THE PHOTOELASTIC DETERMINATION OF STRESS ON TRANSVERSE PLANES OF SYMMETRY FOR THE GENERAL AXI-SYMMETRIC CASE

by

E.A. FOX

Office of Naval Research Project NR-064-388
Contract Nmri-266(09)
Technical Report No. 15
CU-16-54-ONR-266(09)-CE
June 1954
THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.
THE PHOTOELASTIC DETERMINATION OF STRESS ON TRANSVERSE PLANES OF SYMMETRY FOR THE GENERAL AXI-SYMMETRIC CASE

by

E. A. FOX

Office of Naval Research Project NR-064-388
Contract Nonr-266(09)
Technical Report No. 15
CU-16-54-ONR-266(09)-CE
June 1954
THE PHOTOELASTIC DETERMINATION OF STRESS ON TRANSVERSE PLANES
OF SYMMETRY FOR THE GENERAL AXI-SYMMETRIC CASE

Abstract

The method of O'Rourke and Saenz of treating the gross retardation patterns of symmetrically strained cylinders and spheres as an Abel integral equation is combined with one scattered light measurement to provide a complete solution on transverse planes of symmetry for the general axi-symmetric problem. A simple expression is derived for three-dimensional "notch stresses."

I. Introduction

The standard three-dimensional photoelastic techniques: freezing-slicing, and scattered light probing, have intrinsic limitations. Slicing is destructive of the model, probing requires a multiplicity of measurements, and neither is easily adapted to dynamic loading.

The idea of determining the interior stresses from the integrated relative retardation pattern is tantalizing and has been pursued by several investigators. Poritsky\(^1\) achieved a solution for cylindrical bars in a state of plane strain; Read\(^2\), a solution for cylindrical glass bulbs under restrictive conditions. Kamerer\(^3\) established the integral equation for the relative retardation in the axi-symmetric case from Neumann's\(^4\) equations.

1 H. Poritsky, Physics 5, 406-411 (1934).
O'Rourke and Saenz5 observed that this equation is Abel's integral equation. They concerned themselves with axially symmetric plane strain in long cylinders and radially symmetric stress in spheres, but required a very restrictive sum rule, $C_2 = C_1 + C_3$, in the case of cylinders to obtain a solution. This restriction was removed by Saenz6 by interferometric data and by Drucker and Woodward7 by the use of oblique incidence.

The following discussion will apply to the general axi-symmetric case on a plane of transverse symmetry of an elastic body.

\section*{II. Preliminary Equations}

Let the normal to the wave front be parallel to the γ-axis, then the Maxwell-Neumann stress optic law8 relates the relative retardation δ, the principal stresses in the plane of the wave front ρ, q ($\rho > q$), the orientation ϕ of q with respect to x, and y, the arc tan of the amplitude ratio of the two transmitted waves, as follows:

$$\frac{\partial \delta(x, y, z)}{\partial y} + C(q - q) = 2 \frac{\partial \phi}{\partial y} \cot 2y \sin \delta$$

\begin{equation}
\frac{\partial y}{\partial y} = - \frac{\partial \phi}{\partial y} \cos \delta
\end{equation}

where C is the stress-optic coefficient.

5 R. C. O'Rourke and A. W. Saenz, Quart. Appl. Math. 8, 303-311 (1950).
6 R. C. O'Rourke, J. Appl. Phys. 22, 872-878 (1951).
7 A. W. Saenz, J. Appl. Phys. 21, 962-965 (1950).
Let the axis of symmetry be \(Z \). Then, in a usual notation, the following relations hold:

\[
\frac{\partial \sigma_r}{\partial r} + \frac{\partial \tau_{r\theta}}{\partial z} + \frac{\sigma_r - \sigma_\theta}{r} = 0 \tag{2}
\]

\[
\frac{\partial \sigma_\theta}{\partial z} + \frac{\partial \tau_{\theta\phi}}{\partial r} + \frac{1}{r} \tau_{r\phi} = 0 \tag{3}
\]

\[
\frac{\partial u}{\partial r} = \epsilon_r = \frac{1}{E} \left[\sigma_r - \nu(\sigma_\theta + \sigma_\phi) \right] \tag{4}
\]

\[
\frac{u}{r} = \epsilon_\theta = \frac{1}{E} \left[\sigma_\theta - \nu(\sigma_r + \sigma_\phi) \right] \tag{5}
\]

where \(u \) is the displacement in the \(r \) direction. Eliminating \(u \) between (4) and (5) we obtain:

\[
\frac{\sigma_r - \sigma_\theta}{r} = \frac{1}{1 + \nu} \frac{\partial}{\partial r} \left[\sigma_\theta - \nu(\sigma_r + \sigma_\phi) \right] = \frac{E}{1 + \nu} \frac{\partial}{\partial r} \left(\frac{u}{r} \right) \tag{6}
\]

