<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD NUMBER</td>
</tr>
<tr>
<td>AD039732</td>
</tr>
<tr>
<td>CLASSIFICATION CHANGES</td>
</tr>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
<tr>
<td>FROM:</td>
</tr>
<tr>
<td>confidential</td>
</tr>
<tr>
<td>LIMITATION CHANGES</td>
</tr>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>Approved for public release; distribution is unlimited.</td>
</tr>
<tr>
<td>FROM:</td>
</tr>
<tr>
<td>Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 13 APR 1954. Other requests shall be referred to Office of Naval Research, One Liberty Center, 875 North Randolph Street, Arlington, VA 22203–1995.</td>
</tr>
<tr>
<td>AUTHORITY</td>
</tr>
<tr>
<td>ONR ltr dtd 1 apr 1968; ONR ltr dtd 1 Apr 1968</td>
</tr>
</tbody>
</table>

THIS PAGE IS UNCLASSIFIED
Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by
DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON 2, OHIO
CONFIDENTIAL
INDUSTRIAL AND TRANSMITTING TUBE SUB-DEPARTMENT
OF THE
GENERAL ELECTRIC COMPANY
SCHENECTADY, N.Y.

THIRD QUARTERLY TECHNICAL REPORT
ON
5J26 MTI STUDY
CONTRACT NUMBER 63356
INDEX NUMBER NE-110340 ST. 23

OCTOBER 1, 1953 to JANUARY 1, 1954

NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE
NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING
THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN
ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

Reproduced
FROM LOW CONTRAST COPY.
Third Quarterly Report on
5J26 MTI Study

April 13, 1954

Period Covered: October 1, 1953 to January 1, 1954

Contract No. N069-63356
Index No. NS-110340 St. 23

A. Abstract
Some 5J26 magnetrons have been operated in the test modulator. Test equipment construction has been delayed.

B. Purpose
To study and evaluate the possibility for development of a suitable replacement for the 5J26 to insure availability of a microwave L-band power oscillator capable of reliable performance in MTI applications.

C. General Factual Data
Preliminary testing of magnetrons was started. Difficulties were encountered with both the modulator and the magnetrons.

The 1-5/8" coaxial water load performed satisfactorily at the power levels developed so far.

A Bird termaline coaxial resistor was measured for its VSWR and was tested at the power levels available.

Test equipment being made in the Development Shop has been delayed.

Approval of our proposal for modification of the modulator has been received.

No magnetrons have been received from Naval sources.

D. Detailed Factual Data
Much of the effort in the last month has been directed at firing up of the modulator to commence testing. The difficulties encountered will be discussed below, though some might more properly be treated under equipment.

The modulator, constructed for use on contract N069-42170, was previously used as a power source at 1 µ sec pulse length for design testing of TR and ATR tubes.
It was moved to this group's testing area, and after preliminary modification of the circuits, magnetron mount, etc., was operated with magnetron #1 using the 1-5/8" x 5/8" x 1" coaxial water load previously developed for this purpose.

For the sake of clarity, it is best at this point to discuss the magnetrons used. Magnetron #1 was obtained from the General Electric Company Research Laboratory, where, after adequate life, it had failed to operate satisfactorily (low power output, high arc rate). Magnetrons #2 and #3 were obtained from Scranton Tube Works of General Electric Company. These two magnetrons are known to be at least two years old, and may possibly be World War II surplus magnetrons. The latter two magnetrons came under General Electric control when a production facilities contract was transferred from Sarkes-Tarsian to General Electric.

As in the first week of December, only magnetron #1 was available, the system was operated knowing that poor results would be obtained. The first difficulty encountered was traced to a faulty filament under-current protection relay. The circuit was temporarily rewired to permit operation pending receipt of a replacement relay.

As pulses were applied extreme ripple conditions were encountered in the charging voltage waveform, which were traced to improper reconnection of the modulator to the 3-phase supply system after its movement. Proper connection reduced the ripple, but it still had an objectionably higher value. This was reduced to a satisfactory level by increasing the charging voltage power supply output condenser from its previous value of 0.5 mfd to 0.5 mfd. Using a three micro-second pulse length, and hence a large value of pulse line capacitance, it was found by energy considerations that 1/2 the energy on the power supply capacitor was being removed every time the pulse line charged (neglecting the energy contributed by the power supply diodes with only 0.5 mfd capacitor).

Operation continued, but a stable average current values above 10 ma. (0.01 duty cycle) could not be obtained.

Magnetrons #2 and #3 were then received. Magnetron #2 was operated first. It gave very unstable performance, and could not be driven to rated operating conditions after 20 hours of aging operation. At this point, it developed an intermittent open heater, and was removed from the modulator.

