ENIAC Computation of
Two-Dimensional Supersonic Nozzles

NATHAN GERBER

DEPARTMENT OF THE ARMY PROJECT No. 503-06-004
ORDNANCE RESEARCH AND DEVELOPMENT PROJECT No. TB3-0108
BALLISTIC RESEARCH LABORATORIES

ABERDEEN PROVING GROUND, MARYLAND
THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
b. "Initial distribution has been made of this report in accordance with the distribution list contained herein. Additional distribution without recourse to the Ordnance Office may be made to United States military organizations, and to such of their contractors as they certify to be cleared to receive this report and to need it in the furtherance of a military contract."
ENIAC COMPUTATION OF TWO-DIMENSIONAL SUPERSONIC NOZZLES

Nathan Gerber

Department of the Army Project No. 503-06-004
Ordnance Research and Development Project No. TFJ-0108

ABERDEEN PROVING GROUND, MARYLAND
SYMBOLS

\(x, \ y\) \hspace{1cm} \text{rectangular position coordinates}

\(\vec{q}\) \hspace{1cm} \text{velocity vector}

\(u, \ v\) \hspace{1cm} \text{rectangular velocity components}

\(q, \ \theta\) \hspace{1cm} \text{polar coordinates of velocity}

\(q_0\) \hspace{1cm} \text{speed of radial flow on initial circular arc}

\(a\) \hspace{1cm} \text{local speed of sound}

\(\gamma\) \hspace{1cm} \text{ratio of specific heats \((=1.4 \text{ for air})\)}

\(M\) \hspace{1cm} \text{Mach number \((=q/a)\)}

\(\theta_0\) \hspace{1cm} \text{inclination of bounding ray of radial flow}

\(\kappa\) \hspace{1cm} \text{curvature of nozzle}

\(\alpha, \ \beta\) \hspace{1cm} \text{characteristic coordinates \((\alpha \text{ varies on the patching characteristics})\)}

\(H = a^2 - u^2\) \hspace{1cm} \(L = a^2 - v^2\)

\(K = -uv\) \hspace{1cm} \(R = a(q^2 - a^2)^{1/2}\)

\(\lambda, \ \mu\) \hspace{1cm} \text{direction cosines of straight line \((\alpha = \text{const.})\) simple wave characteristic}

\(r\) \hspace{1cm} \text{length of} \ \alpha = \text{const.} \ \text{simple wave characteristic}

\(\rho\) \hspace{1cm} \text{density}

\(\xi, \ \eta\) \hspace{1cm} \text{x, y along characteristic which patches the transition and simple wave regions}

\(s\) \hspace{1cm} \text{arc length along transition section of nozzle}

\(\Delta \theta\) \hspace{1cm} \text{parameter governing rate of growth of curvature of transition section}
ENIAC COMPUTATION OF TWO-DIMENSIONAL SUPERSONIC NOZZLES

ABSTRACT

A procedure based on the method of characteristics is described in detail for computing two-dimensional supersonic nozzles with continuous curvature everywhere. The results of ENIAC calculations of a series of nozzles by this method are summarized briefly.
SECTION I
INTRODUCTION

This report will describe a method of determining two-dimensional supersonic nozzles on the basis of plane isentropic flow of a perfect gas. The computational procedure is based on the method of characteristics (ref. [1]).

![Diagram showing the procedure commonly used for designing these nozzles.](image)

The procedure commonly used for designing these nozzles (ref. [2]) is to patch a "simple wave" onto an assumed initial radial flow to obtain the "cancellation" region which leads to uniform flow. These several regions are indicated in Fig 1.1, which shows a representative two-dimensional nozzle. (Because of symmetry we need only refer to the upper half of the diagram.) The radial flow originates from a two-dimensional source at point O, the ray OB being tangent to the contour TBJ at the "inflection" point B. BD and DJ are characteristics (or Mach lines)*. The problem is the determination of BJ.

Nozzles designed in the above manner will, in general, have discontinuous wall curvature at points B and J (Fig 1.1). While this condition is permissible for fixed throat tunnels, it is unsatisfactory for flexible throat tunnels, the walls of which must have continuous curvature everywhere. The process used in the calculations described in this report avoids

this trouble by inserting between the radial flow and the simple
wave a transition section (EDFE in Fig 1.2) the wall curvature of which
varies continuously from zero to the value at the beginning of the can-
cellation section. The transition section can be fitted in many ways.
The particular method used here is described in Section II by eqn. (2.6)
and its accompanying discussion.