In the plane of the wave front

\[
P - q = \left[\left(\frac{\sigma_r}{r^2} + \frac{\sigma_\theta}{r} - \sigma_\phi \right)^2 + q \frac{\tau_{r\phi}}{r^3} \right] \frac{1}{4} \tag{7}
\]

\[
\sin \phi = \frac{2 \tau_{r\phi}}{P - q} \frac{x}{r} \tag{8}
\]

III. Transverse Plane of Symmetry

Let \(Z = 0 \) be a transverse plane of symmetry. Let \(a, b \) be the inner and outer radii, respectively, of the section of the body cut by \(Z = 0 \).

On \(Z = 0 \), \(\tau_{r\phi} = 0 \). Hence, from (8), \(\phi = 0 \); therefore (1) and (7) become

\[
\sigma_r = \sigma_\theta = 0 \tag{9}
\]

\[
P - q = \left[\left(\frac{\sigma_r}{r^2} + \frac{\sigma_\theta}{r} \right)^2 + q \right] \frac{1}{4} \tag{10}
\]

\[
\sin \phi = \frac{2 \tau_{r\phi}}{P - q} \frac{x}{r} \tag{11}
\]

\[
\frac{\partial \delta(x, y)}{\partial y} - C(p - q)_{\xi} = C \left[\sigma_x - \sigma_r \frac{x}{r^2} - \sigma_\theta \frac{y}{r^2} \right]_{\xi = 0} \tag{9}
\]

Consider a pencil of circularly polarized light along the path \(x = 0 \).

Then (9) becomes
\[
C \left(\sigma_x - \sigma_r \right)_{\xi = 0} = \frac{\partial \delta(x, y)}{\partial y} = \frac{\partial \delta(r, o)}{\partial r} = S(r) \tag{10}
\]

where \(S(r) \) is Weller's\(^{10}\) scattered light function which is inversely proportional to the spacing of the interference fringes viewed normally to the light path.

Let \(R(x, z) \) be the two-dimensional map of the integrated relative retardation. Put (6) and (10) in (9) and integrate across the chord with respect to \(\gamma \). Let \(t = \frac{b^2 - x^2}{2} \) be the half chord length. Then since all functions are even in \(\gamma \)

\[
R(x, o) = 2 \int_{0}^{t} S(r) \, d\gamma - 2 C \frac{E}{1 + \nu} x^2 \int_{0}^{t} \frac{\, d}{r} \left(\frac{u(r, o)}{r} \right) \, d\gamma
\]

Changing the variable of integration to \(r \) and transposing, there results

\[
\frac{1 + \nu}{2 E} \frac{1}{x^2} \left\{ 2 \int_{0}^{x} \frac{r S(r)}{\sqrt{r^2 - x^2}} \, dr - R(x, o) \right\} = \int_{x}^{b} \frac{\, d}{\sqrt{r^2 - x^2}} \left[\frac{1}{r} \left(\frac{u(r, o)}{r} \right) \right] \, dr \tag{11}
\]

This is Abel's integral equation,\(^{11}\) which, since the left hand side of (11) vanishes at \(x = b \), has the unique continuous inverse

\[
\frac{d}{dr} \left(\frac{u(r, o)}{r} \right) = \frac{1 + \nu}{\pi E c} \int_{0}^{b} \frac{r S(r)}{\sqrt{r^2 - x^2}} \, dr \quad \text{at} \quad x = \frac{1 + \nu}{\pi E c} \int_{r}^{b} M(r) \, dr \tag{12}
\]

where \(M(r) \) is an experimentally determined function. Integrate (12) with respect to \(r \). Then, since \(M(b) = 0 \),

\[
U(r, a) = r \left[\frac{1}{1 + \nu} \int M(r) + \frac{U(b, a)}{b} \right]
\]

where \(U(b, a) \) is determined by measurement or is computed. (See Section IV.)

Sum (4) and (5), yielding

\[
\sigma_r + \sigma_\theta = \frac{1}{1 + \nu} \left[E \frac{1}{r} \frac{d}{dr} (ru) + 2 \nu \sigma_r \right]
\]

Finally, solving (6), (10), and (14)

\[
\begin{align*}
\sigma_r(r, a) &= \frac{E}{(1 + \nu)(1 - 2\nu)} \left[\frac{U(r, a)}{r} + \nu \frac{dU(r, a)}{d r} \right] + \frac{1 - \nu}{C(1 - 2\nu)} S(r) \\
\sigma_\theta(r, a) &= \frac{E}{(1 + \nu)(1 - 2\nu)} \left[\frac{U(r, a)}{r} + \nu \frac{dU(r, a)}{d r} \right] + \frac{\nu}{C(1 - 2\nu)} S(r) \\
\sigma_r(r, a) &= \frac{E}{(1 + \nu)(1 - 2\nu)} \left[2 \nu \frac{U(r, a)}{r} + (1 - \nu) \frac{dU(r, a)}{d r} \right] + \frac{\nu}{C(1 - 2\nu)} S(r)
\end{align*}
\]

where \(U(r) \) is given by (13), and \(S(r) \) by (10).

