Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by
DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, OHIO

UNCLASSIFIED
Best Available Copy
DEVELOPMENT OF THE MAPPING FUNCTION AT AN ANALYTIC CORNER

BY

R. SHERMAN LEHMAN

TECHNICAL REPORT NO. 21

MARCH 31, 1954

PREPARED UNDER CONTRACT Nonr 225(11)
(NR-041-086)
FOR
OFFICE OF NAVAL RESEARCH

APPLIED MATHEMATICS AND STATISTICS LABORATORY
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
1. Introduction.

In this report we shall apply some theorems proved in [3] to study the following problem in conformal mapping. Let Γ_1 and Γ_2 be portions of two analytic curves which meet at the origin at an angle $\pi/\alpha > 0$. We assume that the origin is a regular point for both Γ_1 and Γ_2. Let D be a domain which near the origin is bounded by Γ_1 and Γ_2. Consider a univalent conformal mapping $F(z)$ of a semineighborhood $y > 0$ of the origin of the $z = x + iy$ plane into the domain D, such that $F(0) = 0$, a portion of the positive x-axis near $z = 0$ goes into Γ_1, and a portion of the negative x-axis near $z = 0$ goes into Γ_2. How does the mapping function $F(z)$ behave in the neighborhood of the origin?

A partial answer to this question is given by a theorem proved by Lichtenstein [5]. Let $F^{-1}(z)$ be the inverse function which maps D into the upper half plane. Then Lichtenstein proved that for z in the neighborhood of the origin

$$\frac{dF^{-1}(z)}{dz} = z^{1/\alpha - 1} \Psi(z)$$

where $\Psi(z)$ is a continuous function with $\Psi(0) \neq 0$. This same result can, however, be obtained with much weaker requirements on the boundary curve as has been shown by the work of Kellogg [2] and Warschawski [6].
In this paper we shall show that it is possible to obtain an asymptotic expansion for $F(z)$ for z in the neighborhood of the origin. The method used is a generalization of that used by Lewy [4], who proved that such an asymptotic expansion exists in the case in which Γ_1 and Γ_2 meet at a straight angle.

2. Notation.

First let us make clear what type of asymptotic expansions we will be considering. Let $\gamma_n(z)$, $(n = 0, 1, 2, \ldots)$ be a sequence of functions such that $\gamma_{n+1}(z)/\gamma_n(z) \to 0$ as $z \to 0$ in the sector $\theta_1 \leq \arg z \leq \theta_2$. A series $\sum_{n=0}^{\infty} A_n \gamma_n(z)$ is called an asymptotic expansion for $f(z)$ valid in the sector $\theta_1 \leq \arg z \leq \theta_2$, and we write

$$f(z) \sim \sum_{n=0}^{\infty} A_n \gamma_n(z),$$

if for every integer $N \geq 0$

$$f(z) = \sum_{n=0}^{N} A_n \gamma_n(z) + o(\gamma_N(z))$$

as $z \to 0$, $\theta_1 \leq \arg z \leq \theta_2$.

Clearly, in a sector $\theta_1 \leq \arg z \leq \theta_2$ a function $f(z)$ cannot have more than one asymptotic expansion in terms of such a sequence of functions $\gamma_n(z)$.

Throughout this paper we will use the letter "c" to denote a typical coefficient in a series when the exact value of the coefficient is not important in the discussion. For example, instead of writing $\sum_{n=0}^{\infty} c_{mn} z^n$, we may write simply $\sum_{n=0}^{\infty} cz^n$. Thus we avoid a multiplicity of subscripts.
3. **Principal Results.**

Let $F(z)$ be the mapping function described in the introduction. We shall prove the following theorem.

THEOREM 1. If $\alpha > 0$ is irrational, then for any sequence of z which tends to zero while $|\arg z|$ remains bounded,

$$F(z) \sim \sum A_{k,l} z^{k+l\alpha}$$

where k and l run over integers, $k \geq 0$, $l \geq 1$; and the coefficient $A_{01} \neq 0$. If $\alpha = p/q > 0$, a fraction reduced to lowest terms, then for $z \to 0$, $|\arg z|$ bounded

$$F(z) \sim \sum A_{k,l,m} z^{k+l\alpha} (\log z)^m$$

where k, l, and m run over integers for which

$$k \geq 0, \quad 1 \leq l \leq q, \quad 0 \leq m \leq k/p \; ;$$

and the coefficient $A_{010} \neq 0$.