A series of calculations described in Section IV were performed on
the ENIAC to provide design data for the 13" x 15" flexible nozzle wind
tunnel (No. 1) now under construction for the Supersonic Wind Tunnels
Branch of the Exterior Ballistics Laboratory. These shapes were selected
from a three-parameter (q, θ, Δθ) family of nozzles. The particular
choices of parameters were guided by factors such as physical limitations
on tunnel lengths and permissible plate curvatures. The object was to
get a continuously varying family of nozzles from which could be obtained
reasonable shapes of curves ("jack displacement" vs. Mach number) for the
design of cams governing automatic settings of the jacks which hold the
wall in place.

To obtain the final family of eighteen nozzles required about one
hundred and ten trials at about forty-five minutes per case. Clearly
computations on this scale would never have been undertaken by hand.
SECTION II
EQUATIONS AND BOUNDARY CONDITIONS

The equations describing the two-dimensional flows are (ref. [1], p.12)

\[
\begin{align*}
H \frac{\partial u}{\partial x} + K (\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}) + L \frac{\partial v}{\partial y} &= 0 \\
\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} &= 0
\end{align*}
\]

(2.1)

where \(H = a^2 - u^2 \), \(K = -uv \), \(L = a^2 - v^2 \).

The flow field is divided into four regions (Fig. 2.1): I — radial flow, II — general two-dimensional flow, III — simple wave, and IV — uniform flow. These regions are separated by the characteristic curves

![Fig. 2.1](image)

BD, EF, and FJ; BB' is a circular arc.

The boundary conditions are

a) \(v = 0 \) when \(y = 0 \);

that is, the air flows along the center line of a cross-section of the nozzle.

b) \(v/u = f'(x) \) along a contour \(f(x) \), which is to be determined as part of the solution to the problem. This contour is subject to the following conditions: \(f'(x) = \tan \theta_o \), \(f''(x) = 0 \) at point B; \(f'(x) = 0 \) at point J; \(f(x) \) has continuous curvature \(\kappa(x) \) everywhere between B and J.
We first establish the coordinate system. The origin is determined so that $x_B = 0$, $y_B = 1$ (Fig. 2.2).

The initial information at our disposal is the radial flow, with speed q_0 on BB'. Since the streamlines coincide with the rays from point $0, 0$ to point $0, 0$, θ measures the inclination of both. The angle θ_0 is divided into n_1 intervals of magnitude $\theta = \theta_0/n_1$, where n_1 is an integer.

Clearly, on equally spaced points on BB'

$$
\begin{align*}
 x(n) &= \csc \theta_0 \cos \left(\theta_0 - n\theta_0/n_1\right) - \cot \theta_0 \\
 y(n) &= \csc \theta_0 \sin \left(\theta_0 - n\theta_0/n_1\right) \\
 u(n) &= q_0 \cos \left(\theta_0 - n\theta_0/n_1\right) \\
 v(n) &= q_0 \sin \left(\theta_0 - n\theta_0/n_1\right)
\end{align*}
$$

(2.2)

where $n = 0, 1, 2, \ldots, n_1$. Accordingly, $n = 0$ for point B and increases along the curve up to n_1 at point B'.

We designate α as the variable along BD, the Mach line patching together the regions I and II. In the solution of problems by characteristics the choice of characteristic parameter along certain bounding Mach lines is arbitrary (see ref. [1], p. 21). Thus we are able to
choose $\alpha = n$ along BD; that is, α will vary continuously with θ from zero at B to $\alpha = \alpha_1$ at D, and at any point P (Fig. 2.2), where $\theta = \theta_0 (1 - n/n_1)$, α will be equal to n.

Since the hodograph of the plane characteristic BD is a Prandtl-Busemann epicycloid, the velocity distribution on BD is described by

$$\theta_0 - \theta = f(M) - f(M_0),$$

where

$$f(M) \equiv \cos^{-1} \left(\frac{1}{M} \right) - \sqrt{\left(\frac{\gamma + 1}{\gamma - 1} \right)} \tan^{-1} \left(\sqrt{\left(M^2 - 1 \right)} - \frac{1}{\sqrt{\left(\frac{\gamma - 1}{\gamma + 1} \right)}} \right),$$

(see ref. [4], p. 26) and $M(q) \equiv \sqrt{q^2 \left[\left(\frac{\gamma - 1}{\gamma + 1} \right) \right]};$ also $M_0 = M(q_0)$.

