UNCLASSIFIED

AD NUMBER

AD035641

CLASSIFICATION CHANGES

TO: UNCLASSIFIED
FROM: CONFIDENTIAL

LIMITATION CHANGES

TO: Approved for public release; distribution is unlimited.

FROM: Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; NOV 1949. Other requests shall be referred to Commander, Naval Air Systems Command, Attn: AIR-50174. Washington, DC 20360.

AUTHORITY

1 Jan 1962 per ASTIA Tab No. U62-1-1; USNASC ltr dtd 30 Sep 1972

THIS PAGE IS UNCLASSIFIED
UNCLASSIFIED

AD 35 641 L

Reproduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

CLASSIFICATION CHANGED
TO UNCLASSIFIED
FROM CONFIDENTIAL
PER AUTHORITY LISTED IN
ASTIA TAB NO. U62-1-1
DATE 1 JAN. 62
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
STABILITY AND CONTROL CHARACTERISTICS OF DOUGLAS

MODEL XF4D-1

PART I. LOW SPEED FLYING QUALITIES

<table>
<thead>
<tr>
<th>CONTRACT No.</th>
<th>REPORT DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF4D-1</td>
<td></td>
</tr>
</tbody>
</table>

PREPARED BY Aerodynamics *

APPROVED BY

Chief, Aerodynamics Section

* W.W. Huff, Jr.

This report is the property of the Douglas Aircraft Company, Inc., and shall not be revealed to unauthorized persons or be reproduced in whole or in part or used for sales promotion purposes without written permission.

REVISIONS

<table>
<thead>
<tr>
<th>LETTER</th>
<th>DATE</th>
<th>PAGES AFFECTED</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.0 **ABSTRACT**

Estimated low speed stability and control characteristics of Douglas Model XP-4D-1 airplane are presented in this report. Based on analysis of wind tunnel tests conducted on the latest configuration, the flying qualities are summarized below. The conclusions presented below may be considered applicable up to a Mach number of 0.8 since Mach number effects are known to be minor up to that speed.

FLYING QUALITY

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Static Stick Fixed Longitudinal Stability.</td>
<td>Satisfactory over low speed range for an aft CG of 25% MAC. Minimum of 5% static margin maintained for all speeds at which Mach number effects are negligible.</td>
</tr>
<tr>
<td>2. Static Stick Free Longitudinal Stability.</td>
<td>Satisfactory during normal control conditions and emergency control conditions.</td>
</tr>
<tr>
<td>3. Trim Change Characteristics</td>
<td>Excellent.</td>
</tr>
<tr>
<td>4. Dynamic Longitudinal Stability</td>
<td>Damping of short period oscillation does not meet requirements of SR 119-B. Control system should be designed so that artificial damping can be added if necessary.</td>
</tr>
<tr>
<td>5. Elevator Control Power</td>
<td>Satisfactory. Hold-off 1.05 V_{stall} satisfactory for C.G. at 22% MAC, gear down. Nose-wheel lift-off can be effected at 90% of the minimum take-off speed with C.G. at 22% MAC.</td>
</tr>
<tr>
<td>7. Static Directional Stability</td>
<td>Satisfactory. Adverse yaw within requirements. Minimum $C_{n\beta} = 0.0110$.</td>
</tr>
</tbody>
</table>
9. Rudder Forces
Satisfactory for airplane with no yaw-damper. Unknown as yet with yaw-damper installed.

10. Dihedral Effect
Satisfactory but marginally high, stick fixed and stick free. No rolling velocity reversal.

11. Dynamic Lateral Stability
Marginal with no artificial damping. Characteristics with rate-gyro installed estimated to be satisfactory.

12. Lateral Control
Excellent.

13. Aileron Forces
Satisfactory for both normal and emergency conditions over low speed flight range.

14. Stalling Characteristics
Satisfactory with nose-slats.
2.0 TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Abstract</td>
<td>1</td>
</tr>
<tr>
<td>2.0 Table of Contents</td>
<td>3</td>
</tr>
<tr>
<td>2.1 List of Figures</td>
<td>5</td>
</tr>
<tr>
<td>2.2 List of Tables</td>
<td>7</td>
</tr>
<tr>
<td>3.0 Coefficients and Symbols</td>
<td>8</td>
</tr>
<tr>
<td>4.0 Introduction</td>
<td>11</td>
</tr>
<tr>
<td>5.0 Physical Characteristics of Model XF4D-1</td>
<td>13</td>
</tr>
<tr>
<td>6.0 Control System Design Characteristics</td>
<td>19</td>
</tr>
<tr>
<td>6.1 General Description</td>
<td>19</td>
</tr>
<tr>
<td>6.2 Normal Operating Characteristics</td>
<td>20</td>
</tr>
<tr>
<td>6.3 Emergency Control Operation</td>
<td>21</td>
</tr>
<tr>
<td>7.0 Center of Gravity Trends</td>
<td>22</td>
</tr>
<tr>
<td>8.0 Discussion</td>
<td>23</td>
</tr>
<tr>
<td>8.1 Longitudinal Characteristics</td>
<td>23</td>
</tr>
<tr>
<td>8.1.1 Static Longitudinal Stability</td>
<td>23</td>
</tr>
<tr>
<td>8.1.2 Dynamic Longitudinal Stability</td>
<td>23</td>
</tr>
<tr>
<td>8.1.3 Longitudinal Control</td>
<td>25</td>
</tr>
<tr>
<td>8.1.3.1 Normal Control Configuration</td>
<td>25</td>
</tr>
<tr>
<td>8.1.3.1.1 Maximum Lift Characteristics</td>
<td>25</td>
</tr>
<tr>
<td>8.1.3.1.2 Effect of Trimmer Position on Elevon Position and Stick Forces Required for Landing</td>
<td>30</td>
</tr>
<tr>
<td>8.1.3.1.3 Stick Force Characteristics During Accelerated Flight</td>
<td>34</td>
</tr>
<tr>
<td>8.1.3.1.4 Nose Wheel Lift Off Characteristics</td>
<td>34</td>
</tr>
<tr>
<td>8.1.3.1.5 Effect of Extending Gear, Slats, and Dive Brakes on Longitudinal Tri's</td>
<td>41</td>
</tr>
<tr>
<td>8.1.3.2 Emergency Control Configuration</td>
<td>41</td>
</tr>
<tr>
<td>8.1.3.2.1 Characteristics Obtained During Change-Over from Power to Manual Operation of the Control Surfaces</td>
<td>41</td>
</tr>
<tr>
<td>8.1.3.2.1.1 General Characteristics of the Change Over System</td>
<td>41</td>
</tr>
<tr>
<td>8.1.3.2.1.2 Methods of Affecting Change-Over During High Elevon Hinge Moment Conditions</td>
<td>44</td>
</tr>
<tr>
<td>8.1.3.2.2 Maximum Lift Characteristics</td>
<td>44</td>
</tr>
<tr>
<td>8.1.3.2.3 Effect of Center of Gravity Position on Trimmer Position and Stick Force Required for Landing</td>
<td>45</td>
</tr>
<tr>
<td>8.1.3.2.4 Stick Force Characteristics During Accelerated Flight</td>
<td>50</td>
</tr>
<tr>
<td>8.2 Directional Characteristics</td>
<td>50</td>
</tr>
<tr>
<td>8.2.1 Static Directional Stability</td>
<td>50</td>
</tr>
</tbody>
</table>
8.2.2 Description of Dutch Roll Damping System 59
8.2.3 Dynamic Lateral - Directional Characteristics 59
8.2.4 Directional Control 64
 8.2.4.1 Side Slip Characteristics and Rudder Pedal Forces - Yaw Damper Inoperative 64
 8.2.4.2 Side Slip Characteristics and Rudder Pedal Forces - Yaw Damper Operating 64
8.3 Lateral Characteristics 72
 8.3.1 Dihedral Effect 72
 8.3.2 Lateral Control 72
 8.3.2.1 Normal Control Configuration 72
 8.3.2.2 Emergency Control Configuration 75
9.0 Conclusions and Recommendations 80
10.0 References 81
2.1 List of Figures