IV. Determination of \(U(b, a) \)

\(U(b, a) \) may either be measured or computed as follows: Put (2) in (9) and integrate with respect to \(\eta \).

\[
\int_0^1 \frac{1}{2C} R(x, a) = \int_0^t \left[\sigma_r - \sigma_\theta - \frac{3C}{2r} U - \frac{3C}{2} \frac{\partial U}{\partial \eta} \right] d\eta
\]

Integrate the second term by parts, then after some manipulation (See Appendix.)

\[
\frac{1}{2C} R(x, a) = \int_0^b \frac{\sigma_r(r, a) - \sigma_r(b, a) - \frac{\partial U(r, a)}{\partial \eta}}{\sqrt{r^2 - x^2}} \sqrt{r^2 - x^2} d\eta
\]
This is again Abel's integral equation with the unique inverse

\[G(x, y) = \frac{1}{\pi y} \int_{-\infty}^{\infty} \frac{f(t)}{y - t} dt \]

Put (2) in (6), then

\[\frac{\partial}{\partial r} \left(\sigma_r + \sigma_\theta \right) = \nu \frac{\partial \sigma_\theta}{\partial r} - (1 + \nu) \frac{\partial \tau}{\partial x} \]

Integrate (20) with respect to \(r \). Then this with (5), (14), and (19) yields

\[E \frac{d}{dr} \left[r u(r, \theta) \right] = E (1 - \nu) \frac{u(b, \theta)}{b} + \frac{1 - \nu}{\pi E} \int_{a}^{b} \frac{R(x, \theta)}{\sqrt{x^2 - a^2}} dx + \frac{(1 + \nu)(1 - 2\nu)}{b} G_\theta (r, \theta) \]

or, integrating,

\[b u(b, \theta) - a u(a, \theta) = \frac{1 - \nu}{2} \frac{u(b, \theta)}{b} (b - a) - \frac{1 - \nu}{\pi E} \int_{a}^{b} \frac{R(x, \theta)}{\sqrt{x^2 - a^2}} dx \]

\[+ \frac{(1 + \nu)(1 - 2\nu)}{bE} \frac{P}{2\pi} \]

where \(P = 2 \pi \int_{a}^{b} \sigma_x (r, \theta) r dr \) = total axial force across \(z = 0 \).

Put (13) in (21), obtaining

\[u(b, \theta) = \frac{2b}{(1 + \nu)(1 - \nu)} \left[a \frac{1 - \nu}{\pi E} \int_{a}^{b} \frac{R(x, \theta)}{\sqrt{x^2 - a^2}} dx + \frac{(1 + \nu)(1 - 2\nu)}{bE} \frac{P}{2\pi} \right] \]

If in particular \(a = 0 \), then

\[u(b, \theta) = \frac{1}{b\pi E} \left[(1 - \nu) P - \frac{2(1 - \nu)}{b} \int_{a}^{b} R(x, \theta) dx \right] \]
V. Alternate Expression for $\sigma_z(b, o)$

If it is desired to obtain only the axial stress on the outer boundary of the section $Z = 0$, then a simple expression may be derived directly from the Maxwell-Neumann law. Consider (9). Let $x \to b$. Then $r \to b$, $t \to y \to o$, $\delta(x, y, o) \to \delta(b, o, o) = \frac{1}{2} R(b, o)$, Replot $R(x, o)$ as $R(t, o)$ where $t = (b - x')^t$. Then in the limit

$$\sigma_z(b, o) = \frac{1}{2C} \left[\frac{dR(t, o)}{dt} \right]_{t=0} + \sigma_r(b, o)$$

where $\sigma_r(b, o)$ is the normal surface traction at (b, o). Thus $\sigma_z(b, o)$ is proportional to the gradient at the boundary of the integrated relative retardation reckoned as a function of the half light path. We observe that (23) is consistent with (19) if R is made a function of t. Further, if $u(b, o)$ is known, then (5) and (23) yield

$$\sigma_0(b, o) = E \frac{u(b, o)}{b} + \nu \left\{ 2 \sigma_r(b, o) + \frac{1}{2C} \left[\frac{dR(t, o)}{dt} \right]_{t=0} \right\}$$

