THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U.S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED AS IMPROVEMENTS OR OTHERWISE AS IN ANY MANNER/licENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by
DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, OHIO

UNCASSIFIED
On Jones' Criterion
For
Thin Wings Of Minimum Drag

R. Sedney

DEPARTMENT OF THE ARMY PROJECT No. 503-03-001
ORDNANCE RESEARCH AND DEVELOPMENT PROJECT No. TB3-0108
BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND
b. "Initial distribution has been made of this report in accordance with the distribution list contained herein. Additional distribution without recourse to the Ordnance Office may be made to United States military organizations, and to such of their contractors as they certify to be cleared to receive this report and to need it in the furtherance of a military contract."
ON JONES' CRITERION FOR THIN WINGS OF MINIMUM DRAG

R. Sedney

Department of the Army Project No. 503-03-001
Ordnance Research and Development Project No. TB-0106

ABERDEEN PROVING GROUND, MARYLAND
ON JONES' CRITERION FOR THIN WINGS OF MINIMUM DRAG

In reference 1 Jones has derived necessary conditions for minimum drag shapes of thin wings subject to conditions of given lift, given maximum drag or given volume. In deriving these conditions, the concept of the "combined flow field" was used. This consists of superimposing the flow fields of the forward and reversed motions. In this note, it is shown how these conditions may be derived using the standard methods of calculus of variations and the general reverse flow theorem. The method will be illustrated for the case of given lift. In addition it is shown that the necessary condition actually yields a minimum for the drag. Linearized theory is assumed throughout.

Let \(\rho \) and \(\alpha \) denote the local lift and angle of attack distributions in forward flow. These are defined on the projection of the wing surface on a mean plane. This area is denoted by \(\Sigma \) and all integrations are over this area. As in reference 3, two types of reverse flow are considered. In the first, the lift in reverse flow \(\tilde{\rho} = \rho \), and \(\tilde{\alpha} \) is determined from linearized theory. In the second, the angle of attack in reverse flow \(\tilde{\alpha} = -\alpha \), and \(\tilde{\rho} \) is determined from linearized theory. The reverse flow theorem states that

\[
\int \rho \, d\Sigma = \int \tilde{\rho} \, d\Sigma
\]

and similarly for the second type. Since \(\rho \) and \(\alpha \) are related linearly, \(\rho + \epsilon \rho \) must correspond to \(\alpha + \epsilon \beta \) where \(\beta \) is the angle of attack distribution corresponding to the lift \(\epsilon \rho \). Defining the variation of \(\rho \),

\[
\delta \rho = \epsilon \rho
\]

then the variation of \(\alpha \) is

\[
\delta \alpha = \epsilon \beta
\]

The reverse flow theorem can, of course, be applied to \(\delta \rho \) and \(\delta \alpha \).

Consider now the variational problem of minimizing the drag, \(D \), subject to condition of a given lift \(L \). Since

\[
D = \int p \, \alpha \, d\Sigma
\]

(2)

\[
L = \int \rho \, d\Sigma
\]

(3)
the quantity $D + \lambda L$, where λ is an undetermined constant multiplier, should be minimised according to the rules of the calculus of variations. Then

$$\delta (D + \lambda L) = \int (p \delta a + a \delta p + \lambda \delta p) dS$$ \hspace{1cm} (4)

Since $\overline{p} = p$, the first term of the integrand can be written

$$\int p \delta a dS = \int \overline{p} \delta a dS = \int \lambda \delta p dS$$

Thus (4) can be written

$$\delta (D + \lambda L) = \int (a + \alpha + \lambda) \delta p dS$$

Since the variation of $D + \lambda L$ must be zero for arbitrary δp, the necessary condition for minimum drag with given lift is

$$a + \alpha = -\lambda = \text{Constant}$$

which is Jones' criterion. Multiplying the last equation by p and integrating determines λ, so that

$$a + \alpha = \frac{2D}{L}$$ \hspace{1cm} (5)

The criterion can be expressed in a different form involving the second type of reverse flow. Let the flat plate of unit angle of attack be denoted by α_f, i.e. $\alpha_f = 1$. The lift can be written

$$L = \int p dS = \int \alpha_f p dS = \int \overline{\alpha_f} p dS = \int \overline{\alpha_f} \alpha dS$$

Taking the first variation as in (4) yields

$$\delta (D + \lambda L) = \int (p - \overline{p} - \lambda \overline{\alpha_f}) \delta a dS$$

and since δa is arbitrary

$$p - \overline{p} = \lambda \overline{\alpha_f}$$

where now

$$\lambda = \frac{-2D}{L}$$

The question of what type of functions p and c are admissible in the variational process needs to be discussed. It is known that the reverse flow theorem, eq. (1), does not hold if the lift has a leading edge singularity in forward flow, since the wing in reverse flow does not satisfy the Kutta condition at the trailing edge. Therefore admissible functions
n must be such that they do not have leading edge singularities. However there are indications that Jones' criterion is valid even for functions \(p \) which have these singularities\(^3\).

