300</td>
<td>3.7528</td>
</tr>
<tr>
<td>y</td>
<td>1.7071</td>
<td>1.7052</td>
<td>1.6997</td>
<td>1.6914</td>
<td>1.6798</td>
<td>1.6662</td>
<td>1.6501</td>
<td>1.6435</td>
</tr>
<tr>
<td>y^1</td>
<td>0.000</td>
<td>0.001</td>
<td>0.005</td>
<td>0.012</td>
<td>0.020</td>
<td>0.030</td>
<td>0.044</td>
<td>0.120</td>
</tr>
<tr>
<td>$y^2(x^2)^{-1/2}$</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>y^3</td>
<td>0.0569</td>
<td>0.0497</td>
<td>0.0478</td>
<td>0.0463</td>
<td>0.0454</td>
<td>0.0448</td>
<td>0.0446</td>
<td>0.0462</td>
</tr>
<tr>
<td>y^4</td>
<td>34.344</td>
<td>69.240</td>
<td>105.12</td>
<td>142.56</td>
<td>181.82</td>
<td>223.56</td>
<td>240.00</td>
<td>240.00</td>
</tr>
<tr>
<td>y^5</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>y^6</td>
<td>34.748</td>
<td>70.074</td>
<td>106.43</td>
<td>144.44</td>
<td>184.37</td>
<td>226.95</td>
<td>243.77</td>
<td>1.0000</td>
</tr>
<tr>
<td>$(y^7)^2$</td>
<td>0.0205</td>
<td>0.0632</td>
<td>0.1978</td>
<td>0.3528</td>
<td>0.5740</td>
<td>0.8677</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>y^7</td>
<td>85.656</td>
<td>86.328</td>
<td>88.272</td>
<td>91.440</td>
<td>95.808</td>
<td>101.208</td>
<td>107.616</td>
<td>110.280</td>
</tr>
<tr>
<td>y^8</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
</tr>
<tr>
<td>y^9</td>
<td>66.656</td>
<td>87.399</td>
<td>89.399</td>
<td>92.731</td>
<td>97.348</td>
<td>103.090</td>
<td>109.963</td>
<td>112.841</td>
</tr>
<tr>
<td>y^{10}</td>
<td>1.000</td>
<td>1.010</td>
<td>1.041</td>
<td>1.092</td>
<td>1.169</td>
<td>1.255</td>
<td>1.367</td>
<td>1.4142</td>
</tr>
<tr>
<td>y^{11}</td>
<td>34.383</td>
<td>70.876</td>
<td>111.52</td>
<td>158.37</td>
<td>213.62</td>
<td>279.22</td>
<td>306.91</td>
<td>306.91</td>
</tr>
<tr>
<td>y^{12}</td>
<td>0.01133</td>
<td>0.01133</td>
<td>0.01133</td>
<td>0.01133</td>
<td>0.01133</td>
<td>0.01133</td>
<td>0.01133</td>
<td>0.01133</td>
</tr>
<tr>
<td>y^{13}</td>
<td>3035.6</td>
<td>6266.6</td>
<td>9869.4</td>
<td>14061</td>
<td>19007</td>
<td>24656</td>
<td>26930</td>
<td>27657</td>
</tr>
<tr>
<td>y^{14}</td>
<td>0.01126</td>
<td>0.01126</td>
<td>0.01126</td>
<td>0.01126</td>
<td>0.01126</td>
<td>0.01126</td>
<td>0.01126</td>
<td>0.01126</td>
</tr>
<tr>
<td>y^{15}</td>
<td>1.632</td>
<td>1.629</td>
<td>1.627</td>
<td>1.627</td>
<td>1.627</td>
<td>1.627</td>
<td>1.627</td>
<td>1.627</td>
</tr>
</tbody>
</table>
TABLE 2 - Fragment Distribution Produced by Equation 7B (Corrected)