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Three View Diagram of Douglas Model XF4D-1</td>
<td>14</td>
</tr>
<tr>
<td>2.</td>
<td>Wing Diagram</td>
<td>15</td>
</tr>
<tr>
<td>3.</td>
<td>Vertical Tail Diagram</td>
<td>16</td>
</tr>
<tr>
<td>4.</td>
<td>Stick Fixed Neutral Points Vs. Lift Coefficient</td>
<td>24</td>
</tr>
<tr>
<td>5.</td>
<td>Damping of "Short Period" Longitudinal Oscillation</td>
<td>26</td>
</tr>
<tr>
<td>6.</td>
<td>Plot of C_l trim Vs. α and Se - Slats Retracted, No Ground Effect</td>
<td>27</td>
</tr>
<tr>
<td>7.</td>
<td>Plot of C_l trim Vs. α and Se - Slats Extended, No Ground Effect</td>
<td>28</td>
</tr>
<tr>
<td>8.</td>
<td>Plot of C_l trim Vs. α and Se - Slats Extended with Ground Effect</td>
<td>29</td>
</tr>
<tr>
<td>9.</td>
<td>Maximum Lift Coefficient and Angle of Attack Vs. Center of Gravity Position</td>
<td>31</td>
</tr>
<tr>
<td>10.</td>
<td>Effect of Trimmer Position on Elevon Position and Stick Force Required for Landing - Normal Control Configuration, Center of Gravity = 25% MAC.</td>
<td>32</td>
</tr>
<tr>
<td>11.</td>
<td>Effect of Trimmer Position on Elevon Position and Stick Force Required for Landing - Normal Control Configuration, Center of Gravity = 22% MAC.</td>
<td>33</td>
</tr>
<tr>
<td>12.</td>
<td>Elevon Position Required to Hold Airplane Off Ground at 1.05 Vstall Versus Center of Gravity Position</td>
<td>35</td>
</tr>
<tr>
<td>13.</td>
<td>Elevon Position and Stick Force Vs. Load Factor - Normal Control Configuration, Center of Gravity = 25% MAC.</td>
<td>36</td>
</tr>
<tr>
<td>14.</td>
<td>Elevon Position and Stick Force Vs. Load Factor - Normal Control Configuration, Center of Gravity = 22% MAC.</td>
<td>37</td>
</tr>
<tr>
<td>15.</td>
<td>Landing Gear Geometry for Several Center of Gravity Positions</td>
<td>38</td>
</tr>
<tr>
<td>16.</td>
<td>Indicated Airspeed to Compress Tail Wheel During Take-Off Vs. Center of Gravity Position for Several Gross Weights</td>
<td>39</td>
</tr>
<tr>
<td>17.</td>
<td>Indicated Airspeed for Nose Wheel Lift-Off Vs. Center of Gravity Position for Several Gross Weights</td>
<td>40</td>
</tr>
<tr>
<td>18.</td>
<td>Effect of Extending Gear and Slats on Longitudinal Trim Characteristics</td>
<td>42</td>
</tr>
<tr>
<td>19.</td>
<td>Effect of Extending Dive Brakes on Longitudinal Trim Characteristics</td>
<td>43</td>
</tr>
<tr>
<td>20.</td>
<td>Effect of Trimmer on Stick Forces and Outboard Elevon Position Required for Trim - Emergency Control Configuration, Center of Gravity = 25% MAC</td>
<td>46</td>
</tr>
<tr>
<td>21.</td>
<td>Stick Force and Control Position Vs. Speed - Emergency Control Configuration</td>
<td>47</td>
</tr>
<tr>
<td>22.</td>
<td>Stick Force and Control Position Vs. Speed - Emergency Control Configuration, Slats Inoperative</td>
<td>48</td>
</tr>
<tr>
<td>23.</td>
<td>Trimmer Position Required for Zero Stick Force - Emergency Control Configuration</td>
<td>49</td>
</tr>
</tbody>
</table>
24. Outer Elevon Position and Stick Force Vs. Load Factor—
 Emergency Control Configuration, Center of
 Gravity = 25% MAC

25. Outer Elevon Position and Stick Force Vs. Load Factor—
 Emergency Control Configuration, Center of
 Gravity = 22% MAC

26. Static Lateral and Directional Characteristics

27. Time History of Airplane Motion at 128 Knots - Sea Level

28. Time History of Airplane Motion at 180 Knots - Sea Level

29. Time History of Airplane Motion at 244 Knots - Sea Level

30. Time History of Airplane Motion at 355 Knots - Sea Level

31. Maximum Side Slip Angle Due to Elevon Roll Vs. Lift
 Coefficient

32. Effect of Rate-Gyro Ramping System on the Lateral-
 Directional Oscillation

33. Rudder Effectiveness Parameters

34. Rudder Angle, Right Aileron Angle, and Angle of Bank Vs.
 Steady Side Slip Angle - \(\alpha = 0^\circ \)

35. Rudder Angle, Right Aileron Angle, and Angle of Bank Vs.
 Steady Side Slip Angle - \(\alpha = 10^\circ \)

36. Rudder Angle, Right Aileron Angle, and Angle of Bank Vs.
 Steady Side Slip Angle - \(\alpha = 15^\circ \)

37. Rudder Angle, Right Aileron Angle, and Angle of Bank Vs.
 Steady Side Slip Angle - \(\alpha = 20^\circ \)

38. Maximum Steady Side Slip Angle and Associated Control
 Positions Vs. \(\alpha \)

39. Side Slip Angle and Rudder Pedal Forces for Cross Wind
 Take-Off

40. Effect of Trimmer Position on Low Speed Rolling
 Characteristics - Sea Level

41. Effect of Trimmer Position on Low Speed Rolling
 Characteristics - 10,000 Ft.

42. Roll Reduction Factor Due to Wing Twist Vs. Mach number

43. Roll Reduction Factor Due to Side Slip and Rate of Yaw
 Vs. \(\text{CL} \)

44. Stick Force and Elevon Angle Required to Produce a 15 deg.
 per sec. Rate of Roll - Emergency Control Configuration

45. Rate of Roll Available from 30 Pounds Stick Force - Emergency
 Control Configuration
2.2 List of Tables

1. Physical Characteristics of Douglas Model XF4D-1 ... 17
2. Summary of Parameters Used in Dynamic Longitudinal Stability Calculations 23
3. Maximum Trimmed Lift Coefficients for Various Flight Conditions and Airplane Configurations 30
4. Summary of Parameters Used in Dynamic Lateral-Directional Stability Calculations 61
3.0 COEFFICIENTS AND SYMBOLS

- C_L: Lift coefficient, $\frac{L}{qS}$
- C_D: Drag coefficient, $\frac{D}{qS}$
- C_m: Pitching moment coefficient about quarter chord point of wing mean aerodynamic chord, $\frac{M}{qStw}$
- C_x: Rolling moment coefficient, stability axes, $\frac{R}{qSb}$
- C_n: Yawing moment coefficient, $\frac{N}{qSb}$
- $C_{e, Cy}$: Side force coefficient, stability axes, $\frac{C_f}{qSb}$
- C_{he}: Hinge moment coefficient, $\frac{H}{qS_e}$
- $C_{h_{5p}}$: Variation of rudder hinge moment coefficient with rudder deflection
- C_{f_p}: Rolling moment due to rolling velocity
- C_{f_R}: Rolling moment due to yawing velocity
- C_{n_p}: Yawing moment due to rolling velocity
- C_{n_R}: Yawing moment due to yawing velocity
- C_{Y_p}: Side force due to rolling velocity
- C_{Y_R}: Side force due to yawing velocity
- C_{n_β}: Yawing moment due to sideslip angle
- C_{f_β}: Rolling moment due to sideslip angle
- C_{Y_β}: Side force due to sideslip angle
- C_{La}: Lift curve slope
- C_{Da}: Variation of drag coefficient with angle of attack
- $\frac{dC_m}{dC_L}$: Variation of pitching moment coefficient with lift coefficient
\[
\frac{\Delta C_L}{\Delta \delta_e} \quad \text{Variation of lift coefficient with elevator deflection}
\]
\[
\frac{\Delta C_m}{\Delta \delta_e} \quad \text{Variation of pitching moment coefficient with elevator deflection}
\]
\[
C_{mq} \quad \text{Pitching moment due to pitching velocity}
\]
\[
\eta \quad \text{Angle of attack of principal longitudinal axis of airplane, positive when principal axis is above flight path at the nose, degrees}
\]
\[
k_X \quad \text{Radius of gyration in roll about principal longitudinal axis, feet}
\]
\[
k_Y \quad \text{Radius of gyration in pitch about principal lateral axis, feet}
\]
\[
k_Z \quad \text{Radius of gyration in yaw about principal normal axis, feet}
\]
\[
I_{Xo} \quad \text{Moment-of-inertia coefficient about principal longitudinal axis} \quad \frac{mk_{x^o}^2}{qbS}
\]
\[
I_{Yo} \quad \text{Moment of inertia coefficient about principal lateral axis} \quad \frac{mk_{y^o}^2}{qbS}
\]
\[
I_{Zo} \quad \text{Moment-of-inertia coefficient about principal normal axis} \quad \frac{mk_{z^o}^2}{qbS}
\]
\[
I_X \quad \text{Moment-of-inertia coefficient about flight-path axis} \quad (I_{Xo} \cos^2 \eta + I_{Zo} \sin^2 \eta)
\]
\[
I_Z \quad \text{Moment-of-inertia coefficient about axis normal to flight path} \quad (I_{Zo} \cos^2 \eta + I_{Xo} \sin^2 \eta)
\]
\[
I_{XZ} \quad \text{Product-of-inertia coefficient with respect to flight-path axis and axis normal to flight path} \quad (- (I_{Zo} - I_{Xo}) \sin \eta \cos \eta)
\]
\[
m \quad \text{Airplane mass} = \frac{W}{g}
\]
\[
P = \frac{pb}{2V} \quad p \quad \text{rolling velocity, rad/sec.}
\]
\[
R = \frac{rb}{2V} \quad V \quad \text{velocity, feet per sec.}
\]

\text{where} \quad r = \text{yawing velocity, rad/sec.} \quad b = \text{wing span, feet}
\[M = \text{Mach number} \]
\[S_w = \text{Wing area, square feet} \]
\[S_e = \text{Elevator area, square feet} \]
\[S_r = \text{Rudder area, square feet} \]
\[S_n = \text{Trimmer area, square feet} \]
\[t_w = \text{Wing mean aerodynamic chord, feet} \]
\[b_w = \text{Wing span, feet} \]
\[c_e = \text{Elevator root mean square chord, feet} \]
\[q = \text{Dynamic pressure, pounds per square foot} \left(\frac{1}{2} \rho V^2 \right) \]
\[\rho = \text{Mass density of air, slugs per cubic foot} \]
\[V = \text{Airspeed, feet per second} \]
\[V_i = \text{Airspeed, knots, indicated} \]
\[\alpha = \text{Angle of attack of fuselage reference line, degrees} \]
\[\psi = \text{Angle of yaw of fuselage reference line, degrees} \]
\[\beta = \text{Sideslip angle of fuselage reference, degrees} \]
\[\phi = \text{Angle of roll, degrees} \]
\[\delta_e = \text{Elevator deflection angle, degrees, negative when trailing edge up} \]
\[\delta_r = \text{Rudder deflection angle, degrees, right} \]
\[\delta_n = \text{Trimmer deflection angle, degrees, up} \]
4.0 INTRODUCTION

This report summarizes low speed stability and control characteristics of the final pre-flight-test configuration of Douglas Model XF4D-1. It is submitted to show expected low speed flying qualities in comparison with requirements of Bureau of Aeronautics Specification SR119-B.