To determine the curve BD, consider the streamline OP (Fig. 2.2)

$$\frac{\partial \varphi}{\partial \theta} = \frac{y_P}{y_P'}, \quad \frac{\partial \varphi'}{\partial \theta} = \csc \theta_0$$

Thus $\varphi = \frac{\partial \varphi}{\partial \theta} = \frac{y_P}{y_P'} \csc \theta_0$.

P and P' may be taken as two points on a two-dimensional nozzle surface. Then (ref. [5], p. 34)

$$\frac{y_P}{y_P'} = \frac{A_P/A*}{A_P'/A*}$$

$A/A*$ is the ratio of the cross-sectional area at any point in a two-dimensional nozzle to that at the throat of the nozzle (according to one-dimensional theory, M=1 at the throat) and is a function of q.

$$A/A* = \frac{1}{M} \left(\frac{2 \times (\gamma - 1) M^2}{(\gamma + 1)} \right) \left(\frac{(\gamma + 1)/(2\gamma - 2)}{\gamma - 1} \right)$$

Since $q_P = q_0$ and q_P (α) are known, φ (α) can be determined.

Let $\theta = \theta_0 (1 - n/n_1) = \theta_0 (1 - \alpha/\alpha_1) = \theta_0 (\alpha)$ at point P.

Then

$$\begin{align*}
x(\alpha) &= \varphi_P \cos (1 - \alpha/\alpha_1) \theta_0 - \cot \theta_0 \\
y(\alpha) &= \varphi_P \sin (1 - \alpha/\alpha_1) \theta_0 \\
u(\alpha) &= q(\alpha) \cos (1 - \alpha/\alpha_1) \theta_0 \\
v(\alpha) &= q(\alpha) \sin (1 - \alpha/\alpha_1) \theta_0
\end{align*}$$

(2.4)
Consequently $x(\alpha), y(\alpha), u(\alpha), v(\alpha)$ are determined at α_i+1 points on BD.

We transform to the characteristic (α, β) plane to determine the flow in region II. The characteristic equations are (ref. [1]),

\[
\begin{align*}
(K-R) y_{\alpha} - L x_{\alpha} &= 0 \\
H y_{\beta} - (K-R) x_{\beta} &= 0 \\
H u_{\alpha} + (K-R) v_{\alpha} &= 0 \\
(K-R) u_{\beta} + L v_{\beta} &= 0
\end{align*}
\]

where $R = \sqrt{K^2 - HL}$. Fig. 2.3 shows the map of region II in the characteristic plane. The two bounding streamlines BE and DF map into the lines $\beta = \alpha$ and $\beta = \alpha - \alpha_i$ respectively ($d\beta/d\alpha = 1$ on them).

We arbitrarily demand that the inclination of the nozzle on BE be of the form

\[\theta = \theta_0 - \alpha^2 \Delta \theta \]

(2.6)

where $\Delta \theta > 0$ is a prescribed constant. The curvature on BE is

\[K_i = \frac{d\theta}{ds} = -2 \alpha \Delta \theta / s_\alpha. \]

At B, $\alpha = 0$, so $K_i = 0$. Thus the condition of zero curvature of the nozzle at point B is satisfied. More generally $\theta = \theta_0 - \alpha^2 g(\alpha)$, where $g(\alpha)$ is an arbitrary function of α, satisfies this condition.

Since

\[\frac{ds}{d\alpha} = \frac{dx}{d\alpha} \sqrt{1 + (dy/dx)^2} = \frac{dx}{d\alpha} \sqrt{1 + \tan^2 (\theta_0 - \alpha^2 \Delta \theta)}, \]

10
the curvature is
\[K_1 = \frac{-2 \alpha \Delta \theta}{\left[\frac{\partial x/\partial \alpha}{\sqrt{1 + \tan^2 (\eta - \alpha^2 \Delta \theta)}} \right]} \quad (2.7) \]

The flow in region III is a simple wave; that is, the velocity is constant along the characteristics \(\alpha = \text{constant} \), which are straight lines. Consequently the points on \(EJ \), the remainder of the nozzle, are simply functions of \(\alpha \). In particular, \(\theta = \theta \left(\alpha \right) = 0 \), and \(q_T \) is the speed of the final uniform flow.

![Diagram](image)

Fig. 2.4

We wish to locate a point, say \(T \), on \(EJ \) (Fig. 2.4) which corresponds to the point \(G \) on \(EF \). Let \(x = \xi, y = \eta \) on \(EF \). Then \(x_G = \xi (\alpha), y_G = \eta (\alpha) \).

