THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
FINAL REPORT

ENERGY DISTRIBUTIONS OF OH IN H₂–O₂ FLAMES

by

H. P. Broida
FINAL REPORT

on

ENERGY DISTRIBUTIONS OF OH IN H₂-O₂ FLAMES

by

H. P. Broida
Temperature Measurements Section
Division of Heat and Power

Project NR-051-303 (Government Order NAonr-136-523)
and Project NR-019-129 (Contract N-ONR-737)

The publication, reprinting, or reproduction of this report in any form, either in whole or in part, is prohibited unless permission is obtained in writing from the Office of the Director, National Bureau of Standards, Washington 25, D.C. Such permission is not needed, however, by a Government agency for which a report has been specifically prepared if that agency wishes to reproduce additional copies of that particular report for its own use.
BACKGROUND

Early in 1952, under Projects NR-051-303 and NR-019-129, the National Bureau of Standards and Hydrocarbon Research, Inc. engaged in a joint theoretical and experimental investigation of the distribution of vibrational and rotational energies of hydroxyl radicals in hydrogen-oxygen flames. Calculations were to be made of the transition probabilities from initial states of the reactants to final states of the products in the chemical reactions

\[\text{H}_2 + \text{O} \rightarrow \text{OH} + \text{H} \]
\[\text{O}_2 + \text{H} \rightarrow \text{OH} + \text{O} \]

Measurements of OH distributions in flames were to be made in order to assist in the choice of range of parameters and to check the final predictions. It was hoped that these studies would contribute to the basic understanding of general combustion problems and would advance methods of calculations of properties of flames so that theory could guide future experiments and practical applications.

The project was terminated at the end of the fiscal year 1953 due to the lack of additional funds. At that time, less than 60% of the originally estimated time and funds had been used.
TECHNICAL PROGRESS REPORT AND STATUS

At the outset the work had been divided into three interrelated phases which were carried out by three separate groups.

(1) The adaptation of Golden's general quantum mechanical theory of reaction rates (S. Golden, J. Chem. Phys. 17, 621 [1949]) to a form suitable for calculation on large scale automatic computing machinery was completed at Hydrocarbon Research, Inc. (Project NR-019-1299). This work was summarized in a report, "A Quantum Mechanical Model for Use by SEAC in the Calculation of Chemical Transition Probabilities," by A. N. Peiser and S. Golden, February 27, 1953.

(2) The computation of selected transition probabilities was the responsibility of the Computation Laboratory at the National Bureau of Standards (Project NR-051-303). A code developed for carrying out these computations on SEAC, the National Bureau of Standards' automatic computer, and the preliminary test of two computations on SEAC has been described by A. N. Gleyzal, "Computation of Chemical Transition Probabilities," NBS Report 3275, April 29, 1954.

(3) Experimental work relating to the choice of parameters for the computations and the construction of equipment for experimental verification of the calculated results was carried out in the High Temperature Program at the National Bureau of Standards, primarily without ONR support. These investigations have been reported in the literature (e.g. J. Chem. Phys. 20, H. P. Broida and G. T. Lalos, 1466-71 (1952); 21, W. R. Kane and H. P. Broida, 347-54 (1953); and 21, H. P. Broida, 1165-69 (1953).
Additional apparatus for measurement of OH distributions under conditions approximately described by the computations has recently been completed. This equipment consists of (1) a burner suitable for sustaining a flame of pre-mixed hydrogen and oxygen at pressures below 3 mm Hg, (2) a high intensity ultra-violet light source suitable for precision OH absorption measurements and (3) the extension to the infra-red of a previously available high resolution ultra-violet and visible monochromator.

CONCLUSIONS

Briefly stated, the work has not gone far enough to permit any positive statement about the success or failure of this attempt to provide a combined theoretical and experimental treatment of the energy distribution of OH in flames. The positive results are:

(1) There has been neither theoretical nor experimental evidence to indicate that the proposed calculations and experimental verification could not be carried out.

(2) The SEAC can do the computations for a selected chemical reaction and temperature in the order of 125 hours (it has been estimated that perhaps 300 years would be required for hand calculation).

(3) Apparatus and techniques are available for measuring OH distributions in flames for comparison with calculated predictions.
RECOMMENDATIONS

In view of the progress made to date at a rate somewhat less than originally estimated and since no evidence of error has been found in the assumptions upon which this program was started, the following recommendations are made:

(1) That Dr. S. Golden (now at Brandeis University) be encouraged and supported to review the progress to date, the details of the code prepared for SEAC, and the overall problem with the aim of determining whether the work should be extended or concluded.

(2) (Providing Dr. Golden approves) That the present or modified code be used to compute the transition probabilities for OH in various rotation and vibration states from the reaction

\[\text{O}_2 + \text{H} \rightarrow \text{OH} + \text{O} \]

at temperatures of 2500°K and 1000°K. The 250-300 hours required for these computations would cost approximately $8,000.