Since Reference 3 was submitted, numerous changes in the configuration of the airplane made it advisable to verify estimated stability and control characteristics with wind tunnel tests of the up-to-date configuration. These tests were accomplished in two phases: low speed tests completed at Guggenheim Aeronautical Laboratory, California Institute of Technology in July, 1949 and presented in Reference 1, and transonic "bump" tests completed at the Southern California Cooperative Wind Tunnel in July, 1949 and presented in Reference 2.

Changes in the design of the airplane that have been incorporated into the final configuration and which effect stability and control are:

1. Change in shape and size of the fuselage
2. Decrease in chord of the elevons from 40" to 26", parallel to wind stream
3. Change in span-wise division between inboard and outboard portions of the elevon
4. Increase in total lateral deflection of the elevons from ±15° to ±20°
5. Addition of auxiliary pitch trimmers located inboard of elevons to compensate the decrease in elevon chord

Items 2, 3, 4, and 5 were decided upon in an effort to improve the "boost out" control characteristics of the airplane. It is believed this program has been largely successful.

In general, results of the low speed analysis are presented for two control operating configurations; normal operating condition and emergency operating condition. Under normal operating conditions, calculations take into account the following conditions:

1. The control surfaces are actuated by an irreversible power system. There is no force feedback from the control surfaces to the pilot.
2. The inboard and outboard elevons are inter-connected and act symmetrically as elevons and asymmetrically as ailerons.
3. Stick forces are simulated both longitudinally and laterally by a force feel device whose force output as measured at the top of the stick is $F_e = 0.009 \delta e q_c$ longitudinally, and $F_e = 0.0053 \delta e$ per side q_c laterally. The effect of the gearing ratio is included in the constants 0.009 and 0.0053.

For emergency control operation, calculations were made using the following control characteristics and restrictions:

1. Primary longitudinal and lateral control obtained from outboard elevons only, which are connected directly to the stick. The inboard elevons are free floating.

2. Longitudinal and lateral stick forces are obtained from the aerodynamic hinge-moment of the outboard surfaces. The control stick has been lengthened to increase the gearing ratio, $\frac{\delta e}{\delta x}$, to .25 rad/ft. longitudinally and .40 rad/ft. laterally. The artificial force feel system is disconnected.

3. The longitudinal trimmer may be positioned to any angle between zero and 30° trailing edge up.

The estimated final center of gravity range is 22% MAC maximum forward and 25% MAC maximum aft. When applicable, calculations have been made for these two C.G. positions.

A summary of the high speed stability and control characteristics will be presented in the forthcoming Part II of this report.
5.0 PHYSICAL CHARACTERISTICS OF MODEL XF4D-1

The Douglas Model XF4D-1 is a single place, low aspect ratio, swept-wing, tailless, interceptor type airplane powered by a Westinghouse XFJ40-WE-8 jet engine equipped for afterburning. Primary longitudinal and lateral control is accomplished by use of differentially acting elevons located along the trailing edge of either wing. Additional longitudinal control may be obtained from trimmers located inboard of the elevons. Directional stability and control is obtained from a single vertical surface lying in the plane of symmetry. An extendable slat is located along the leading edge of the wing to improve stall characteristics and increase maximum lift. Due to the unusually large angles of attack required for take-off and landing, a tail wheel is added to the tricycle type under-carriage.

Diagrams of the XF4D-1 three-view layout, wing, and vertical tail are shown in Figures 1, 2, and 3, and its physical dimensions are given in Table 1.
THREE-VIEW DIAGRAM OF DOUGLAS MODEL XF4D-1
MODEL XF4D-1
WING DIAGRAM

DIMENSIONS IN INCHES, FULL SCALE
1" = 50"

AERFOIL SECTIONS (11 TO 4)
ROOT - NACA 0007-63/30-9.5° MOD.
TIP - NACA 0004.5-63/30-9.5° MOD.
MODEL XF4D-1

VERTICAL TAIL DIAGRAM

DIMENSIONS IN INCHES FULL SCALE

AIRFOIL SECTIONS: (11 TO €)

ROOT - NACA 0008-63-30-9°
TIP - NACA 0006-63-30-6°45'

SCALE: 1" = 3/2"
<table>
<thead>
<tr>
<th>Component Part</th>
<th>Units</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine</td>
<td></td>
<td>Westinghouse XJ40 - WE - 8</td>
</tr>
<tr>
<td>Wing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airfoil Designation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tip Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>sq.ft.</td>
<td></td>
</tr>
<tr>
<td>Span</td>
<td>ft.</td>
<td>33.5</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td></td>
<td>2.02</td>
</tr>
<tr>
<td>Taper Ratio</td>
<td></td>
<td>.332</td>
</tr>
<tr>
<td>MAC</td>
<td>ft.</td>
<td>18.25</td>
</tr>
<tr>
<td>Dist to MAC</td>
<td>ft.</td>
<td>6.85</td>
</tr>
<tr>
<td>Sweepback of LE.</td>
<td>deg.</td>
<td>52.5</td>
</tr>
<tr>
<td>Dihedral</td>
<td>deg.</td>
<td>0</td>
</tr>
<tr>
<td>Twist</td>
<td>deg.</td>
<td>0</td>
</tr>
<tr>
<td>Lift Increasing Device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose Slats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td>Automatic</td>
</tr>
<tr>
<td>Span</td>
<td>%b_w</td>
<td>54.2</td>
</tr>
<tr>
<td>Chord (Parallel to FRL)</td>
<td>%c_w</td>
<td>12.68</td>
</tr>
<tr>
<td>Longitudinal and Lateral Control Devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inboard + Outboard</td>
<td>sq.ft.</td>
<td></td>
</tr>
<tr>
<td>Area Aft % (one side)</td>
<td>ft.</td>
<td>22.57</td>
</tr>
<tr>
<td>Root Mean Square Chord</td>
<td>%b_w</td>
<td>2.07</td>
</tr>
<tr>
<td>Span (percent Wing Span)</td>
<td></td>
<td>66.7</td>
</tr>
<tr>
<td>Deflection (Perpendicular to %)</td>
<td>deg.</td>
<td>15° Up to 10° Down</td>
</tr>
<tr>
<td>Pitch</td>
<td>deg.</td>
<td>± 20</td>
</tr>
<tr>
<td>Lateral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inboard</td>
<td>sq.ft.</td>
<td></td>
</tr>
<tr>
<td>Area Aft % (one side)</td>
<td>ft.</td>
<td>8.76</td>
</tr>
<tr>
<td>Root Mean Square Chord</td>
<td>%b_w</td>
<td>2.16</td>
</tr>
<tr>
<td>Span (percent Wing Span)</td>
<td></td>
<td>24.2</td>
</tr>
<tr>
<td>Outboard</td>
<td>sq.ft.</td>
<td></td>
</tr>
<tr>
<td>Area Aft % (one side)</td>
<td>ft.</td>
<td>13.81</td>
</tr>
<tr>
<td>Root Mean Square Chord</td>
<td>%b_w</td>
<td>2.01</td>
</tr>
<tr>
<td>Span (percent Wing Span)</td>
<td></td>
<td>42.5</td>
</tr>
</tbody>
</table>
TABLE 1 (Cont'd)

<table>
<thead>
<tr>
<th>Component Part</th>
<th>Units</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal Trimmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area Aft % (one side)</td>
<td>sq.ft.</td>
<td>10.7</td>
</tr>
<tr>
<td>Root Mean Square Chord</td>
<td>ft.</td>
<td>3.24</td>
</tr>
<tr>
<td>Span (percent Wing Span)</td>
<td>%b_w</td>
<td>20.4</td>
</tr>
<tr>
<td>Deflection (Perpendicular to Hinge Line)</td>
<td>deg.</td>
<td>0, -30</td>
</tr>
<tr>
<td>Vertical Surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airfoil Designation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root Section</td>
<td>sq.ft.</td>
<td>47.7</td>
</tr>
<tr>
<td>Tip Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>sq.ft.</td>
<td>47.7</td>
</tr>
<tr>
<td>Span</td>
<td>ft.</td>
<td>7.58</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>--</td>
<td>1.20</td>
</tr>
<tr>
<td>Taper Ratio</td>
<td>--</td>
<td>.331</td>
</tr>
<tr>
<td>MAC</td>
<td>ft.</td>
<td>6.86</td>
</tr>
<tr>
<td>Tail Length (0.25 t_w - 0.25 t_w)</td>
<td>ft.</td>
<td>13.51</td>
</tr>
<tr>
<td>Rudder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>sq.ft.</td>
<td>12.7</td>
</tr>
<tr>
<td>Span</td>
<td>ft.</td>
<td>6.08</td>
</tr>
<tr>
<td>Root Mean Square Chord</td>
<td>ft.</td>
<td>2.18</td>
</tr>
<tr>
<td>Deflection (Parallel to FRL)</td>
<td>deg.</td>
<td>± 25</td>
</tr>
<tr>
<td>Gearing Ratio (Stick length to center of hand = 10" normal & 18" emergency)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elevons		
Longitudinal	rad./ft.	.449
Normal	rad./ft.	.25
Emergency	rad./ft.	.718
Lateral	rad./ft.	.400
Normal	rad./ft.	1.7
Rudder	rad./ft.	.400
6.0 CONTROL SYSTEM DESIGN CHARACTERISTICS

6.1 General Description

Longitudinal and lateral control are accomplished by elevons which travel ±20° as ailerons and 15° up and 10° down as elevators. In addition, a trimmer is provided inboard of the elevons for the purpose of increasing longitudinal control in a normal take-off or landing and furnishing a means of emergency longitudinal trim.

Elevon actuation may be obtained in three ways. Under normal conditions the elevons are operated by an irreversible hydraulic power system that is independent of the airplane's hydraulic system and is so designed that an average rate of control deflection of 50 degrees per second may be obtained. If the power source of this independent hydraulic system fails, the aircraft's hydraulic system will supply power for control actuation, but at an average rate of only 20 degrees per second. Should all hydraulic power available for control actuation fail, a manual control system is available. In this case the pilot is connected directly to the outboard control surfaces (which may be used for both lateral and longitudinal control), but the inboard elevons are free to float.