The slope of \(GT \) is
\[m(\alpha) = \left[\frac{\partial y/\partial \beta}{\partial x/\partial \beta} \right]_G = \frac{(K-R)}{H} \quad (\text{from eqn. (2.5)}). \]

The unit vector tangent to \(GT \) is \(\left(\lambda, \mu \right) \), where
\[\lambda = - H/\sqrt{H^2 + (K-R)^2}, \quad \mu = - (K-R)\sqrt{H^2 + (K-R)^2}. \quad (2.8) \]

Then on \(EJ \)
\[
\begin{align*}
x(\alpha) &= \xi (\alpha) + \lambda (\alpha) r (\alpha) = x_T \\
y(\alpha) &= \eta (\alpha) + \mu (\alpha) r (\alpha) = y_T \\
u(\alpha) &= u_T \\
v(\alpha) &= v_T
\end{align*}
\]

\[r (\alpha) = GT \quad (2.9) \]

We find \(r(\alpha) \) essentially from the equation of continuity by equating
the mass per second of air flowing across GT to the mass per second across EG.

\[Q_{\text{GT}} = \text{mass/sec. across GT} = \rho(\alpha) \left[u(\alpha) \mu(\alpha) - v(\alpha) \lambda(\alpha) \right] r(\alpha). \]

\((\mu, -\lambda)\) is the scalar product of the vector \(\tilde{q} = (u, v) \) and the vector \((\mu, -\lambda)\), a unit vector normal to the line GT. It is also the component of the velocity normal to the characteristic GT, which is equal to \(a(\alpha) \), the speed of sound.

From ref. [1], p. 12, \(\rho = \rho_0 \left(1 - q^2 \right)^{1/(\gamma-1)} \) \((\rho_0\) being constant for the flows considered here; \(\gamma=1 \)), and \(a^2 = (\gamma-1)(1-q^2)/2 \). Hence

\[Q_{\text{GT}} = \rho_0 \left(1 - q^2 \right)^{1/(\gamma-1)} a(\alpha) r(\alpha). \]

A unit vector, normal to the curve EF is \((-\eta, \xi)\) and \(Q_{\text{EG}} = \text{mass/sec. across EG} = \int_{\alpha}^{\beta} \rho(\nu \xi - u \eta) / \sqrt{\xi^2 + \eta^2} \, ds. \)

But \(ds/d\alpha = \sqrt{\xi^2 + \eta^2} \); so

\[Q_{\text{EG}} = \rho_0 \int_{\alpha}^{\beta} (1-q^2)^{1/(\gamma-1)} (v \xi - u \eta) \, d\alpha. \]

Equating \(Q_{\text{EG}} \) and \(Q_{\text{GT}} \), we get (taking \(\gamma = 1.4 \))

\[r(\alpha) = \left[\int_{\alpha}^{\beta} (1-q^2)^{2.5} (v \xi - u \eta) \, d\alpha \right] / \left[a(1-q^2)^{2.5} \right] \]

According to eqn. (2.5) \(\gamma \alpha = \left[L/(K-R) \right] \xi \alpha = (K+R) \xi \alpha / H \); so

finally

\[r(\alpha) = \left\{ \int_{\alpha}^{\beta} (1-q^2)^{2.5} \left[v - (K+R)u/H \right] \xi \alpha \, d\alpha \right\} / \left\{ a(\alpha) \left[1-q^2(\alpha) \right]^{2.5} \right\} \] (2.10)

Along EF \(dy/dx = v(\alpha) / u(\alpha) \), \(d^2y/dx^2 = \left[d(v/u)/d\alpha \right] / (dx/d\alpha) \).

The curvature is

\[\kappa = \left[\frac{d^2y/dx^2}{\left[1+(dy/dx)^2 \right]^{3/2}} \right] = \left[d(v/u)/d\alpha \right] / (dx/d\alpha). \]

At point E, where \(r = 0 \), we note that (by eqn. (2.9))

\[(dx/d\alpha)_E = (d \xi /d\alpha)_E + \lambda (dr/d\alpha)_E \]

(2.12)
By eqn. (2.10) a \[\frac{dr}{d\alpha} \bigg|_E = (1-q^2)^{1/(\gamma-1)} \left\{ \frac{\nu d \xi}{d\alpha} \bigg|_E - u d\eta / d\alpha \bigg|_E \right\} \]