Acknowledgment

The author wishes to thank Professor R. D. Mindlin for suggesting this investigation and for his advice during its course.
Appendix

Derivation of Equation (18)

Integrate (9) with respect to η.

$$\frac{1}{2C} R(x,0) = \int_0^t \left[\sigma_t^2 - \sigma_r \sigma_x - \sigma_b \frac{u^1}{r} \right] \, d\eta = \int_0^t \left[\left(\sigma_t \cdot \sigma_r + (\sigma_r - \sigma_b) \frac{u^1}{r} \right) \right] \, d\eta$$

Then, with (2),

$$\frac{1}{2C} R(x,0) = \int_0^t \left[\sigma_t^2 - \left(\frac{\partial \sigma_r}{\partial r} + \frac{\partial \sigma_x}{\partial x} \right) \frac{u^1}{r} \right] \, d\eta$$

Integrate the second term by parts, yielding

$$\frac{1}{2C} R(x,0) = \int_0^t \left[\sigma_t^2 - \frac{\partial \sigma_r}{\partial r} \right] \, d\eta - \left[\eta \sigma_r \right]_0^t + \int_0^t \left[\eta \frac{\partial \sigma_r}{\partial r} \right] \, d\eta$$

but $\frac{\partial \sigma_r}{\partial r} = \frac{1}{r}$ and $\left[\eta \sigma_r \right]_0^t = \int \sigma_r (b,0) \, d\eta$, hence

$$\frac{1}{2C} R(x,0) = \int_0^t \left[\sigma_t^2 - \sigma_r (b,0) - \frac{\partial \sigma_x}{\partial x} \frac{u^1}{r} \right] \, d\eta$$

Consider

$$\int_0^t \frac{\partial \sigma_x}{\partial x} \frac{u^1}{r} \, d\eta = \int_0^t \left\{ \frac{d}{dr} \left[\frac{r \sigma_x}{\partial x} \right] + \frac{\partial \sigma_x}{\partial x} \right\} \frac{u^1}{r} \, d\eta = \int_0^t \left\{ \frac{d}{d\eta} \left[\frac{r \sigma_x}{\partial x} \right] + \frac{\partial \sigma_x}{\partial x} \right\} \frac{u^1}{r} \, d\eta$$

Thus

$$\frac{1}{2C} R(x,0) = \int_0^t \left[\sigma_t^2 - \sigma_r (b,0) - \int \frac{\partial \sigma_x}{\partial x} \, dr \right] \, d\eta$$

Then, changing the variable of integration to r, we obtain (18).

-8-
DISTRIBUTION LIST

for

Technical and Final Reports Issued Under
Office of Naval Research Project NR-064-388. Contract Nonr-266(09)

Administrative, Reference and Liaison Activities of ONR

Chief of Naval Research
Department of the Navy
Washington 25, D.C.
Attn: Code 438 (2)
Code 416 (1)
Code 421 (1)

Director, Naval Research Lab.
Washington 25, D.C.
Attn: Tech. Info. Officer (9)
Technical Library (1)
Mechanics Division (2)
Code 3834 (J. P. Walsh) (1)

Commanding Officer
Office of Naval Research
Branch Office
150 Causeway Street
Boston 10, Massachusetts (1)

Commanding Officer
Office of Naval Research
Branch Office
3/6 Broadway
New York 13, New York (1)

Commanding Officer
Office of Naval Research
Branch Office
844 N. Rush Street
Chicago 11, Illinois (1)

Commanding Officer
Office of Naval Research
Branch Office
1000 Geary Street
San Francisco 24, California (1)

Director, Naval Research Lab.
Washington 25, D.C.
Attn: Tech. Info. Officer (9)
Technical Library (1)
Mechanics Division (2)
Code 3834 (J. P. Walsh) (1)

Commanding Officer
Office of Naval Research
Branch Office
1090 Green Street
Pasadena, California (1)

Contract Administrator, SE Area
Office of Naval Research
C/o George Washington University
707 22nd Street, N.W.
Washington 6, D.C. (1)

Officer in Charge
Office of Naval Research
Branch Office, London
Navy No. 100
FPO, New York, N.Y. (5)

Library of Congress
Washington 25, D.C.
Attn: Navy Research Section (2)

Department of Defense
Other Interested Government Activities

GENERAL
Research and Development Board
Department of Defense
Pentagon Building
Washington 25, D.C.
Attn: Library (Code 3D-1075) (1)

Armed Forces Special Weapons Project
P.O. Box 2610
Washington, D.C.
Attn: Col. G. F. Blunda (1)
ARMY
Chief of Staff
Department of the Army
Research and Development Division
Washington 25, D.C.
Attn: Chief of Res. and Dev. (1)