Using the concept of orthogonal loadings\(^3\) it can be shown that Jones' criterion is also sufficient, that is, it actually yields a minimum. Let \(\alpha_1 \) and \(\alpha_2 \) be two angle of attack distributions and \(p_1 \) and \(p_2 \) the corresponding lifts. Define

\[
(a_1, a_2) = \frac{1}{2} \int (a_1 p_2 + a_2 p_1) \, dS
\]

i.e., \((a_1, a_2) \) is one-half the mutual interference drag of the two distributions. Then \(a_1 \) is orthogonal to \(a_2 \) if \((a_1, a_2) = 0 \). Since

\[
(a_1, a_1) = \int p_1 a_1 \, dS
\]

\[
= D_1 \geq 0
\]

it is easy to show that Schwars's inequality holds

\[
(a_1, a_2)^2 \leq (a_1, a_1) (a_2, a_2) \quad (7)
\]

Now let \(\alpha_0 \) be any \(\alpha \) such that

\[
L_0 = \int p_0 \, dS = 0
\]

Then multiplying (5) by \(p_0 \), integrating, and applying (1) yields

\[
(a, \alpha_0) = 0
\]

so that any \(\alpha \) with zero total lift is orthogonal to the optimal \(\alpha \), i.e., the \(\alpha \) which satisfies (5). The converse is also true. If \(\alpha' \) is any \(\alpha \) such that

\[
\int p' \, dS = \int p \, dS = L
\]

then \(\alpha - \alpha' = \alpha_0 \) since

\[
\int (p - p') \, dS = 0
\]

Thus

\[
(a, \alpha - \alpha') = 0
\]

or

\[
(a, \alpha') = (a, \alpha)
\]
Using (7)

\[(a, a)^2 = (a, a^*)^2 \leq (a, a) (a', a')\]

\[(a, a) \leq (a', a')\]

Thus it is shown that of all admissible functions with total lift L, the angle of attack distribution satisfying (5) yields the least drag.