Tube #3 was then placed in the modulator and operated. After 32 hours of operation, it could only be driven to 32 ma average current (rated current 66 to 55 ma depending on type of operation) but was still improving. This tube is still being aged and it has permitted certain adjustments and corrections to be made to the modulator. It is also the only tube available at present.

Extraneous pickup was experienced on both the current and voltage waveforms. This was reduced to a low level by redressing all leads, and providing low impedance (200 to 400 ohm) terminations for all cables.

The large amount of RF power radiation from the cathode was shown by the ability to light a neon bulb almost anywhere in the modulator cabinet, at this power level (about 2/3 of normal).
The 1-5/8" x 5/8" x 1" load gave no indication of breakdown at this power level (about 300-400 KW). A Litton 1-5/8" U-line and stub also were found to perform satisfactorily at these power levels. The stub is operated to produce a VSWR of 1.13 to give a combined load and stub VSWR of less than 1.05 over the 5J26 band (1220 to 1350 mc). At this low VSWR (1.13), the dielectric of the stub is no closer than 1/16" to the center conductor of the line.

A Bird termilne resistor #81 was supplied by Scranton Tube Works. It is rated at 2,000 watts average dissipation. Its VSWR over the desired frequency band was measured. (See Figure #1). It operated satisfactorily at 25 ma. average magnetron current, but seems to increase the instability of the magnetron at 32 ma. average. Since this load must be operated vertically, a 90° bend (Andrews Corp.) had to be used. It is possible that the dielectric supports in this section may have been breaking down.

Approval for modification of the modulator was received on December 5, 1953.

The eleven magnetrons requested from Naval sources on September 28, 1953 have not yet been received. The effect of the absence of satisfactory 5J26's on our testing program is quite apparent.

Because of the above delay, an extension of contract completion date will be requested. This will be submitted in the month of January 1954.

The following engineering personnel worked the indicated hours.

<table>
<thead>
<tr>
<th>Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE Johnson</td>
<td>196 1/2 hours</td>
</tr>
<tr>
<td>Th Bristol</td>
<td>20 hours</td>
</tr>
<tr>
<td>Total</td>
<td>216 1/2 hours</td>
</tr>
</tbody>
</table>

Expenditures previously reported $15,345
Expenditures this month (December) $1,411
Total expended to date $17,159

E. Equipment

The special test equipment ordered from our development shop has not yet been received. Delivery has been promised to start by January 15, 1954.

Two of the ten crystals for the crystal multiplier chain have been received.

F. Conclusion

Using several faulty magnetrons, preliminary operation of the test modulator has been accomplished. Test equipment construction has been started. Unavailability of satisfactory magnetrons is interfering with the initiation of the testing program.
G. Objectives for next interval,

I. To continue liaison with equipment manufacturers.

II. To continue systems analysis.

III. To complete construction of test equipment.

IV. Upon receipt of satisfactory sample 5326 tubes, to start testing and evaluation.

Richard E. Johnson
INDUSTRIAL & TRANSMITTING Tube SUB-DEPT.
Electronics Division
General Electric Company
Schenectady, New York

Countersigned by:

J. P. Curtis
T. P. Curtis
BIRD TERMINLINE RESISTOR \(Z \geq 81 \) (2 kW max CW)

\[\frac{1}{1.80} \leq \frac{1}{1.60} \leq \frac{1}{1.40} \leq \frac{1}{1.20} \leq \frac{1}{1.00} \]

\(\omega \gtrsim \alpha \)
DISTRIBUTION

Chief, Bureau of Ships
Washington 25, D. C.
Attn: Code 827 via Code 327

Chief, Bureau of Ships
Washington 25, D. C.
Attn: Code 816 via Code 327

Chief, Bureau of Ships
Washington 25, D. C.
Attn: Code 327

Chief, Bureau of Aeronautics
Washington 25, D. C.
Attn: Code 816 via Code 327

Chief, Bureau of Aeronautics
Washington 25, D. C.
Attn: Code 327

Commanding Officer and Director
Navy Electronics Laboratory
San Diego, California
Attn: A. H. Attebery, Code 133

Director
Naval Research Laboratory
Washington 25, D. C.
Attn: Library

Commanding General
Air Material Command
Wright-Patterson Air Force Base
Dayton, Ohio
Attn: WMEV-3

National Bureau of Standards
Department of Commerce
Washington 25, D. C.
Attn: Electron Tube Section

Director
Swens Signal Laboratory
Belmar, New Jersey
Attn: Thermionics Branch

Panel on Electron Tubes
250 Madison Street
New York, N. Y.

Naval Materials Laboratory
New York Naval Shipyard
Brooklyn, New York
Attn: Code 924

Commanding General
Griffiss Air Force Base
Rome, New York
Attn: RCSTO3A
Arm& Services Technical Information Agency

Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated.

AD

39732

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, OHIO
CONFIDENTIAL