Office of the Chief of Engineers
Assistant Chief for Works
Department of the Army
Blg. T-7, Gravelly Point
Washington 25, D.C.
Attn: Structural Branch
(R. L. Bloor) (1)

Office of the Chief of Engineers
Asst. Chief for Military Construction
Department of the Army
Blg. T-7, Gravelly Point
Washington 25, D.C.
Attn: Structures Branch
(H. F. Carey) (1)

Engineering Research & Development Lab.
Fort Belvoir, Virginia
Attn: Structures Branch (1)

The Commanding General
Sandia Base, P.O. Box 5100
Albuquerque, New Mexico
Attn: Col. Canterbury (1)

Operations Research Officer
Department of the Army
Pt. Lesley J. McNair
Washington 25, D.C.
Attn: Howard Brackney (1)

Office of Chief of Ordnance
Research & Development Service
Department of the Army
The Pentagon
Washington 25, D.C.
Attn: CORDTB (2)

Commanding Officer
Ballistic Research Laboratory
Aberdeen Proving Ground
Aberdeen, Maryland
Attn: Dr. C. W. Lampson (1)

ARMY (cont.)
Commanding Officer
Watertown Arsenal
Watertown, Massachusetts
Attn: Laboratory Division (1)

Commanding Officer
Frankford Arsenal
Philadelphia, Pennsylvania
Attn: Laboratory Division (1)

Commanding Officer
Squier Signal Laboratory
Fort Monmouth, New Jersey
Attn: Components and Materials Branch (1)

NAVY
Chief of Bureau of Ships
Navy Department
Washington 25, D.C.
Attn: Director of Research (2)

Director
David Taylor Model Basin
Washington 7, D.C.
Attn: Structural Mechanics Div. (2)

Director
Naval Engr. Experiment Station
Annapolis, Maryland (1)

Director
Materials Laboratory
New York Naval Shipyard
Brooklyn 1, New York (1)

Chief of Bureau of Ordnance
Navy Department
Washington 25, D.C.
Attn: Ad-3, Technical Library (1)

Superintendent
Naval Gun Factory
Washington 25, D.C. (1)

Naval Ordnance Laboratory
White Oak, Maryland
RFD 1, Silver Spring, Maryland
Attn: Mechanics Division (2)

Naval Ordnance Test Station
Inyokern, California
Attn: Scientific Officer (1)
| Professor J. R. Andersen |
| Towne School of Engineering |
| University of Pennsylvania |
| Philadelphia, Pennsylvania |
| (1) |

| Professor Melvin Baron |
| Dept. of Civil Engineering |
| Columbia University |
| New York 27, New York |
| (1) |

| Professor Lynn Beedle |
| Fritz Engineering Laboratory |
| Lehigh University |
| Bethlehem, Pennsylvania |
| (1) |

| Professor C. B. Biezeno |
| Technische Hoogeschool |
| Nieuwe Iaan 76 |
| Delft, Holland |
| (1) |

| Dr. H. A. Biot |
| 1819 Broadway |
| New York, New York |
| (1) |

| Professor R. L. Bisplinghoff |
| Dept. of Aeronautical Engineering |
| Massachusetts Institute of Technology |
| Cambridge 39, Massachusetts |
| (1) |

| Professor Hans H. Bleich |
| Dept. of Civil Engineering |
| Columbia University |
| New York 27, New York |
| (1) |

| Professor J. A. Bogdanoff |
| Purdue University |
| Lafayette, Indiana |
| (1) |

| Professor B. A. Boley |
| Dept. of Civil Engineering |
| Columbia University |
| New York 27, New York |
| (1) |

| Professor F. W. Bridgeman |
| Dept. of Physics |
| Harvard University |
| Cambridge 38, Massachusetts |
| (1) |

| Professor D. M. Burmister |
| Dept. of Civil Engineering |
| Columbia University |
| New York 27, New York |
| (1) |

| Dr. V. Cadambe |
| Assistant Director of the National Physical Laboratory of India |
| Hillside Road |
| New Delhi 12, India |
| (1) |

| Professor George F. Carrier |
| Division of Applied Science |
| Pierce Hall |
| Harvard University |
| Cambridge 38, Massachusetts |
| (1) |

| Dr. David Cheng |
| M. W. Kellogg Company |
| 225 Broadway |
| New York, New York |
| (1) |

| Committee on Government Aided Research |
| Columbia University |
| 313 Low Memorial Library |
| New York 27, New York |
| (2) |

| Mrs. Hilda Cooper |
| The Dell |
| Searingtown |
| Albertson, Long Island, New York |
| (1) |

| Dr. Antoine E. I. Craya |
| Neurpic |
| Boite Postale 52 |
| Grenoble, France |
| (1) |

| Professor J. P. Den Hartog |
| Massachusetts Institute of Technology |
| Cambridge 39, Massachusetts |
| (1) |

| Professor Herbert Dereiewicz |
| Dept. of Civil Engineering |
| Columbia University |
| 632 West 125th Street |
| New York 27, New York |
| (1) |

| Dr. C. G. Dohrenwend |
| Rensselaer Polytechnic Institute |
| Troy, New York |
| (1) |