The general arrangement of the controls is shown by the sketch below.
6.2 Normal Operating Characteristics

Normally the elevons act together symmetrically for elevator control and asymmetrically for lateral control. The elevons are actuated by hydraulic power units with no feed-back of aerodynamic forces to the pilot. Artificial feel will be provided by a device arranged to provide forces approximately proportional to stick displacement. The constant of proportionality between stick force and stick displacement will vary approximately with dynamic pressure up to a value of \(q \) corresponding to about \(M = 0.9 \) at S.L. From this \(q \) to higher values the stick force gradient will remain constant. Trim will be accomplished by adjusting the force-feel system to zero stick force.

The longitudinal trimmer provides additional control for take-off and landing under normal operation, to increase the load factor that can be attained at high altitudes, and to serve as an emergency pull-out device if the power system fails in a dive. The trimmer is to be used also for longitudinal stick-force trim when operating on manual control. The trimmer will be actuated by a separate lever in the cockpit and can be positioned when the landing gear is down or the hydraulic power system is inoperative. If the hydraulic system is operating with the gear retracted, the trimmer will return to neutral upon release of its control. The purpose of this type of control is to prevent the trimmer and elevons from being operated against each other in normal flight.

Lateral stick force also will be proportional to elevon displacement and \(q \). The maximum elevon displacement will be limited by the hydraulic pressure which will be a function of Mach number as shown below.
This hydraulic pressure variation has been so chosen that the maximum elevon angle never exceeds the maximum allowable elevon angle, considering the structural strength of the wing in torque. Consequently, the maximum deflection of the elevons as ailerons is a function of the deflection of the elevons as elevators. At a load factor of 6 and high indicated speeds the maximum aileron angle is less than at a load factor of one.

6.3 Emergency Control Operation

The change-over from power operation of the control surfaces to manual control will be automatic in the case of a hydraulic power failure. Immediately after failure, providing the hinge moment is above a selected value, the control surface will remain irreversible because the fluid in the elevon actuating cylinders will be trapped, (neglecting leakage throughout the system), by a check valve. The force-feel system is automatically disconnected at the time of hydraulic power failure. If the hinge moment of the elevon is reduced below this selected value, the check valve will open and automatically free the inner elevons. The outer elevons are still directly connected to the stick. In order to increase the mechanical advantage of the gearing system, means are provided for lengthening the control stick. For training purposes or if a failure occurs that allows the fluid in the cylinder to move freely, the pilot has a switch to shut off the hydraulic system and place him in manual control as above.
7.0 CENTER OF GRAVITY TRENDS

Since the XF4D-1 is now in the process of design, it is impossible to predict accurately the final maximum forward and aft center of gravity limits. Previous analysis has shown that the difference between the maximum forward C.G. with gear and slats extended and the maximum aft C.G. with gear and slats retracted is 3 MAC. Using this difference as a base, it is believed the final center of gravity range for the conditions specified will be near 22% MAC to 25% MAC. Calculations in this report are based on this assumption.

As further discussion will indicate, it will be necessary to restrict the center of gravity range to the values mentioned above. If final weight and balance figures reveal the C.G. travel to be farther forward or aft along the mean aerodynamic chord, ballast will have to be used to bring the limits into the desired range.
8.0 DISCUSSION

8.1 Longitudinal Characteristics

8.1.1 Static Longitudinal Stability

Trimmed, stick-fixed neutral points versus lift coefficient are shown in Figure 4. At all speeds below which Mach number effects are negligible the neutral point is aft of 30% MAC. Since the maximum aft center of gravity position has been set at 25% MAC, the static margin requirement of Reference 4 is met over the low speed flight range.

8.1.2 Dynamic Longitudinal Stability

Since the XF4D-1 airplane has no horizontal tail, it was expected that damping of the longitudinal oscillations would be low compared with conventional airplanes. Calculations were made (Reference 5), that verified these expectations. Several changes in airplane configuration and inertia characteristics have been made since Reference 5 was published that directly affect longitudinal damping. These changes are an increased fuselage nose length, which reduces $\frac{d\alpha}{d\delta}$, and an increased moment of inertia in pitch. New calculations have been made using data obtained from wind tunnel tests of the latest configuration. Table 2 lists the mass and aerodynamic parameters used in the analysis.

Table 2

| SUMMARY OF PARAMETERS USED IN DYNAMIC LONGITUDINAL STABILITY CALCULATIONS |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| C_L | .550 | .275 | .150 | .071 |
| Gross Weight, Lbs | 16821 | 16821 | 16821 | 16821 |
| Inertia in Pitch (Slug Ft.2) | 31500 | 31500 | 31500 | 31500 |
| $C_{m_{\alpha}}$ (per Rad.) | -.50 | -.50 | -.50 | -.50 |
| $C_{L_{\alpha}}$ (per Rad.) | 2.61 | 2.61 | 2.61 | 2.61 |
| $C_{m_{\alpha}}$ (per Rad.) | -.315 | -.229 | -.143 | -.129 |
A summary of the damping characteristics is presented in Figure 5. This graph was plotted with α and β as coordinates to permit showing the relative value of the damping of the oscillation by drawing lines corresponding to the time required for the oscillation to decay to 1/2 or 1/10 the initial value. Damping is marginal for all lift coefficients at sea level, and becomes worse as altitude increases, though the airplane will always damp to 1/2 amplitude in one cycle or less.

It is doubtful if any aerodynamic means can be found to substantially increase damping in pitch. Reference 3 points out that it is impossible to change $C_{m\alpha}$, $C_{m\beta}$, or the inertia in pitch enough to materially improve the situation. Should flight tests verify the low damping, use of a rate-gyro, actuating the elevons to oppose the short period longitudinal oscillation, seems to be the logical solution.

8.1.3 Longitudinal Control

8.1.3.1 Normal Control Configuration

8.1.3.1.1 Maximum Lift Characteristics

The final configuration of model XF4D-1 is equipped with 26" chord elevons from which primary pitch control is obtained. Pitch control may be augmented when necessary, such as during take-off and landing, by longitudinal trimmers located inboard of the elevons. Since preliminary design of the airplane had 40" chord elevons, the maximum lift coefficient to which the airplane can be trimmed in normal flight, (trimmers faired), is lower than the values quoted in previous reports.

Figure 6 shows trimmed lift curves and S_e versus C_L for two center of gravity positions. The airplane is clean and operating in a region of no ground effect. Under these conditions the trimmer setting is zero degrees.

When the gear is down, the pilot can position the trimmer to any angle between zero and 30 degrees trailing edge up. Figure 7 shows trimmed lift curves and C_L versus S_e for the trimmer fully deflected and faired. Gear and slats are extended and there is no ground effect.

During take-off and landing, the trimmer should be fully deflected to obtain minimum take-off and landing speeds. Curves of trimmed C_L versus α and S_e are shown in Figure 8. These include ground effect.

Maximum trimmed lift coefficients for the above mentioned condition are summarized in the following table.
DAMPING OF THE SHORT PERIOD LONGITUDINAL OSCILLATION

LEGEND
* X = 200
* X = 400
+ X = 500
X = 500
X = 700

SatisFActory

UNSATISFACTORY
TABLE 3

<table>
<thead>
<tr>
<th>Flight Condition and Airplane Configuration</th>
<th>Maximum Trimmed C_{L}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CG=25% MAC</td>
</tr>
<tr>
<td>Slat and Gear Retracted, No Ground Effect, (\delta_e = -15^\circ, \delta_N = 0^\circ)</td>
<td>0.610</td>
</tr>
<tr>
<td>Slat and Gear Extended, No Ground Effect, (\delta_e = -15^\circ, \delta_N = 0^\circ)</td>
<td>0.647</td>
</tr>
<tr>
<td>Slat and Gear Extended, No Ground Effect, (\delta_e = -15^\circ, \delta_N = -30^\circ)</td>
<td>---</td>
</tr>
<tr>
<td>Slat and Gear Extended in Presence of Ground, (\delta_e = -15^\circ, \delta_N = -30^\circ)</td>
<td>0.955</td>
</tr>
</tbody>
</table>

Maximum lift coefficient and angle of attack obtained in presence of the ground is shown in Figure 9 as a function of center of gravity position.

8.1.3.1.2 Effect of Trimmer Position on Elevon Position and Stick Forces Required for Landing

Elevon position and stick force required to trim versus indicated airspeed are shown for two trimmer positions in Figures 10 and 11. For a given speed, increasing the trimmer deflection requires reducing the elevon deflection to maintain trim. Thus, minimum landing speeds are obtained when the trimmer is fully up. The slope of the elevon angle versus indicated airspeed curve is stable, an up deflection being required to reduce speed, and thus satisfies stick fixed static stability requirements.

Stick forces associated with various elevon positions are supplied by a device giving forces proportional to dynamic pressure and elevon deflection. Force trim is accomplished by altering the zero force position of the stick until zero force corresponds to the stick position required for trim. The angle at which the trimmer is set will have little effect on stick force required to trim provided the force is reduced to zero at the same airspeed for various trimmer angles. This may be explained by the fact that no matter where the trimmer is set, if the trim force is reduced to zero at a constant speed, the amount of change of elevon deflection required to produce a given speed change is essentially constant. In Figures 10 and 11 the force is trimmed to zero at 1.4 times the stalling speed for both trimmer deflections shown.
MODEL XP4D-1

MAXIMUM LIFT COEFFICIENT AND ANGLE OF ATTACK VERSUS CENTER OF GRAVITY POSITION

ELEVON ANGLE = 15°
TRIMMER ANGLE = 30°
SLATS EXTENDED

$C_{L \text{ MAX}}$

CENTER OF GRAVITY POSITION = % MAC

α_{FRL}

CENTER OF GRAVITY POSITION = % MAC
EFFECT OF TRIMMER POSITION ON ELEVON POSITION AND STICK FORCE REQUIRED FOR LANDING - NORMAL CONTROL CONFIGURATION

STICK FORCE - LBS

INDICATED AIRSPEED - KNOTS

TRIMMER ZERO
TRIMMER UP 30°
STICK FORCE = COP \times S_e \times L

SLAT EXTENDS

PUSH

DOWN

PULL

ELEVON POSITION DEGREES

120 160 180 200

1.4 \gamma_e

1.4 \gamma_s

1.4 \gamma_a

DOUGLAS AIRCRAFT COMPANY, INC.
EFFECT OF TRIMMER POSITION ON ELEVON POSITION AND STICK FORCE REQUIRED FOR LANDING - NORMAL CONTROL CONFIGURATION

TRIMMER ZERO
STICK FORCE = 003.5 lb

TRIMMER UP 30°
STICK FORCE = 003.5 lb
Since it is necessary to have reasonable stick force characteristics at high speeds, the landing forces are light because of low values of q.