This leads to the relation
\[\frac{dr}{d\alpha} \bigg|_E = \left\{ - q^2 \lambda / (a^2 - u^2) \right\} \frac{d \xi}{d\alpha} \bigg|_E , \]

which upon substitution into eqn. (2.12) leads to
\[\frac{dx}{d\alpha} \bigg|_E = - \left\{ 2 \lambda u \sqrt{q^2 - a^2} / (a^2 - u^2) \right\} \frac{d \xi}{d\alpha} \bigg|_E \]

By eqn. (2.5), \[\lambda \frac{du}{d\alpha} + \mu \frac{dv}{d\alpha} = 0, \] and
\[d(v/u) / d\alpha = (u \omega_\alpha - v \omega_u) / u^2 = - (\sqrt{q^2 - a^2} / \mu u^2) \omega_u. \]

Substituting this relation and eqn. (2.13) into eqn. (2.11) we finally obtain
\[K_E = \left[(a^2 - u^2) / (2 q^3 \lambda \mu) \right] (u \omega_\alpha / \xi \omega) \bigg|_E \]

Actually, the length of the transition section is not known a priori. In the computation at each point on BJ (Fig. 2.1) both \(K_I \) (eqn. (2.7)) and \(K_E \) (eqn. (2.14)) are computed. When a point \(E \) where \(H^* = 0 \) is found, generally by interpolation, the characteristic EF is constructed and the cancellation section thus started. To achieve a desired design Mach number at the uniform flow region several trials must generally be made with various initial \(q_0 \)'s on BB'.
SECTION III

COMPUTATIONAL PROCEDURES

The initial data for determining the flow on BD (Fig. 2.1) are available on IBM output cards as a result of a previous ENIAC computation of Prandtl-Meyer flow. (See eqn. (2.3).) A/A^* and q_0 have been tabulated at .05 degree intervals of $\omega = 9 + \text{const}$. The input deck for a computation is extracted from this main deck by selecting first the card with $q = q_0$ (on which ω is, say, ω_0), then those cards with $\omega = \omega_0 + \theta$, $\omega = \omega_0 + 2\theta$, $\omega = \omega_0 + n\theta = \omega_0 + \theta_n$. Eqns. (2.4) then yield x, y, u, v at $\alpha + 1$ equally spaced points on BD ($\beta = 0$) in the characteristic plane (Fig. 2.3).

For region II there are three computational routines: the stream process for points on

![Fig. 3.1](image)

DF (Fig. 3.1), the nozzle process for points on BE, and the general process for all other points. The second order iterative method described in detail in ref. [1] is used to solve the differential
equations numerically. The partial derivatives are replaced by differences, so that for a point \(P \) (Fig. 3.2), with information known

\[
\begin{align*}
\beta & \quad L \quad M \quad P \quad Q \quad N \quad U \\
\end{align*}
\]

at points \(L \) and \(U \), eqns. (2.5) become

\[
\begin{align*}
(K-R)H_{LM}(y_P-y_L) - LH_{LM}(x_P-x_L) &= 0 \\
H_{LM}(v_P-y_U) - (K-R)H_{LM}(x_P-x_U) &= 0 \\
H_{MN}(u_P-u_L) + (K-R)H_{NM}(v_P-v_L) &= 0 \\
(K-R)H_{MN}(u_P-u_U) + LH_{MN}(v_P-v_U) &= 0
\end{align*}
\]

(3.1)

The notation \(H_{LM} \) means that \(H \) is evaluated first at \(Q \), then in the second iteration at \(M \). \(H_Q = (H_U + H_L)/2 \); \(H_M = (H_P + H_L)/2 \); \(H_N = (H_P + H_U)/2 \), where \(H_P \) is computed from \(u_P, v_P \) determined in the first iteration. This notation applies similarly to all other coefficients.

The solution (general process) to eqns. (3.1) is

\[
\begin{align*}
x_P &= (K-R)H_{LM}(y_P - (K-R)H_{LM}x_P)/D - \\
& \quad H_{LM}\left\{(K-R)H_{LM}y_L - LH_{MN}x_L\right\}/D
\end{align*}
\]

\[
\begin{align*}
y_P &= LH_{MN}\left\{(K-R)H_{LM}y_U - (K-R)H_{LM}x_U\right\}/D - \\
& \quad (K-R)H_{MN}\left\{(K-R)H_{MN}y_L - LH_{MN}x_L\right\}/D
\end{align*}
\]

\[
\begin{align*}
u_P &= LH_{MN}\left\{(K-R)H_{MN}u_L + (K-R)H_{MN}v_L\right\}/\Delta - \\
& \quad (K-R)H_{MN}\left\{(K-R)H_{MN}u_U + LH_{MN}v_U\right\}/\Delta
\end{align*}
\]

\[
\begin{align*}
v_P &= H_{LM}\left\{(K-R)H_{MN}u_U + LH_{MN}v_U\right\}/\Delta - \\
& \quad (K-R)H_{LM}\left\{(K-R)H_{MN}u_L + (K-R)H_{MN}v_L\right\}/\Delta
\end{align*}
\]