<p>| Professor T. J. Dolan |
| Dept. of Theoretical and Applied Mechanics |
| University of Illinois |
| Urbana, Illinois |
| (1) |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor Lloyd Donnell</td>
<td>Dept. of Mechanics</td>
</tr>
<tr>
<td></td>
<td>Illinois Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>Chicago 16, Illinois</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Professor D. C. Drucker</td>
<td>Division of Engineering</td>
</tr>
<tr>
<td></td>
<td>Brown University</td>
</tr>
<tr>
<td></td>
<td>Providence 12, Rhode Island</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Dr. W. Eckert</td>
<td>Watson Scientific Computing Laboratory</td>
</tr>
<tr>
<td></td>
<td>612 West 116th Street</td>
</tr>
<tr>
<td></td>
<td>New York 27, New York</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Dr. H. Eckstein</td>
<td>Armour Research Foundation</td>
</tr>
<tr>
<td></td>
<td>Illinois Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>Chicago 16, Illinois</td>
</tr>
<tr>
<td></td>
<td>Engineering Library</td>
</tr>
<tr>
<td></td>
<td>Columbia University</td>
</tr>
<tr>
<td></td>
<td>New York 27, New York</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Professor E. L. Eriksen</td>
<td>University of Michigan</td>
</tr>
<tr>
<td></td>
<td>Ann Arbor, Michigan</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Professor A. C. Eringen</td>
<td>Illinois Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>Chicago 16, Illinois</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Dr. W. L. Esweijer</td>
<td>Voorduinstraat 24</td>
</tr>
<tr>
<td></td>
<td>Haarlem, Holland</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td>Mr. Marvin Forray</td>
<td>1196 East 16th Street</td>
</tr>
<tr>
<td></td>
<td>Brooklyn 30, New York</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Dr. J. N. Goodier</td>
<td>Dept. of Engineering Mechanics</td>
</tr>
<tr>
<td></td>
<td>Stanford University</td>
</tr>
<tr>
<td></td>
<td>Stanford, California</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Professor L. E. Goodman</td>
<td>Dept. of Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td>University of Minnesota</td>
</tr>
<tr>
<td></td>
<td>Minneapolis 14, Minnesota</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Professor R. J. Hansen</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>Cambridge 39, Massachusetts</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Professor K. O. Friedrichs</td>
<td>New York University</td>
</tr>
<tr>
<td></td>
<td>Washington Square</td>
</tr>
<tr>
<td></td>
<td>New York, New York</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Professor M. M. Frocht</td>
<td>Illinois Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>Chicago 16, Illinois</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Professor J. M. Garrett</td>
<td>Dept. of Civil Engineering</td>
</tr>
<tr>
<td></td>
<td>Columbia University</td>
</tr>
<tr>
<td></td>
<td>New York 27, New York</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Professor J. A. Goff</td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, Pennsylvania</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Mr. E. A. Gerber</td>
<td>Signal Corps Engineering Labs.</td>
</tr>
<tr>
<td></td>
<td>Fort Monmouth, New Jersey</td>
</tr>
<tr>
<td></td>
<td>Watson Area</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Mr. Martin Goland</td>
<td>Midwest Research Institute</td>
</tr>
<tr>
<td></td>
<td>4049 Pennsylvania</td>
</tr>
<tr>
<td></td>
<td>Kansas City 2, Missouri</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Professor R. M. Hermes</td>
<td>University of Santa Clara</td>
</tr>
<tr>
<td></td>
<td>Santa Clara, California</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Professor A. M. Freundt</td>
<td>Dept. of Civil Engineering</td>
</tr>
<tr>
<td></td>
<td>Columbia University</td>
</tr>
<tr>
<td></td>
<td>New York 27, New York</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Professor E. Fried</td>
<td>Washington State College</td>
</tr>
<tr>
<td></td>
<td>Pullman, Washington</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
</tbody>
</table>
Contractors and Other Investigators Actively Engaged in Related Research (cont.)