A curve of elevon angle required to hold the airplane off the ground at 1.05 times the stalling speed versus center of gravity position is shown in Figure 12. The elevons are sufficiently powerful to meet the requirements of Reference 4 to a forward center of gravity position of 21.6% MAC.

8.1.3.1.3 Stick Force Characteristics During Accelerated Flight

Elevon position and stick force versus load factor for various lift coefficients are shown in Figures 13 and 14 for C.G. positions of 25% MAC and 22% MAC respectively. These curves were obtained assuming the trimmer was fully deflected at lift coefficients above C_L. The variation is stable and linear up to maximum elevon deflections but in excess of the requirements of Reference 4 over the low speed flight range. This is not considered objectionable since the maximum "g's" that can be pulled at low speeds are small and the corresponding stick forces reasonable. As speed increases, the stick force per "g" gradient decreases until the variation is within the specified limits around Mach number 0.40.

8.1.3.1.4 Nose Wheel Lift-Off Characteristics

Figure 15 shows the geometry of the landing gear of Model YF4D-1, which is composed of two main wheels, a nose wheel, and a tail wheel. During nose wheel lift off, the tail wheel contacts the ground before the nose wheel is off and must be compressed before further raising of the nose can be accomplished. Figure 16 presents speed at which the tail wheel will compress as a function of gross weight and center of gravity position.

After sufficient force has been applied to the tail wheel to start compression, the airplane must further increase speed to continue compression of the tail wheel and thus raise the nose wheel. Nose wheel lift-off speeds are shown in Figure 17 as a function of gross weight and center of gravity position.

For a gross weight of 16821 lbs., the maximum forward center of gravity for which the nose wheel lift-off requirements of Reference 4 can be met is 23.6% MAC. It is possible that under certain loading conditions the center of gravity may be forward of 23.6% MAC for take-off. This is not considered to be serious for the following reason. For land take-offs, the maximum ground angle that can be
MODEL XF4D-1

ELEVON POSITION REQUIRED TO HOLD AIRPLANE OFF GROUND AT LOF V_a VERSUS CENTER OF GRAVITY POSITION

TRIMMER ANGLE=SET UP

ELEVON POSITION
DEGREES
TRAILING EDGE UP

ELEVON STOP

CENTER OF GRAVITY POSITION, % MAC
ELEVON POSITION AND STICK FORCE VERSUS LOAD FACTOR - NORMAL CONTROL CONFIGURATION

CG: 25% MAC
G+V: 16,521 lb

ELEVON POSITION
DEGREES

ELEVON UP

ELEVON DOWN

STICK FORCE
POUNDS

PULL

UPPER LIMIT SR119-B

LOWER LIMIT SR119-B
ELEVON POSITION AND STICK FORCE VERSUS LOAD FACTOR - NORMAL CONTROL CONFIGURATION

CG: 22% MAC
SW: VSP 12

15 20 25 30 35 40

UP

FOX POSITION DEGREES

10 15 20 25 30 35 40

UP

PILOT

FRONT LOAD FACTOR

FRONT LOAD FACTOR

STICK FORCE FOOTS

UPPER LIMIT 5R 15 B

LOWER LIMIT 5R 15 B
MODEL KF4D-L

INDICATED AIRSPEED TO COMPRESS TAIL WHEEL DURING TAKE-OFF VERSUS CENTER OF GRAVITY POSITION FOR SEVERAL GROSS WEIGHTS

ELEVON ANGLE = 15° T.E. UP
TRIMMER ANGLE = 30° T.E. UP

INDICATED AIRSPEED - KNOTS
CENTER OF GRAVITY POSITION - % W.G.

30 Ys
FOR GW = 1682 LBS.

GW = 1800 LBS.
GW = 1600 LBS.
GW = 1400 LBS.
obtained during take-off is 14°. The important consideration is to be able to obtain an angle of attack of 14° at the speed required for take-off at that attitude. Assuming a gross weight of 16821 lbs., a center of gravity position of 22% MAC, and an angle of attack of 14°, the speed for take-off is 111 knots. Examination of Figure 17 shows that under the same conditions, the nose wheel can be lifted at 100 knots, or .90 times the minimum take-off speed. The discussion in this section assumes the elevons up 15°, and the trimmer up 30°.

8.1.3.1.5 Effect of Extending gear, Slats, and Dive Brakes on Longitudinal Trim

Due to the design of the synthetic force feel system, changes in stick force that accompany variations in airplane configuration are unusually small. Changes in elevon position and stick force required for trim when the gear and slats are extended are shown in Figure 18. The maximum change in stick force is of the order of one pound.

Extension of the dive brakes produces an aerodynamically symmetrical change in the airplane configuration. Trim changes due to extending the brakes are essentially zero as shown by the pitching moment versus lift curves of Figure 19.

8.1.3.2 Emergency Control Configurations

8.1.3.2.1 Characteristics Obtained During Change-Over from Power to Manual Operation of the Control Surfaces

8.1.3.2.1.1 General Characteristics of the Change-Over System

During power operation of the control surfaces, the inboard and outboard surfaces are interconnected by a locking mechanism held in place by the control system hydraulic pressure. If a hydraulic failure occurs during periods when excessive elevon hinge moments are required for trim, a check valve in the system traps and prevents the pressure holding the locking mechanism in place from being relieved unless the aerodynamic hinge moment of the control surface is relieved. The system is so designed that under this condition, the pilot is incapable of moving the control surfaces against the aerodynamic hinge moment but can, if he wishes, move the control surfaces toward their trail position to reduce the elevon hinge moments. If no control stick movement toward the elevon trail position is made by the pilot, the control surfaces will remain at the position occupied at the time of power failure.

The pressure holding the elevon interconnecting mechanism in place is a function of elevon hinge moment. As soon as the hinge
EFFECT OF EXTENDING GEAR AND SLATS ON LONGITUDINAL TRIM CHARACTERISTICS

ELEVATION ANGLE REQUIRED TO TRIM DEGREES

STICK FORCE REQUIRED TO TRIM - POUNDS

MODEL XA47-1
EFFECT OF EXTENDING DIVE-BRAKES ON
LONGITUDINAL TRIM CHARACTERISTICS

- - - DIVE BRAKES CLOSED
x - - DIVE BRAKES EXTENDED

PITCHING MOMENT COEFFICIENT, C\text{\textsubscript{m}}
moment acting on the elevon is reduced to a value of 64 ft-lbs., a spring in the interconnecting mechanism overcomes the pressure of the trapped hydraulic fluid and effectively pulls the pin holding the inboard and outboard elevons together. This action allows the inboard elevons to float free and the pilot is connected to the outboard surfaces only.

The simulated force feel device is disconnected at the time of hydraulic power failure. When this happens the stick will slip 3/8 of an inch, corresponding to the hydraulic servo valve travel, thus advising the pilot of the failure.

If the hinge moment acting on the elevons is below 64 ft-lbs., at the time of hydraulic failure, change-over will take place immediately and will manifest itself to the pilot by a force of less than 35 pounds to keep the airplane in trim.

8.1.3.2.1.2 Methods of Affecting Change-Over During High Elevon Hinge Moment Conditions

Since the change-over sequence is entirely automatic, it is expected that a minimum of pilot procedure will be required. However, the actions of the pilot immediately following hydraulic failure will influence the final force required to trim the airplane at a constant attitude.

Reduction of hinge moment may be accomplished in two ways; by moving the elevons towards trail position, or by slowing the airplane until the reduced dynamic pressure lowers the elevon hinge moments.

Moving the elevons toward trail position can be done without keeping the airplane in trim by simply moving the stick in the proper direction. When change-over occurs, an initial change in stick force of 35 pounds will be felt, but retrimming the airplane will either require increased stick forces or positioning the trimmer flap located inboard of the elevons. The airplane may be kept trimmed during change-over by slowly positioning the trimmer flap and at the same time moving the stick toward elevon trail position at the rate required to prevent a change in attitude. When change-over occurs using this procedure, the 35 pounds initial change in force will trim the airplane and large changes in airplane attitude are unlikely.

Under some conditions, it may be desirable to make the change-over by cutting power to reduce airspeed. When dynamic pressure becomes low enough to reduce the elevon hinge moments below 64 ft-lbs., change-over will take place.

8.1.3.2.2 Maximum Lift Characteristics

During emergency control operating conditions, primary pitch control is obtained from the outboard elevons, which are directly controlled
by the pilot, plus the floating action of the inboard elevons. Additional control may be obtained by placing the trimmers in various up positions.

Obviously, maximum trimmed lift is obtained with the outboard elevons and trimmers fully deflected. This condition will only be approached in flight because the trimmers serve as a stick force trimmer when on manual control and its position will be limited to settings which give reasonable stick forces. Full deflection of the trimmers produces an unstable stick force versus speed gradient near the stall, as shown in Figure 20, while intermediate trimmer settings result in stability in this flight region, (see Figure 21).

It follows that for a given center of gravity position, the minimum speed to which the airplane can be trimmed under emergency conditions will be dependent on the amount of stick free stability desired by the pilot.