<table>
<thead>
<tr>
<th></th>
<th>0.0</th>
<th>0.4</th>
<th>0.8</th>
<th>1.2</th>
<th>1.6</th>
<th>2.0</th>
<th>2.4</th>
<th>2.55</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>0</td>
<td>0.16</td>
<td>0.64</td>
<td>1.44</td>
<td>2.56</td>
<td>4.00</td>
<td>5.76</td>
<td>6.503</td>
</tr>
<tr>
<td>(x^2)</td>
<td>0</td>
<td>0.016</td>
<td>0.64</td>
<td>1.44</td>
<td>2.56</td>
<td>4.00</td>
<td>5.76</td>
<td>6.503</td>
</tr>
<tr>
<td>(\sqrt{(a_{0.152})^2/2})</td>
<td>1.4142</td>
<td>1.4176</td>
<td>1.4281</td>
<td>1.4454</td>
<td>1.4692</td>
<td>1.4992</td>
<td>1.5350</td>
<td>1.5500</td>
</tr>
<tr>
<td>(\sqrt{(a_{0.055})^2/2})</td>
<td>2.3284</td>
<td>2.3888</td>
<td>2.9127</td>
<td>3.0197</td>
<td>3.1713</td>
<td>3.3696</td>
<td>3.6168</td>
<td>3.7223</td>
</tr>
<tr>
<td>(\sqrt{(a_{0.055})^{-1/2}})</td>
<td>3.0771</td>
<td>3.0751</td>
<td>3.7023</td>
<td>3.6916</td>
<td>3.8064</td>
<td>3.66702</td>
<td>3.65146</td>
<td>3.64516</td>
</tr>
<tr>
<td>(y)</td>
<td>0</td>
<td>0.0273</td>
<td>0.1130</td>
<td>0.2564</td>
<td>0.4596</td>
<td>0.7258</td>
<td>1.0567</td>
<td>1.200</td>
</tr>
<tr>
<td>(y^1)</td>
<td>0</td>
<td>0.0110</td>
<td>0.2841</td>
<td>0.4315</td>
<td>0.5863</td>
<td>0.7557</td>
<td>0.9162</td>
<td>0.9829</td>
</tr>
<tr>
<td>(x^2)</td>
<td>0</td>
<td>0.0029</td>
<td>0.4441</td>
<td>0.9663</td>
<td>1.7424</td>
<td>2.6681</td>
<td>2.7524</td>
<td>4.1955</td>
</tr>
<tr>
<td>(\sqrt{y})</td>
<td>0</td>
<td>0.0004</td>
<td>0.032</td>
<td>0.1130</td>
<td>0.2564</td>
<td>0.4596</td>
<td>0.7258</td>
<td>1.0567</td>
</tr>
<tr>
<td>(y^2)</td>
<td>0</td>
<td>0.0004</td>
<td>0.032</td>
<td>0.1130</td>
<td>0.2564</td>
<td>0.4596</td>
<td>0.7258</td>
<td>1.0567</td>
</tr>
<tr>
<td>(\sqrt{y})</td>
<td>0</td>
<td>0.0004</td>
<td>0.032</td>
<td>0.1130</td>
<td>0.2564</td>
<td>0.4596</td>
<td>0.7258</td>
<td>1.0567</td>
</tr>
<tr>
<td>(\sqrt{y})</td>
<td>0</td>
<td>0.0004</td>
<td>0.032</td>
<td>0.1130</td>
<td>0.2564</td>
<td>0.4596</td>
<td>0.7258</td>
<td>1.0567</td>
</tr>
<tr>
<td>(\beta)</td>
<td>85.408</td>
<td>85.032</td>
<td>86.880</td>
<td>89.952</td>
<td>94.128</td>
<td>99.326</td>
<td>105.48</td>
<td>108.00</td>
</tr>
<tr>
<td>(1 - (y^2))</td>
<td>1.000</td>
<td>1.009</td>
<td>1.039</td>
<td>1.089</td>
<td>1.158</td>
<td>1.247</td>
<td>1.355</td>
<td>1.402</td>
</tr>
<tr>
<td>(x(1 - (y^2)^{1/2}))</td>
<td>0</td>
<td>34.349</td>
<td>70.740</td>
<td>111.22</td>
<td>157.68</td>
<td>212.25</td>
<td>276.76</td>
<td>304.26</td>
</tr>
<tr>
<td>(\eta \beta)</td>
<td>0</td>
<td>2.947.0</td>
<td>6073.5</td>
<td>9563.1</td>
<td>13599</td>
<td>18367</td>
<td>24053</td>
<td>26482</td>
</tr>
<tr>
<td>(x_{fr}) (n_m^2)</td>
<td>.01166</td>
<td>.01165</td>
<td>.01163</td>
<td>.01159</td>
<td>.01156</td>
<td>.01150</td>
<td>.01149</td>
<td></td>
</tr>
<tr>
<td>(x_{fr}) (st^2)</td>
<td>1.679</td>
<td>1.678</td>
<td>1.675</td>
<td>1.669</td>
<td>1.665</td>
<td>1.656</td>
<td>1.655</td>
<td></td>
</tr>
</tbody>
</table>
To make a comparison of lethal area, \(N_{kh} \) is assumed to be equal to \(N_s \). By equating these two expressions, it is found that