(3.2)

*It should be remarked that the ENIAC coding used was actually adapted (to save coding time) from existing axisymmetric flow coding by suppressing \(a^2v/\gamma \) terms.
where

\[D = L \cdot M \cdot H_{MN} - (K-R) \cdot M \cdot (K-R) \cdot N \] and

\[\Delta = H_{MN} \cdot L \cdot M - (K-R) \cdot N \cdot (K-R) \cdot M \]

Similarly, the stream process computation (DF in Fig. 3.3) for point F in Fig. 3.3 is

\[\frac{dy}{dx} = \tan (\theta - \alpha^2 \Delta \theta) \]
\[v = u \tan (\theta - \alpha^2 \Delta \theta) \]

The equations used for the nozzle process (BE in Fig. 3.1) are

\[\frac{dy}{dx} = \tan (\theta_{o} - \alpha^2 \Delta \theta) \]

\[v = u \tan (\theta_{o} - \alpha^2 \Delta \theta) \]
In difference form they are (see Fig. 3.4)

\[
\begin{align*}
\left\{ \frac{H}{(K-R)} \right\} y_Q (y_U - y_V) - (x_P - x_U) &= 0 \\
(u_P - u_U) + \left\{ \frac{L}{(K-R)} \right\} y_Q (v_P - v_U) &= 0 \\
(y_F - y_A) / (x_F - x_A) - \tan \theta_o - \alpha^2 \Delta \theta &= 0 \\
u_P \tan (\theta_o - \alpha^2 \Delta \theta) - v_P &= 0
\end{align*}
\]

(3.5)

where \(\tan \theta_o - \alpha^2 \Delta \theta = (1/2) \left[\tan(\theta_o - \alpha^2 \Delta \theta) + \tan(\theta_o - \alpha^2 \Delta \theta) \right] \).

The solution to eqns. (3.5), which locates the nozzle points, is

\[
\begin{align*}
x_P &= (1/A) \left\{ \left[\frac{H}{(K-R)} \right] y_Q y_U - x_U \right\} + \\
y_P &= (1/A) \left\{ - \left[\frac{H}{(K-R)} \right] y_Q \left[-y_A + x_A \tan \theta_o - \alpha^2 \Delta \theta \right] \right\} - \\
u_P &= (1/B) \left\{ \left[\frac{L}{(K-R)} \right] y_Q v_U + u_U \right\} \\
v_P &= (1/B) \left\{ \left[\frac{L}{(K-R)} \right] y_Q v_U + u_U \right\} \tan (\theta_o - \alpha^2 \Delta \theta)
\end{align*}
\]

(3.6)

where

\[
A = \left\{ \frac{H}{(K-R)} \right\} y_Q \tan \theta_o - \alpha^2 \Delta \theta - 1 \\
B = \left\{ \frac{L}{(K-R)} \right\} y_Q \tan (\theta_o - \alpha^2 \Delta \theta) + 1
\]

The flow is computed at \(\alpha_{l} + 1 \) equally spaced points on \(\beta = 1 \), then on \(\beta = 2, \beta = 3, \) and so on.

The partial derivatives in the curvature expression eqns. (2.7) and (2.14) are approximated by linear difference quotients. Thus (see Fig. 3.4)

\[
(\partial x / \partial \alpha)_P \approx (x_P - x_F) / (\alpha_F - \alpha_P); \quad (\partial u / \partial \alpha)_P \approx (u_P - u_F) / (\alpha_F - \alpha_P).
\]
For every nozzle point k_i and $k_e = \left[(a^2-u^2)u_\alpha \right]^{1/2} \left[2\xi u_{x\alpha} \right]$ are computed, and $\delta = \kappa_i - \kappa_e$ is recorded. δ varies monotonically along the nozzle; and when it changes sign at some point G (Fig. 3.1), we know that the point E, where the transition region curvature equals that for a simple wave, has been reached and passed. Using the information at G and the two preceding nozzle points, we determine by three point interpolation the variables for $\delta = 0$; namely, $x_E, y_E, u_E, v_E, \alpha_E, \beta_E$.