8.1.3.2.3 Effect of Center of Gravity Position on Trimmer Position and Stick Forces Required for Landing

Curves of stick force, outboard and inboard elevon angles, and trimmer angle versus indicated airspeed are shown for two center of gravity positions in Figure 21. The trimmer has been set so the stick forces at 1.4 V_{stall} are zero.

As the C.G. moves forward, more up trimmer is required to balance the increased negative pitching moment if the zero stick force speed is to remain constant. Stick free stability is increased during a forward center of gravity movement, but the minimum trim speed is slightly decreased.

Stick free stability appears to be satisfactory for the anticipated center of gravity range. Although the stick force versus speed gradient reverses near maximum lift for aft center of gravities, the force itself never approaches zero. Should the trimmer angle be increased over that required for trim at 1.4 V_{stall}, unstable stick forces will result for aft center of gravities.

If the slat operating mechanism becomes inoperative, the floating angle of the outboard elevons is changed in such a manner as to reduce stick free stability below the speed at which the slats normally extend. Stability is further decreased as the center of gravity moves aft, and at the aft center of gravity of 25% MAC a condition of neutral stability appears to exist. These characteristics are shown in Figure 22.

Trimmer position required for zero stick force over the low speed flight range is shown in Figure 23.
EFFECT OF TRIMMER ON STICK FORCES AND
OUTBOARD ELEVON POSITION REQUIRED
FOR TRIM - EMERGENCY CONTROL CONFIGURATION

TRIMMER ZERO
TRIMMER UP 30°

FULL 100
50
100
150
200

STICK FORCE
POUNDS

50
100
150
200

ELEVON STOP

10
5

OUTBOARD ELEVON POSITION

INDICATED AIRSPEED - KNOTS

C.G. 16 APR 61
C.G. 24 MAY 62
NO RESTRICTION

SLAT EXTENDS

T.L. UP 15°
T.L. DOWN 15°
STICK FORCE AND CONTROL POSITION VERSUS SPEED
EMERGENCY CONTROL CONFIGURATION - SLATS INOPERATIVE

GROSS WEIGHT: 10,821 lb
C.G. 65% MAX
C.G. 45% MIN
NO FRICTION

OUTBOARD ELEVON
ANGLE - DEG

INBOARD ELEVON
AND TRIMMER
ANGLE - DEG

TRIMMER

INBOARD ELEVON (FLOATING)
TRIMMER POSITION REQUIRED FOR ZERO STICK
FORCE EMERGENCY CONTROL CONFIGURATION

GROSS WEIGHT + FUEL
C.G.: 25% MAC
C.G.: 20% MAC

DEGREES

INDICATED AIRSPEED: KNOTS

DEGREES

DEGREES

DEGREES

DEGREES

DEGREES

DEGREES

DEGREES

DEGREES

DEGREES
8.1.3.2.4 Stick Force Characteristics During Accelerated Flight

Figures 24 and 25 present curves of outer elevator angle and stick force versus load factor for several indicated airspeeds. These values were calculated with the trimmer set to give zero stick force during level flight.

Examination of Figure 24 reveals the stick force per "g" gradient to be unstable at very low speeds with the C.G. at 25% MAC. As speed increases, the instability decreases until at 130 knots, pull forces are required to produce and hold a positive change in load factor. The instability noted is considered tolerable because it occurs over a very limited flight range and the magnitudes of the forces required are reasonable.

Moving the center of gravity forward decreases the range of flight over which instability occurs. Figure 25 shows the stick force per "g" gradient to be stable at all speeds down to the minimum.

Under emergency control operating conditions, maneuvering stability is unavoidably high. At speeds above 200 knots, all but routine maneuvering will require actuation of the trimmer to reduce stick forces to within the pilot's capabilities.

8.2 Directional Characteristics

8.2.1 Static Directional Stability

The static directional stability parameter, C_{nq}, is plotted as a function of lift coefficient in Figure 26. Stability is positive at all speeds for normal operation, increasing from a value of .0011 at zero lift to .00193 at C_L = .85. If the airplane is flown with the slats retracted at lift coefficients above .60, stability decreases rapidly as lift coefficient increases and becomes neutral at C_L = .855.

Although C_{nq} is somewhat lower than the estimated values given in Reference 3, no adverse results are anticipated. Damping of "dutch-roll" oscillations has always been marginal, and Reference 3 points out that an automatic yaw-damping system is to be installed in the airplane. As subsequent discussion will show, the net results are improved lateral-directional oscillatory characteristics and improved directional control.

Directional stability of the airplane is sufficient to restrict adverse yaw due to lateral elevator deflection to well within the limits specified by Reference 4. Characteristic time histories of airplane motion in rudder-fixed rolls are presented in Figures 27, 28, 29, and 30 for several lift coefficients at sea level. From these time histories, maximum sideslip angles due to adverse yaw have been plotted and their relation to the maximum allowable is shown in Figure 31.
Fig. 26

OUTER ELEVON POSITION AND STICK FORCE VERSUS LOAD FACTOR - EMERGENCY CONTROL CONFIGURATION

C.G.: 25% MAC
C.O.W.: 16,629 lbs
NO FRICTION

STICK FORCE (Pounds)

LOAD FACTOR

LEGEND

<table>
<thead>
<tr>
<th>C.G.</th>
<th>V (knots)</th>
<th>TRIMMED ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>312</td>
<td>15°</td>
</tr>
<tr>
<td>30</td>
<td>624</td>
<td>40°</td>
</tr>
<tr>
<td>45</td>
<td>936</td>
<td>60°</td>
</tr>
<tr>
<td>60</td>
<td>1248</td>
<td>90°</td>
</tr>
</tbody>
</table>

SLAT EXTREMES

FLAPS 20
MODEL XF6D-1

OUTER ELEVON POSITION AND STICK FORCE VERSUS LOAD FACTOR - EMERGENCY CONTROL CONFIGURATION

CG : 37% MAC
GROSS WEIGHT 25,000 LBS.
NO FUEL

OUTER ELEVON
POSITION: TOP CORNER ALIGNED, EDGE UP
ELEVON STOP
SLAT EXTENDS

STICK FORCE
EQUATION

LEGEND

\[\text{STICK FORCE (LBS)} \]

\[\begin{array}{ccc}
\theta & \text{CL} & \text{V} \\
0^\circ & 400 & 200 \\
1^\circ & 425 & 145 \\
2^\circ & 425 & 145 \\
3^\circ & 300 & 113 \\
4^\circ & 225 & 100 \\
5^\circ & 225 & 100 \\
\end{array} \]

LOAD FACTOR
STRICTLY CONFIDENTIAL

DOUGLAS AIRCRAFT COMPANY, INC.

Analysis: Stability & Control
Prepared by: Aerodynamics
Date: 9/1/49

Model: XF4D-1
Report No.: PS 15304

STATIC LATERAL AND DIRECTIONAL CHARACTERISTICS

ELEVON & SET FOR TRIM

LEGEND

CLEAN
CLEAN, LESS VERTICAL
GEAR & SLATS EXTENDED
GEAR & SLATS EXTENDED, LESS VERTICAL

LIFT COEFFICIENT, C

CONFIDENTIAL
MODEL No. I

TIME HISTORY OF AIRPLANE MOTION AT 125 KNOTS
PRODUCED BY AN AEROFOIL 10° TOTAL LATERAL ELEVON DEFLECTION

SEA LEVEL
GROSS WEIGHT = 16,871 LB.
MUDDER FIVE

ANGLE OF
DECK, a

ROLLING
VELOCITY

DEG.

DEG.

TIME (SEC.)

(seconds)

CONTINUOUS DAY
TIME HISTORY OF AIRPLANE MOTION

AT 80 KNOTS

PRODUCED BY AN APPROXIMATE TOTAL LATERAL ELEVON DEFORMATION

SEA LEVEL
PROOF WEIGHT = 165,211 LBS.
Rudder Fixed

MODEL X-401

ANGLE OF BANK γ (DEG)
ROLLING VELOCITY V (DEG/SEC)

0 5 10 15 20 25 30
0 20 40 60 80 100

TIME (SEC)
TIME HISTORY OF AIRPLANE MOTION AT 355 KNOTS
PRODUCED BY AN ABRUPT 10° TOTAL LATERAL FLIGHT DEVIATION
SEA LEVEL
GROSS WEIGHT = 16621 LBS
RUDDER FIXED

ANGLE OF BANK, ø
DEGREES

ROLLING VELOCITY, ø-DEG./SEC.

TIME, t, SECONDS
MODEL XF6D-1

MAXIMUM SIDESLIP ANGLE DUE ELEVON ROLL VERSUS LIFT COEFFICIENT

TOTAL
BUGGER FIXED

MAXIMUM SIDESLIP ANGLE, β

REQUIRED BY A.P. 19-1

UNSATISFACTORY

SATISFACTORY

5000 FT

SEA LEVEL

1.4 V0

LIFT COEFFICIENT

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Page 58
Model XF6D-1
Report No. 15304
Rudder floating tendency is estimated to be negligible, thus insuring rudder-free characteristics comparable with rudder fixed estimates. Trim for level flight at zero side slip will be satisfactory since there are no asymmetric power effects.

8.2.2 Description of Dutch Roll Damping System

References 5 and 6 indicated damping of the lateral-directional oscillation was marginal. Further analysis of the problem, Reference 3 showed that it is impossible to materially improve the damping characteristics by changing the airplane configuration and that addition of artificial damping appeared to be the logical solution.

A yaw damper consisting of a rate-gyro sensitive to rate of yaw and a servo-system controlling rudder motion is to be installed in the XF4D-1 to improve lateral-directional damping. The basic relationship between the rate-gyro and the servo-mechanism which receives its signal is that one degree rate of yaw will excite one degree of rudder to oppose the yaw.

The characteristics of the artificial damping system are non-linear as a result of power limitations of the servo system, static friction and non-linearities inherent in the servo system. These considerations will influence effectiveness of the yaw damper, and their effects are now in the process of determination.