Professor M. Petényi
Northwestern University
Evanston, Illinois

Professor T. J. Higgins
Dept. of Electrical Engineering
University of Wisconsin
Madison, Wisconsin

Professor N. J. Hoff
Dept. of Aeronautical Engineering
Polytechnic Institute of Brooklyn
Brooklyn 2, New York

Professor M. B. Hogan
University of Utah
Salt Lake City, Utah

Professor D. L. Holl
Iowa State College
Ames, Iowa

Dr. J. H. Holliomon
General Electric Research Labs.
1 River Road
Schenectady, New York

Professor W. H. Hoppmann
Dept. of Applied Mechanics
The Johns Hopkins University
Baltimore, Maryland

Dr. Gabriel Horvay
Knolls Atomic Power Laboratory
General Electric Company
Schenectady, New York

Institut de Mathématiques
Université
port. fah 55
Skopje, Yugoslavia

Professor L. S. Jacobsen
Dept. of Mechanical Engineering
Stanford University
Stanford, California

Professor Bruce G. Johnston
University of Michigan
Ann Arbor, Michigan

Professor Thomas R. Kane
25-2 Valley Road
Drexel Hill, Pennsylvania

Professor K. Klotter
Stanford University
Stanford, California

Professor W. J. Krefeld
Dept. of Civil Engineering
Columbia University
New York 27, New York

Professor E. J. Lazan
Dept. of Materials Engineering
University of Minnesota
Minneapolis 14, Minnesota

Professor E. H. Lee
Division of Applied Mathematics
Brown University
Providence 12, Rhode Island

Professor George Lee
Rensselaer Polytechnic Institute
Troy, New York

Professor J. M. Lessells
Dept. of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge 39, Massachusetts

Library, Engineering Foundation
29 West 39th Street
New York, New York

Professor Paul Lieber
Dept. of Engineering
Rensselaer Polytechnic Institute
Troy, New York

Dr. Hau Lo
Purdue University
Lafayette, Indiana

Professor G. T. G. Looney
Dept. of Civil Engineering
Yale University
New Haven, Connecticut
Contractors and Other Investigators Actively Engaged in Related Research (cont.)

Dr. J. L. Lubkin
Midwest Research Institute
4049 Pennsylvania
Kansas City 2, Missouri
(1)

Professor J. F. Ludloff
School of Aeronautics
New York University
New York 53, New York
(1)

Professor J. H. Macduff
Rensselaer Polytechnic Institute
Troy, New York
(1)

Professor C. W. MacGregor
University of Pennsylvania
Philadelphia, Pennsylvania
(1)

Professor Lawrence E. Malvern
Dept. of Mathematics
Carnegie Institute of Technology
Pittsburgh 13, Pennsylvania
(1)

Professor J. H. Marchant
Brown University
Providence 12, Rhode Island
(1)

Professor J. Marin
Pennsylvania State College
State College, Pennsylvania
(1)

Dr. W. P. Mason
Bell Telephone Laboratories
Murray Hill, New Jersey
(1)

Professor R. D. Mindlin
Dept. of Civil Engineering
Columbia University
612 West 125th Street
New York 27, New York
(15)

Dr. A. Nadal
136 Cherry Valley Road
Pittsburgh 21, Pennsylvania
(1)

Professor Paul K. Naghdi
Dept. of Engineering Mechanics
University of Michigan
Ann Arbor, Michigan
(1)

Professor N. M. Newmark
207 Talbot Laboratory
University of Illinois
Urbana, Illinois
(1)

Professor Jesse Ormondroyd
University of Michigan
Ann Arbor, Michigan
(1)

Professor W. Osgood
Illinois Institute of Technology
Chicago 16, Illinois
(1)

Dr. George B. Pegram
313 Low Memorial Library
Columbia University
New York 27, New York
(1)

Dr. H. P. Petersen
Director, Applied Physics Division
Sandia Laboratory
Albuquerque, New Mexico
(1)

Mr. R. E. Peterson
Westinghouse Research Laboratories
East Pittsburgh, Pennsylvania
(1)

Professor A. Phillips
School of Engineering
Stanford University
Stanford, California
(1)

Professor Gerald Pickett
Dept. of Mechanics
University of Wisconsin
Madison 6, Wisconsin
(1)

Dr. H. Poritsky
General Engineering Laboratory
General Electric Company
Schenectady, New York
(1)

Professor W. Prager
Graduate Division of Applied Mathematics
Brown University
Providence 12, Rhode Island
(1)

Dr. Frank Press
Lamont Geological Observatory
Palisades, New York
(1)
Contractors and Other Investigators Actively Engaged in Related Research (cont.)