\[
K_0 = K_{kh} = \frac{1.706K_{kh}}{(2 - \sqrt{2})} \tag{10c}
\]

Lethal area can be expressed as (Equation 6a)

\[
A_L = -2\pi a^2 \int (1 - e^{E_k}) w^{-3} dw \tag{5c}
\]

where

\[
E_k = K_0 P_{hk} \tag{6c}
\]

Consider the \(A_0 = A \cos \theta = AW \). The lethal area for a sphere is

\[
A_{L/s} = 2\pi a^2 \int (1 - e^{-1.706 AK_{kh} P_{hk} W}) w^{-3} dw \tag{7c}
\]

since

\[
K = K_0 W^3 = 1.706K_{kh} W^3
\]

where

\[
AK_{kh} P_{hk} = \text{constant}
\]

The lethal area for the Kent-Hitchcock contour can be expressed as

\[
A_L |_{KH} = 2\pi a^2 \int (1 - e^{-AK_{kh} P_{hk} W}) w^{-3} dw \tag{8c}
\]

Assume \(AK_{kh} P_{hk} = 2.5 \) (This is a fair value for a sample problem)

Then

\[
\frac{A_L}{2\pi a^2} |_{s} = \int (1 - e^{-2.5 W}) w^{-3} dw \tag{9c}
\]

\[
\frac{A_L}{2\pi a^2} |_{kh} = \int (1 - e^{-2.5 W}) w^{-3} dw \tag{10c}
\]
Further assuming that the limit of the target area corresponds to $\theta \approx 45^\circ$, then the limits on the above integration are 1 to $.707$ since $W = \cos \theta$. Carrying out the above integration numerically, there results

$$\frac{A_L/kh}{A_L/s} = 1.166 \quad \text{(11c)}$$

That is, the Kent-Hitchcock contour gives a lethal area that is 16.6% greater than a sphere, assuming that both surfaces contain the same number of fragments.
DISTRIBUTION LIST OF PICATINNY ARSENAL TECHNICAL REPORT 2075

Commanding Officer
Picatinny Arsenal
Dover, New Jersey
ATTN: Technical Information Section

Chief of Ordnance
Department of the Army
Washington 25, D. C.
ATTN: ORDTB - Bal Section

Department of the Navy
Bureau of Ordnance
Washington 25, D. C.
ATTN: Re3

Commander
U. S. Naval Ordnance Laboratory
White Oak
Silver Spring, Maryland
ATTN: Library

Commander
Naval Ordnance Test Station
Inyokern, China Lake
California
ATTN: Technical Library Branch

Commander
U. S. Naval Proving Ground
Dahlgren, Virginia
ATTN: M. I. Division

Office of Naval Research
Department of the Navy
Washington 25, D. C.
ATTN: Scientific Documents
Office (406)

Superintendent
Naval Postgraduate School
Monterey, California

Copy No.
1 - 5
6 - 11
12 - 15
16 - 17
18
19
20 - 21
22

CONFIDENTIAL
Commandant
U. S. Marine Corps
Washington 25, D. C.

Operations Research Office
Johns Hopkins University
6110 Connecticut Avenue
Chevy Chase, Maryland

Director
Air Weapons Research Center
Museum of Science and Industry
University of Chicago
Chicago 37, Illinois
Thru: Chief, Chicago AFPFO
209 Jackson Blvd.
Chicago 6, Illinois

Ballistic Research Laboratories
Aberdeen Proving Ground
Maryland

Copy No.
37 - 38
39
40
41
32