R. Segney

R. Segney
REFERENCES

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organisation</th>
<th>No. of Copies</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Chief of Ordnance</td>
<td>5</td>
<td>Director Armed Services Technical Information Agency</td>
</tr>
<tr>
<td></td>
<td>Department of the Army</td>
<td></td>
<td>Document Service Center</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D. C.</td>
<td></td>
<td>Knott Building</td>
</tr>
<tr>
<td></td>
<td>Attn: ORDTB - Bal Sec (1 cy)</td>
<td></td>
<td>Dayton 2, Ohio</td>
</tr>
<tr>
<td></td>
<td>ORDTX-AR (1 cy)</td>
<td></td>
<td>Attn: DSC - SA</td>
</tr>
<tr>
<td></td>
<td>ORDU (1 cy)</td>
<td></td>
<td>ASTIA Reference Center</td>
</tr>
<tr>
<td>10</td>
<td>British - ORDOU-SE, Foreign Relations Sec. for dist.</td>
<td>4</td>
<td>Technical Information Div.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Library of Congress</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Washington 25, D. C.</td>
</tr>
<tr>
<td>4</td>
<td>Canadian Joint Staff - ORDOU-SE, Foreign Relations Section for distribution</td>
<td>5</td>
<td>Director National Advisory Committee for Aeronautics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1512 H Street, NW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Washington 25, D. C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Attn: Division of Research Information</td>
</tr>
<tr>
<td>4</td>
<td>Chief, Bureau of Ordnance</td>
<td></td>
<td>Director Ames Laboratory</td>
</tr>
<tr>
<td></td>
<td>Department of the Navy</td>
<td></td>
<td>National Advisory Committee for Aeronautics</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D. C.</td>
<td></td>
<td>Moffett Field, California</td>
</tr>
<tr>
<td></td>
<td>Attn: Re3</td>
<td></td>
<td>Attn: R. T. Jones</td>
</tr>
<tr>
<td>2</td>
<td>Commander Naval Proving Ground Dahlgren, Virginia</td>
<td>2</td>
<td>Commanding General Redstone Arsenal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Huntsville, Alabama</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Attn: Technical Library</td>
</tr>
<tr>
<td>2</td>
<td>Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Library - Room 1-327</td>
<td>3</td>
<td>Commanding General White Sands Proving Ground Las Cruces, New Mexico Attn: ORDSS-PS-TIB</td>
</tr>
<tr>
<td>1</td>
<td>Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library</td>
<td>1</td>
<td>Arthur D. Little, Inc. Cambridge 42, Massachusetts Attn: Dr. C. S. Keevil</td>
</tr>
<tr>
<td>1</td>
<td>Superintendent Naval Postgraduate School Monterey, California</td>
<td>1</td>
<td>Applied Physics Laboratory 8621 Georgia Avenue Silver Spring, Maryland</td>
</tr>
<tr>
<td>1</td>
<td>Director Air University Library Maxwell Air Force Base, Alabama</td>
<td>2</td>
<td>Attn: Mr. G. L. Seielstad</td>
</tr>
<tr>
<td>4</td>
<td>Commander Air Research and Dev. Command P. O. Box 1395 Baltimore 3, Maryland Attn: Deputy for Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organisation</td>
<td>No. of Copies</td>
<td>Organisation</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 1 | Boeing Airplane Company
Seattle 1, Washington
Attn: F. E. Ehlers | 1 | General Electric Company
Schenecktady, New York
Attn: Mr. J. C. Hoffman |
| 1 | Consolidated Vultee Aircraft Corporation
Ordnance Aerophysics Laboratory
Daingerfield, Texas
Attn: Mr. J. E. Arnold | 1 | Hughes Aircraft Company
Florence Avenue at Teal Street
Culver City, California
Attn: Dr. A. E. Puckett |
| 1 | Consolidated Vultee Aircraft Corporation
Pomona Division
Pomona, California
Attn: Guided Missiles Library | 1 | M. W. Kellogg Company
Foot of Danforth Avenue
Jersey City 3, New Jersey
Attn: Mr. R. A. Miller |
| 2 | Cornell Aeronautical Laboratory, Inc.
4455 Genesee Street
Buffalo, New York
Attn: Miss Elma T. Evans, Librarian | 1 | North American Aviation, Inc.
1221 Lakewood Boulevard
Downey, California
Attn: Aerophysics Laboratory |
| 1 | California Institute of Technology
Guggenheim Aeronautical Laboratory
1500 Normandy Drive
Pasadena 1, California
Attn: P. A. Lastero | 1 | North Carolina State College
P. O. Box 5518
Raleigh, North Carolina
Attn: Dr. John W. Cail |
| 1 | Carnegie Institute of Technology
Department of Mathematic
Pittsburgh 13, Pennsylvania
Attn: G. H. Handelman | 2 | Princeton University
James Forrestal Research Center
Princeton, New Jersey |
| 1 | Douglas Aircraft Company, Inc.
3000 Ocean Park Boulevard
Santa Monica, California
Attn: Mr. H. Luckin | 1 | University of Maryland
Institute for Fluid Dynamics and Applied Mathematics
College Park, Maryland
Attn: S. I. Pai
J. B. Dias |
| 1 | Firestone Tire and Rubber Company
Defense Research Division
Akron 17, Ohio
Attn: Mr. P. J. Ginge | 1 | University of Southern Calif.
Engineering Center
Los Angeles 7, California
Attn: Mr. R. R. Saffell, Director |
| | | | United Aircraft Corporation
Research Department
East Hartford 8, Connecticut
Attn: Mr. R. G. Sale |
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 1 | University of Illinois
Aeronautical Institute
Urbana, Illinois
Attn: Professor C. H. Fletcher |
| 1 | Wright Aeronautical Division
Curtiss Wright Corporation
Wood Ridge, New Jersey
Attn: Sales Department (Government) |
| 1 | Professor George E. Carrier
Division of Applied Science
Harvard University
Cambridge 36, Massachusetts |
| 1 | Professor Francis H. Clauser
Chairman, Department of Aeronautics
Johns Hopkins University
Baltimore 18, Maryland |
| 1 | Dr. L. H. Thomas
Watson Scientific Computing Laboratory
512 West 116th Street
New York 27, New York |
Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by
DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, OHIO
UNCLASSIFIED