(3) That an experimental investigation of the rotational and vibrational intensity distributions of OH in hydrogen-oxygen flames be made at low pressures to determine the degree to which such distributions are not consistent with equilibrium distributions.
Distribution List for Final Report on "Energy Distributions of OH in H₂-O₂ Flames (Projects NR-051-303 and NR-019-129)

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Addressees</th>
</tr>
</thead>
</table>
| 1 | Commanding Officer
Office of Naval Research Branch Office
150 Causeway Street
Boston, Massachusetts |
| 1 | Commanding Officer
Office of Naval Research Branch Office
344 North Rush Street
Chicago 11, Illinois |
| 1 | Commanding Officer
Office of Naval Research Branch Office
346 Broadway
New York 13, New York |
| 1 | Commanding Officer
Office of Naval Research Branch Office
1000 Geary Street
San Francisco 9, California |
| 2 | Officer-in-Charge
Office of Naval Research, Branch Office
Naval Number 100
Fleet Post Office
New York, New York |
| 9 | Director, Naval Research Laboratory
Washington 25, D. C.
Attention: Technical Information Officer |
| 4 | Chief of Naval Research
Office of Naval Research
Washington 25, D. C.
Attention: Chemistry Branch |
| 1 | Research and Development Board
Pentagon, Room 301041
Washington 25, D. C.
Attention: Technical Reference Section |
Distribution List (Continued)

No. of Copies Addressees

1 Dr. Ralph G. H. Sin, Research Director
 General Laboratories, QM Depot
 2800 S. 20th Street
 Philadelphia 45, Pennsylvania

1 Dr. Warren Stubblebine, Research Director
 Chemical and Plastics Section, RDB-MPD
 Quartermaster General’s Office
 Washington 25, D. C.

1 Dr. A. Stuart Hunter, Tech. Director
 Research and Development Branch MPD
 Quartermaster General’s Office
 Washington 25, D. C.

1 Dr. A. G. Horsey
 Wright Air Development Center
 Wright-Patterson Air Force Base
 Dayton, Ohio
 Attention: WCRRS-4

1 Dr. A. Weissler
 Department of the Army
 Office of the Chief of Ordnance
 Washington 25, D. C.
 Attention: ORDTB-PS

1 Research and Development Group
 Logistics Division, General Staff
 Department of the Army
 Washington 25, D. C.
 Attention: Dr. W. T. Read,
 Scientific Adviser

2 Director, Naval Research Laboratory
 Washington 25, D. C.
 Attention: Chemistry Division

2 Chief of the Bureau of Ships
 Naval Department
 Washington 25, D. C.
 Attention: Code 340

2 Chief of the Bureau of Aeronautics
 Navy Department
 Washington 25, D. C.
 Attention: Code TD-4
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Addressees</th>
</tr>
</thead>
</table>
| 2 | Chief of the Bureau of Ordnance
 Navy Department
 Washington 25, D. C.
 Attention: Code Remi |
| 7 | Mr. J. H. Heald
 Library of Congress
 Navy Research Section
 Washington 25, D. C. |
| 1 | Dr. H. A. Zahl, Tech. Director
 Signal Corps Engineering Laboratories
 Fort Monmouth, New Jersey |
| 1 | U. S. Naval Radiological Defense Lab
 San Francisco 24, California
 Attn: Technical Library |
| 1 | Naval Ordnance Test Station
 Inyokern
 China Lake, California
 Attn: Head, Chemistry Division |
| 1 | Office of Ordnance Research
 2127 Myrtle Drive
 Durham, North Carolina |
| 1 | Technical Command
 Chemical Corps
 Chemical Center, Maryland |
| 1 | U.S. Atomic Energy Commission
 Research Division
 Washington 25, D. C. |
| 1 | U. S. Atomic Energy Commission
 Chemistry Division
 Brookhaven National Laboratory
 Upton, New York |
| 1 | U. S. Atomic Energy Commission
 Library Branch, Tech. Info., ORE
 P. O. Box E
 Oak Ridge, Tennessee |
| 2 | ONR Southeastern Area
 c/o George Washington University
 Room 13-15 Staughton Hall
 707 22nd Street, N.W.
 Washington 6, D. C. |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Addressees</th>
</tr>
</thead>
</table>
| 1 | Dr. M. M. Mills
Project Squid
Princeton University
Princeton, New Jersey |
| 1 | Dr. Robert N. Pease
Department of Chemistry
Princeton University
Princeton, New Jersey |
| 1 | Dr. E. Wohl
University of Delaware
Newark, Delaware |
| 1 | Dr. S. Silverman
Applied Physics Laboratory
3621 Georgia Avenue, N.W.
Silver Spring, Maryland |
| 1 | Dr. B. L. Crawford
University of Minnesota
Minneapolis, Minnesota |
| 1 | Dr. J. H. Hett
New York University
New York, N. Y. |
| 1 | Dr. P. K. Porter
Cornell Aeronautical Laboratory
Buffalo, New York |
| 1 | Dr. S. S. Penner
Jet Propulsion Laboratory
California Institute of Technology
Pasadena 4, California |