RAND Corporation
1500 4th Street
Santa Monica, California
Attn: Dr. B. L. Add
(1)

Dr. S. Paynor
Armour Research Foundation
Illinois Institute of Technology
Chicago 16, Illinois
(1)

Professor E. Reissner
Dept. of Mathematics
Massachusetts Institute of Technology
Cambridge 39, Massachusetts
(1)

Professor H. Reissner
Polytechnic Institute of Brooklyn
99 Livingston Street
Brooklyn 2, New York
(1)

Dr. Kenneth Robinson
Combustion Engineering, Inc.
200 Madison Avenue
New York 16, New York
(1)

Professor Leif Rongved
Dept. of Engineering Mechanics
Pennsylvania State College
State College, Pennsylvania
(1)

Professor M. A. Sadowsky
Dept. of Mechanics
North Hall
Rensselaer Polytechnic Institute
Troy, New York
(1)

Professor M. G. Salvadori
Dept. of Civil Engineering
Columbia University
New York 27, New York
(1)

Mr. Arnold Schacknor
20-35 Seagirt Boulevard
Far Rockaway, New York
(1)

Dr. F. S. Shaw
Superintendent
Structures & Materials Division
Aeronautical Research Laboratories
Box 431, G.P.O., Melbourne
Victoria, Australia
(1)

Dr. Daniel T. Sigley
American Machine and Foundry Company
511 Fifth Avenue
New York, New York
(1)

Professor C. B. Smith
Department of Mathematics
Walker Hall
University of Florida
Gainesville, Florida
(1)

Professor C. R. Soderberg
Dept. of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge 39, Massachusetts
(1)

Professor R. V. Southwell
Imperial College of Science and Technology
South Kensington
London S.W. 7, England
(1)

Professor E. Sternberg
Illinois Institute of Technology
Chicago 16, Illinois
(1)

Professor J. J. Stoker
New York University
Washington Square
New York, New York
(1)

Mr. R. A. Sykes
Bell Telephone Laboratories
Murray Hill, New Jersey
(1)

Professor P. S. Symonds
Brown University
Providence 12, Rhode Island
(1)

Professor J. L. Synge
Dublin Institute for Advanced Studies
School of Theoretical Physics
64-65 Merrion Square
Dublin, Ireland
(1)

Professor P. K. Teichmann
Dept. of Aeronautical Engineering
New York University
University Heights, Bronx
New York, New York
(1)

viii
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor S. P. Timoshenko</td>
<td>Professor Alexander Weinstein</td>
</tr>
<tr>
<td>School of Engineering</td>
<td>Institute of Applied Mathematics</td>
</tr>
<tr>
<td>Stanford University</td>
<td>University of Maryland</td>
</tr>
<tr>
<td>Stanford, California</td>
<td>College Park, Maryland</td>
</tr>
<tr>
<td>Professor C. A. Truesdell</td>
<td>Professor Dana Young</td>
</tr>
<tr>
<td>Graduate Institute for Applied Mathematics</td>
<td>Yale University</td>
</tr>
<tr>
<td>Indiana University</td>
<td>Winchester Hall</td>
</tr>
<tr>
<td>Bloomington, Indiana</td>
<td>15 Prospect Street</td>
</tr>
<tr>
<td></td>
<td>New Haven, Connecticut</td>
</tr>
<tr>
<td>Professor Karl S. Van Dyke</td>
<td>Dr. I. Vigness</td>
</tr>
<tr>
<td>Department of Physics</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>Scott Laboratory</td>
<td>Anacostia Station</td>
</tr>
<tr>
<td>Wesleyan University</td>
<td>Washington, D.C.</td>
</tr>
<tr>
<td>Middletown, Connecticut</td>
<td></td>
</tr>
<tr>
<td>Dr. Leonardo Villena</td>
<td>Dr. Leonardo Villena</td>
</tr>
<tr>
<td>Av. de La Habana, 147</td>
<td>Madrid, Spain</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor E. Volterra</td>
<td>Professor E. Volterra</td>
</tr>
<tr>
<td>Rensselaer Polytechnic Institute</td>
<td>Troy, New York</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. A. M. Wahl</td>
<td>Mr. A. M. Wahl</td>
</tr>
<tr>
<td>Westinghouse Research Laboratories</td>
<td>East Pittsburgh, Pennsylvania</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor C. T. Wang</td>
<td>Professor C. T. Wang</td>
</tr>
<tr>
<td>Dept. of Aeronautical Engineering</td>
<td>New York University</td>
</tr>
<tr>
<td>New York University</td>
<td>University Heights, Bronx</td>
</tr>
<tr>
<td>New York, New York</td>
<td></td>
</tr>
<tr>
<td>Dr. R. L. Wegel</td>
<td>Dr. R. L. Wegel</td>
</tr>
<tr>
<td>RF 2</td>
<td>Peekskill, New York</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor E. E. Weibel</td>
<td>Professor E. E. Weibel</td>
</tr>
<tr>
<td>University of Colorado</td>
<td>Boulder, Colorado</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor Jerome Weiner</td>
<td>Professor Jerome Weiner</td>
</tr>
<tr>
<td>Dept. of Civil Engineering</td>
<td>Columbia University</td>
</tr>
<tr>
<td>New York 27, New York</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>