To prevent the system from damping intentional turns, a force link sensitive to rudder pedal force imparts a signal to the servo-mechanism that cancels the signal output from the rate-gyro during maneuvers involving a change of azimuth. In this respect the XF4D-1 will differ from conventional airplanes in that a rudder pedal force proportional to rate of yaw must be applied to maintain steady turns.

Characteristics of the actual system to be installed in the airplane will be presented in Reference 7, to be published soon.

8.2.3 Dynamic Lateral-Directional Characteristics

Damping characteristics of Model XF4D-1 are shown in Figure 32 for several lift coefficients at various altitudes. A summary of the mass and aerodynamic parameters used in the calculations is given in Table 4.

The solid lines of Figure 32 represent damping characteristics of the airplane with no artificial damping. Calculations of these points were made using the latest wind tunnel data of Reference 1. The relation between period of the oscillation and time to damp to one-half amplitude is seen to be marginal at sea level and tends toward unsatisfactory as altitude increases.
EFFECT OF RATE-GYRO DAMPING SYSTEM ON THE LATERAL-DIRECTIONAL OSCILLATION

- NO RATE GYRO
- PERFECT RATE GYRO
- C, = 0.3
- C, = 0.15
- C, = 0.07

TIME TO DAMP 1A MOUNT

UNSATISFACTORY

SATISFACTORY

SEALEVEL

PERIOD SECONDS
Table 4

Summary of Parameters Used in Dynamic Lateral-Directional Stability Calculation - No Artificial Pitching

<table>
<thead>
<tr>
<th>Altitude (Sea Level)</th>
<th>Sea Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_L</td>
<td>.550</td>
</tr>
<tr>
<td>V_{fps}</td>
<td>223.3</td>
</tr>
<tr>
<td>$b/2V$</td>
<td>.0751</td>
</tr>
<tr>
<td>$2bV/V$</td>
<td>3.529</td>
</tr>
<tr>
<td>$C_L\phi$</td>
<td>-.01470</td>
</tr>
<tr>
<td>$C_n\phi$</td>
<td>-.00119</td>
</tr>
<tr>
<td>$C_{Y\phi}$</td>
<td>.02254</td>
</tr>
<tr>
<td>$C_L\psi$</td>
<td>.01016</td>
</tr>
<tr>
<td>$C_n\psi$</td>
<td>-.00620</td>
</tr>
<tr>
<td>$C_{Y\psi}$</td>
<td>.00805</td>
</tr>
<tr>
<td>$C_L\beta$</td>
<td>-.1300</td>
</tr>
<tr>
<td>$C_n\beta$</td>
<td>.0831</td>
</tr>
<tr>
<td>$C_{Y\beta}$</td>
<td>-.338</td>
</tr>
<tr>
<td>I_x</td>
<td>.01183</td>
</tr>
<tr>
<td>I_z</td>
<td>.03792</td>
</tr>
<tr>
<td>I_{xz}</td>
<td>-.00695</td>
</tr>
</tbody>
</table>

Perfect Rate Gyro

All parameters same as above except those affected by rudder deflection, $C_{d\psi}$, $C_{2\psi}$, $C_{3\psi}$.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sea Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_L</td>
<td>.550</td>
</tr>
<tr>
<td>$C_{2\psi}$</td>
<td>.00701</td>
</tr>
<tr>
<td>$C_{3\psi}$</td>
<td>-.05600</td>
</tr>
<tr>
<td>$C_{4\psi}$</td>
<td>.09405</td>
</tr>
</tbody>
</table>
TABLE 4 (Cont'd)

<table>
<thead>
<tr>
<th>Altitude</th>
<th>NO ARTIFICIAL DAMPING</th>
<th>20,000 ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_L</td>
<td>.550</td>
<td>.275</td>
</tr>
<tr>
<td>V, FTS</td>
<td>294.3</td>
<td>416.3</td>
</tr>
<tr>
<td>b/2V</td>
<td>.05691</td>
<td>.04023</td>
</tr>
<tr>
<td>2b/b/V</td>
<td>5.027</td>
<td>3.554</td>
</tr>
<tr>
<td>C_Lφ</td>
<td>-.01115</td>
<td>-.00789</td>
</tr>
<tr>
<td>C_nφ</td>
<td>-.000905</td>
<td>-.00266</td>
</tr>
<tr>
<td>C_yφ</td>
<td>.01710</td>
<td>.00424</td>
</tr>
<tr>
<td>C_Lψ</td>
<td>.00771</td>
<td>.00344</td>
</tr>
<tr>
<td>C_nψ</td>
<td>-.00471</td>
<td>-.00359</td>
</tr>
<tr>
<td>C_yψ</td>
<td>.00611</td>
<td>.00754</td>
</tr>
<tr>
<td>C_Lβ</td>
<td>-.1300</td>
<td>-.0791</td>
</tr>
<tr>
<td>C_nβ</td>
<td>.0831</td>
<td>.0693</td>
</tr>
<tr>
<td>C_yβ</td>
<td>-.338</td>
<td>-.338</td>
</tr>
<tr>
<td>I_x</td>
<td>.01183</td>
<td>.00526</td>
</tr>
<tr>
<td>I_z</td>
<td>.03792</td>
<td>.01962</td>
</tr>
<tr>
<td>I_xz</td>
<td>-.00695</td>
<td>-.00174</td>
</tr>
</tbody>
</table>

UNDEFEATED RATE GYRO

ALL PARAMETERS SAME AS ABOVE EXCEPT THOSE AFFECTED BY

PUDDER DEVIATION, C_Lψ, C_nψ, C_yψ

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C_L</td>
<td>.550</td>
<td>.275</td>
</tr>
<tr>
<td>C_Lψ</td>
<td>.00456</td>
<td>.00688</td>
</tr>
<tr>
<td>C_nψ</td>
<td>-.05451</td>
<td>-.05519</td>
</tr>
<tr>
<td>C_yψ</td>
<td>.09211</td>
<td>.10884</td>
</tr>
</tbody>
</table>

CONFIDENTIAL
TABLE 4 (Cont'd)

NO ARTIFICIAL DAMPING

<table>
<thead>
<tr>
<th>Altitude</th>
<th>40,000 Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_L</td>
<td>.550</td>
</tr>
<tr>
<td>$V_{1\text{FFS}}$</td>
<td>434.4</td>
</tr>
<tr>
<td>$b/2V$</td>
<td>.03855</td>
</tr>
<tr>
<td>$2bK/V$</td>
<td>7.409</td>
</tr>
<tr>
<td>$C_{L\phi}$</td>
<td>-.00756</td>
</tr>
<tr>
<td>$C_{n\phi}$</td>
<td>-.000613</td>
</tr>
<tr>
<td>$C_{Y\phi}$</td>
<td>.01158</td>
</tr>
<tr>
<td>$C_{L_{\delta}}$</td>
<td>.00522</td>
</tr>
<tr>
<td>$C_{n_{\delta}}$</td>
<td>-.00319</td>
</tr>
<tr>
<td>$C_{Y_{\delta}}$</td>
<td>.00414</td>
</tr>
<tr>
<td>$C_{L_{\beta}}$</td>
<td>-.1300</td>
</tr>
<tr>
<td>$C_{n_{\beta}}$</td>
<td>.0831</td>
</tr>
<tr>
<td>$C_{Y_{\beta}}$</td>
<td>-.338</td>
</tr>
<tr>
<td>I_x</td>
<td>.01183</td>
</tr>
<tr>
<td>I_z</td>
<td>.03792</td>
</tr>
<tr>
<td>I_{xz}</td>
<td>-.00695</td>
</tr>
</tbody>
</table>

PERFECT RATE CYRO

All parameters same as above except those affected by pitch deflection: $C_{n_{\delta}}$, $C_{L_{\delta}}$, $C_{Y_{\delta}}$.

<table>
<thead>
<tr>
<th>Pitch Deflection</th>
<th>$C_{n_{\delta}}$</th>
<th>$C_{L_{\delta}}$</th>
<th>$C_{Y_{\delta}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{L}</td>
<td>.550</td>
<td>.275</td>
<td>.150</td>
</tr>
<tr>
<td>$C_{L_{\delta}}$</td>
<td>.00207</td>
<td>.00577</td>
<td>.00773</td>
</tr>
<tr>
<td>$C_{n_{\delta}}$</td>
<td>-.05299</td>
<td>-.05403</td>
<td>-.05620</td>
</tr>
<tr>
<td>$C_{Y_{\delta}}$</td>
<td>.09014</td>
<td>.09841</td>
<td>.10411</td>
</tr>
</tbody>
</table>
Estimates of the effect of introducing artificial damping have been made assuming a perfect rate-gyro system. Results of these calculations are represented by the broken lines of Figure 32. Negligible oscillation appears to be present. It is interesting to note that for the case of the airplane with no artificial damping, damping characteristics became worse as speed increases. For the case of the airplane with artificial damping the reverse is true. The reason for this reversed trend is obvious when the damping in yaw parameters, C_{n_d}, are observed for the two cases in Table 4. Induced damping from the rudder is so large that at high speeds the oscillation really never gets started.

The yaw damping system that is to be installed in the XFD-1 will produce results that lie between the two cases presented here. It is believed the final configuration will produce entirely satisfactory dynamic lateral-directional oscillatory characteristics.

8.2.4 Directional Control

8.2.4.1 Side Slip Characteristics and Rudder Pedal Forces--Yaw Damper Inoperative

Rudder effectiveness parameters C_{n_s}, C_{l_s}, and C_{y_s} are plotted against lift coefficient in Figure 33. The rate of change of yawing moment coefficient with rudder deflection is linear over the complete flight range of the airplane and indicates that excellent directional control may be maintained under all conditions.

Figures 34, 35, 36, and 37 present curves of steady side slip angle, β, versus angle of bank, right aileron angle, and rudder deflection for angles of attack of 0°, 10°, 15°, and 20° respectively. These curves were cross plotted to obtain the maximum steady side slip angle obtainable and associated control positions for various angles of attack, as shown in Figure 38.