The characteristic $\beta = \beta_E$ (EF in Fig. 3.1), on which $x = \xi (\alpha), y = \eta (\alpha)$ is then computed in the same manner as the preceding $\beta = \text{const.}$ characteristics. The Mach number at P is the final exit Mach number.

The remainder of the flow is the cancellation region and is computed from eqns. (2.9) and (2.10).

In evaluating the integrand in eqn. (2.10)

\[\int_{L}^{P} \int_{\alpha}^{R} \]

we approximate the derivatives $\xi (\alpha)$ by central differences (i.e.,

$\xi (\alpha) \approx \left[\xi (\alpha + 1) - \xi (\alpha - 1) \right] / [2 \xi (\alpha)]$

for all points but the first two and the last two. For the first two points

\[\frac{\partial \xi}{\partial \alpha} \bigg|_{P} \approx \frac{(\xi_R - \xi_L)}{\xi_R - \xi_L} \]

(see Fig. 3.5), and for the last two points

\[\frac{\partial \xi}{\partial \alpha} \bigg|_{P} \approx \frac{(\xi_R - \xi_L)}{\xi_R - \xi_L} \]

We approximate the integral in eqn. (2.10), which we write as

\[T (\alpha) = \int_{E}^{\alpha} J (\alpha) \, d\alpha \]

by Simpson's formula for all points but the first two and the last one; namely,

\[T (\alpha) \approx T (\alpha - 2) + \left\{ \left[J (\alpha) + 4J (\alpha - 1) + J (\alpha) \right] / 3 \right\} \]

$T (\alpha = \alpha_E) = 0$ for the first point. $T_P \approx T_L + \left[(J_L + J_P)(\alpha_P - \alpha_L) / 2 \right]$

(see Fig. 3.5) for the second and last points.

Finally, for the wind tunnel designer's convenience, the coordinates of the nozzle points were transformed so that the exit point F has the coordinates $X_F = 0, Y_F = E$, an assigned constant. This calculation places all the nozzles on a scale based on a fixed height of the wind tunnel test section. The transformation was accomplished by

\[X = (E/\gamma_F)(x_F - x) \]
\[Y = (E/\gamma_F) y \]

(3.7)
SECTION IV

SUMMARY OF COMPUTATIONS

Fig. 4.1 indicates the flow regions and Mach lines of a typical nozzle calculation.

The nozzles computed for the Wind Tunnels Branch are summarized graphically in Fig. 4.2. Contours were computed at intervals of .25 for exit Mach numbers ranging from 1.25 to 5.5. The actual numerical computations are available in the files of the Data Reduction Unit of the Supersonic Wind Tunnels Branch, Exterior Ballistics Laboratory.

The designs for the remaining sections of the wind tunnel walls ("subsonic" and "expansion" sections - ST and TB in Fig. 1.1) were obtained empirically after the ENIAC data became available. Boundary layer corrections were included in all the jack settings.

ACKNOWLEDGEMENTS

These calculations were suggested by J. Sternberg and were performed under the direction of J. H. Giese. The author wishes to express his acknowledgements to A. J. Fine and J. T. Lederer of the Airflow Branch; to H. Malloy of the Wind Tunnels Branch; and to R. Freshour, M. Granberger, H. Mark, and W. Grant of the ENIAC Branch of the Computing Laboratory for their contributions to the calculations.