The maximum side slip angle at $1.1 V_{stall}$ is 12.8°. The rudder pedal force required for the case of the airplane with no yaw damper is 57 pounds. These values are well within the requirements of Reference 4.

Cross wind take-off characteristics are shown in Figure 39. Available side slip angles and associated rudder pedal forces meet the requirements of Reference 4.

8.2.4.2 Side Slip Characteristics and Rudder Pedal Forces--Yaw Damper Operating

The yaw damper and rudder pedal force link are being designed so that their addition to the control system will in no way restrict directional control. Hence the same angles of sideslip presented in Section 8.2.4.1 will be obtainable with the yaw damper installed.
RUDDER EFFECTIVENESS PARAMETERS

AIRPLANE CLEAN RELIEF-35
SLAT AND GEAR EXTENDED ABOVE 12 KTS
& MEASURED PARALLEL TO AIRPLANE Q.
Rudder angle, right aileron angle, and angle of bank versus steady sideslip angle.

Model: X-42F

C_0 = 0

Gnat setup

C_0 = 0.55
Clean

Rudder deflection
Aileron angle

Rudder stop

Aileron stop

Angle of sideslip, \(\beta \), degrees base ratio
MODEL XF4D-1

RUDDER ANGLE, RIGHT AILERON ANGLE, AND ANGLE OF BANK VERSUS STEADY SIDESLIP ANGLE

\[\alpha = 15^\circ \]
\[C_l = 5.20 \]
\[C_d = 1.0521 \]
\[V_l = 125.5 \text{ KTS} \]

SLATS AND GEAR EXTENDED

RUDDER DEFLECTION

AILERON ANGLE

ANGLE OF BANK

AILERON STOP

RUDDER STOP

RUDDER DEVIATION, DEG. RIGHT

RIGHT AILERON ANGLE, DEG. DOWN

ANGLE OF BANK, DEG. LEFT WING DOWN

ANGLE OF SIDESLIP, \(\alpha \), DEGREES NOSE RIGHT

CONFIDENTIAL
MAXIMUM STEADY SIDESLIP ANGLE AVAILABLE AND ASSOCIATED CONTROL POSITIONS VERSUS GC

C_{4n}, DEG. DOWN
S_{h}, DEG. Tilt RIGHT
G, DEG. LEFT WING DOWN
G, MAX AVAILABLE NOSE RIGHT

Rudder Stgro
Aileron Stgro

Rudder Pedal ForcE - Pounds

Angle of Attack, Degrees

No Friction

Angle of Attack, Degrees

Analysis Stability & Control
Prepared by Aerodynamics
Date 9/1/49

Douglas Aircraft Company, Inc.
Model XFAD-1
Report No. 15304
SIDESLIP ANGLE AND Rudder Pedal Forces for CROSS WIND TAKE-OFF

Model XP4D-1

Rudder Pedal Force - Required

Rudder Angle - Degrees

Indicated Airspeed Knots

Available

Required

Max

Sideslip Angle in Degrees

Available Sideways Lift

Required by SM 11B-8

Max

Sideslip Angle

Max

Cross Weight Group

Indicated Airspeed Knots

Required

Max

Sideslip Angle

Max

Douglas Aircraft Company, Inc.

Page 72
Model XP4D-1
Report No. ES 15304

Analysis, Stability & Control
Prepared by Aerodynamics

Date 9/1/49

PLANT

CONFIDENTIAL

Page 72
Model XP4D-1
Report No. ES 15304

Analysis, Stability & Control
Prepared by Aerodynamics

Date 9/1/49

PLANT

CONFIDENTIAL
Since analysis and design of the rate-gyro and rudder pedal force link system is not complete, final rudder pedal forces for the case where the system is in operation are not yet determined. However, design of the force link is proceeding with the rudder pedal force requirements of Reference 4 in mind. Final rudder pedal forces required for steady turns and sideslips will be presented in the forthcoming Reference 7.

8.3 Lateral Characteristics

8.3.1 Dihedral Effect

The static lateral stability parameter, C_{Lb}, is plotted as a function of lift coefficient in Figure 26. C_{Lb} is positive over the entire flight range of the airplane, increasing from a value of -0.00038 at zero lift to -0.00275 at $C_L = 0.850$ and satisfies stick fixed dihedral effect requirements.

Reference 4 states that positive static stick free dihedral effect shall exist and shall be evidenced during sideslips by aileron deflection and control force towards the leading wing being required to depress the leading wing. By referring to Figure 36 it may be seen that this condition is satisfied.

Examination of Figures 27, 28, 29 and 30 indicates no evidence of reversal in rolling velocity due to dihedral effect.

8.3.2 Lateral Control

8.3.2.1 Normal Control Configuration

The effect of trimmer on rolling characteristics is small. Referring to Figures 40 and 41, it is seen that trimmer position will have some effect on $\frac{P_b}{2V}$ and rolling velocity at high angles of attack, but none at medium and low angles of attack. This is due to the slight loss in rolling effectiveness at large lateral elevator angles that are obtained when considerable elevator deflection is required for longitudinal trim, (low speeds).

It is seen from Figures 40 and 41 that rolling characteristics are excellent; being considerably in excess of the requirements of Reference 4 at all speeds except near the stalling velocity. At $1.1 V_{stall}$, the maximum $\frac{P_b}{2V}$ obtained is .07 whereas .09 is required to meet SR119-B.

This apparent deficiency is not considered serious. Comparison of the zero sideslip rolling characteristics of the XF4D-1 with those of the XP3D-1, an airplane considered to have excellent low speed lateral control, shows the XF4D-1 to be capable of a $\frac{P_b}{2V}$ of .175 with full control deflection as compared to .125 for the XP3D-1 under the same
EFFECT OF TRIMMER POSITION ON LOW-SPEED ROLLING CHARACTERISTICS

Sea Level

STICK FORCE (LBS)

INDICATED AIRSPEED (KIAS)

VOLTAGE (VOLTS)

STICK FORCE (LBS)

INDICATED AIRSPEED (KIAS)
condition. The apparent loss in $\frac{F_b}{F_w}$ of .105 in the case of the XF4D-1 is due to K_β, the roll reduction factor due to sideslip. In order for the full effect of K_β to be experienced, it is estimated that at least 20° of sideslip must be obtained at 1.1 V_e. It is further believed that low speed rolls executed at near stalling speeds will more closely approximate a zero sideslip condition than a rudder fixed condition. Under this assumption, the XF4D-1 should have as good or better lateral characteristic at low speeds than those obtained on the pilot accepted XF3D-1. It should also be noted that whereas the XF3D-1 has a maximum rolling velocity of 35°/sec. in the landing condition, the XF4D-1 has almost 50°/sec by virtue of its shorter span.

Lateral stick forces obtained during fully deflected elevon rolls are plotted on Figures 40 and 41. As in the case of longitudinal stick forces, lateral forces are supplied with a synthetic force feel system whose output is proportional to elevon deflection and dynamic pressure. Stick forces are moderate and easily meet the requirements of Reference 4.

Estimated loss of lateral control due to wing twist and sideslip is presented in Figures 42 and 43 in terms of their respective reduction factors, K_α and K_β.

8.3.2.2 Emergency Control Configuration

During emergency control operation, lateral control and hinge moment are obtained from the outboard elevons only. Reference 4 requires that a minimum of 15°/sec rate of roll be obtained with no more than 30 pounds stick force. Figure 44 shows stick force required to produce a rate of roll of 15°/sec, and the rate of roll obtained from 30 pounds stick force is plotted on Figure 45. Examination of these curves reveals that the requirements of Reference 4 are not satisfied.

Using the same argument presented in Section 8.3.2.1, the low speed rolling velocity obtained from 30 pounds stick force can be increased from approximately 10°/sec to 25°/sec by using rudder to make zero sideslip rolls. It is felt the latter figure will more nearly approximate the maximum low speed rolling velocity available under actual flight conditions. Moreover, two independent hydraulic systems must fail before it becomes necessary to use the manual emergency system.
ROLL REDUCTION FACTOR DUE TO WING TWIST VERSUS MACH NUMBER

(BASED ON STRESS DATA AND VARIED WITH g)

WING TORSION FACTOR (1-Kr)

MACH NUMBER
ROLL REDUCTION FACTOR DUE TO SIDESLIP AND RATE OF YAW Versus C_L,

Rudder Fixed
STICK FORCE AND ELEVON ANGLE REQUIRED TO PRODUCE A 16 DEG PER SEC RATE OF ROLL

EMERGENCY CONTROL CONFIGURATION

REQUIRED BY 58-115-2

TOTAL LATERAL ELEVON ANGLE DEGREES

INDICATED AIRSPEED: KNOTS

SEA LEVEL

INDICATED AIRSPEED: KNOTS

SEA LEVEL
RATE OF ROLL AVAILABLE FROM 50 POUNDS STICK FORCE

EMERGENCY CONTROL CONFIGURATION

NO FRICTION

RATE OF ROLL DEG. PER SEC.

REQUIRED BY SR-15-87

INDICATED AIRSPEED - KNOTS

TOTAL LATERAL Rudder Angle DEGREES

INDICATED AIRSPEED - KNOTS

SEA LEVEL

INDICATED AIRSPEED - KNOTS

LAND AND HOVER
9.0 CONCLUSIONS AND RECOMMENDATIONS

On the basis of the analysis of Part I of this report, it is concluded that the low speed flying qualities of the XF4D-1 will be generally satisfactory, although in several respects they appear to be marginal. To insure fully satisfactory characteristics of the prototype, the following recommendations are made.

1. The center of gravity should not exceed 22% MAC maximum forward with the gear extended, and 25% MAC maximum aft with the gear retracted.

2. Marginal dynamic longitudinal damping characteristics should be recognized, and provisions made for introducing artificial damping into the longitudinal control system if poor damping is verified during flight tests.
10.0 REFERENCES