NATHAN GERBER
FIG. 41. FLOW FIELD IN PHYSICAL PLANE FOR NOZZLE OF EXIT MACH NUMBER 1.98.
REFERENCES

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Chief of Ordnance Department of the Army Washington 25, D. C. Attn: ORD TB - Bal Sec</td>
<td>1</td>
<td>Commanding Officer & Director David W. Taylor Model Basin Washington 7, D. C. Attn: Aerodynamics Laboratory</td>
</tr>
<tr>
<td>10</td>
<td>British - ORD TB for distribution</td>
<td>1</td>
<td>Director Air University Library Maxwell Air Force Base, Alabama</td>
</tr>
<tr>
<td>4</td>
<td>Canadian Joint Staff - ORD TB for distribution</td>
<td>4</td>
<td>Commander Air Research & Development Command P. O. Box 1395 Baltimore 3, Maryland Attn: Deputy for Development</td>
</tr>
<tr>
<td>4</td>
<td>Chief, Bureau of Ordnance Department of the Navy Washington 25, D. C. Attn: Re3</td>
<td>7</td>
<td>Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio Attn: TSO - SA</td>
</tr>
<tr>
<td>2</td>
<td>ASTTA Reference Center Library of Congress Washington 25, D. C.</td>
<td>3</td>
<td>Commanding General Redstone Arsenal Huntsville, Alabama</td>
</tr>
<tr>
<td>2</td>
<td>Commander Naval Proving Ground Dahlgren, Virginia</td>
<td>1</td>
<td>Commanding General Arnold Engineering Development Center Tullahoma, Tennessee Attn: Deputy Chief of Staff, R&D</td>
</tr>
<tr>
<td>1</td>
<td>Commander Naval Ordnance Laboratory White Oak Silver Spring 19, Maryland</td>
<td>5</td>
<td>Director National Advisory Committee for Aeronautics 1724 F Street, N. W. Washington 25, D. C. Attn: Division Research Information</td>
</tr>
<tr>
<td>1</td>
<td>Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library</td>
<td>1</td>
<td>Director National Advisory Committee for Aeronautics Ames Laboratory Moffett Field, California Attn: Mr. H. J. Charters</td>
</tr>
<tr>
<td>2</td>
<td>Commander Naval Air Development Center Johnsville, Pennsylvania</td>
<td>2</td>
<td>Mr. H. J. Allen</td>
</tr>
<tr>
<td>2</td>
<td>Commander Naval Air Missile Test Center Point Mugu, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1 | Professor George Carrier
Division of Applied Sciences
Harvard University
Cambridge 38, Massachusetts |
| 1 | Professor Francis H. Clauser
Department of Aeronautics
Johns Hopkins University
Baltimore 18, Maryland |
| 1 | Professor Clark B. Millikan
Director, Guggenheim
Aeronautical Laboratory
1500 Normandy Drive
California Institute of Technology
Pasadena 4, California |
| 1 | Dr. A. E. Puckett
Hughes Aircraft Company
Florence Avenue at Teal Street
Culver City, California |
| 1 | Dr. L. H. Thomas
Watson Scientific Computing
Laboratory
612 West 116th Street
New York 27, New York |
| 1 | North Carolina State College
Raleigh, North Carolina
Attn: Professor J. W. Cell |
| 1 | Norman Bridge Laboratory
of Physics
California Institute of Technology
Pasadena, California
Attn: Dr. Leverett Davis, Jr. |
| 1 | University of Virginia
Department of Mathematics
Charlottesville, Virginia
Attn: Professor Edward J. McShans |
| 1 | A. D. Little, Inc.
Cambridge 42, Massachusetts
Attn: Dr. C. S. Keevil |
| 1 | Wright-Aeronautical Corp.
Wood-Ridge, New Jersey
Attn: Sales Department (Government) |
| 2 | Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland
Attn: Mr. George L. Seielstad |
| 1 | Cornell Aeronautical Laboratory Inc.
Buffalo, New York
Attn: Miss Elma T. Evans Librarian |
| 1 | M. W. Kellogg Company
Foot of Danforth Avenue
Jersey City 3, New Jersey
Attn: Mr. Robert A. Miller |
| 1 | The Firestone Tire & Rubber Co.
Defense Research Division
Akron 17, Ohio
Attn: Peter J. Ginge |
| 1 | General Electric Co.
Project HERMES
Schenectady, New York
Attn: Mr. J. C. Hoffman |
| 1 | United Aircraft Corp.
Research Department
East Hartford 8, Connecticut
Attn: Mr. Robert C. Sale |
| 1 | Aerophysics Development Corp.
P. O. Box 657
Pacific Palisades, California
Attn: Dr. William Bellay |
| 1 | University of Southern California
Engineering Center
Los Angeles 7, California
Attn: Mr. H. R. Saffell |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 1 | Consolidated Vultee Aircraft Corp.
 Ordnance Aerophysics Laboratory
 Daingerfield, Texas
 Attn: Mr. J. E. Arnold |
| 1 | California Institute of Technology
 Pasadena, California
 Attn: Library |
| 2 | Massachusetts Institute of Technology
 Cambridge 39, Massachusetts
 Attn: Guided Missiles Library,
 Room 22-001 |
| 2 | California Institute of Technology
 Jet Propulsion Laboratory
 Pasadena, California
 Attn: Mr. T. E. Newlan, Reports Group |
| 1 | University of Michigan
 Willow Run Research Center
 Willow Run Airport
 Ypsilanti, Michigan
 Attn: Mr. J. E. Corey |