In this theorem the terms in the series are supposed to be arranged in an order such that a term of the form $z^{k+l\alpha} (\log z)^m$ precedes one of the form $z^{k'+l'\alpha} (\log z)^{m'}$ if either $k+l\alpha < k'+l'\alpha$ or $k+l\alpha = k'+l'\alpha$ and $m > m'$. Arranged in this order, these products of powers of z and $\log z$ form a sequence of functions χ_n. The coefficients in these expansions are complex constants, some of which may be zero.

From Theorem 1 an asymptotic expansion for the inverse function $F^{-1}(z)$, which maps the domain D onto a portion of the upper half plane, can be obtained easily by replacing the asymptotic expansions by finite developments with error terms and proceeding as usual in the inversion of functions. The result obtained is stated in the following theorem.
THEOREM 2. If \(\alpha \) is irrational, then for \(z \to 0, |\arg z| \) bounded, the
inverse of \(F(z) \),
\[
F^{-1}(z) \sim \sum B_{kl} z^{k+l/\alpha}
\]
where \(k \) and \(l \) run over integers, \(k \geq 0, \ l \geq 1 \); and \(B_{kl} \neq 0 \). If \(\alpha = p/q \), a
fraction reduced to lowest terms, then for \(z \to 0, |\arg z| \) bounded,
\[
F^{-1}(z) \sim \sum B_{klm} z^{k+l/\alpha} (\log z)^m
\]
where \(k, l, \) and \(m \) run over integers for which \(k \geq 0, 1 \leq l \leq p, 0 \leq m \leq k/q; \) and \(B_{klm} \neq 0 \).

Observe that the function \(F(z) \), defined originally for \(0 \leq \arg z \leq \pi \),
can be extended by the reflection principle across both the positive \(x \)-axis
and the negative \(x \)-axis since the curves \(\Gamma_1 \) and \(\Gamma_2 \) are analytic curves.
The images of \(\Gamma_1 \) and \(\Gamma_2 \) in such reflections are again analytic curves.
Hence \(F(z) \) can again be extended by reflection, and in fact can be continued
near the origin onto the entire logarithmic Riemann surface with branch
point at the origin. The function \(F(z) \) is regular for \(|z| \) sufficiently
small, say, \(0 < |z| < \rho \), on any sheet of this Riemann surface; but, generally
speaking, \(\rho \) depends on the sheet of the surface.

If the asymptotic expansions of Theorems 1 and 2 hold for \(z \to 0 \) in
\(0 \leq \arg z \leq \pi \), they hold for \(z \to 0 \) in any finite sector \(\theta_1 \leq \arg z \leq \theta_2 \).
Suppose, indeed, that for given \(r > 0 \), \(F(z) \) has a finite development of the
form
\[
(4.1) \quad F(z) = \sum A_k \exp(z^{k+l/\alpha}(\log z)^m o(z))
\]
as \(z \to 0, 0 \leq \arg z \leq \pi \), where the sum is extended over integers \(k, l, \) and \(m \)
such that \(k+l/\alpha \leq r, k \geq 0, \ l \geq 1 \); and \(0 \leq m \leq k/p \) when \(\alpha = p/q, m = 0 \) when \(\alpha \)
is irrational. Then the same development is valid for \(z \to 0 \) with
Let ζ^* be the image of ζ in an analytic reflection on the curve Γ_1. Then ζ^*, the complex conjugate of ζ^*, is an analytic function of ζ, say $\Phi(\zeta)$, which is regular for $|\zeta|$ sufficiently small. By the reflection principle, since $F(z)$ takes the positive real axis, $\arg z = 0$, into the analytic curve Γ_1, we have

$$F(\bar{z}) = (F(z))^* = \Phi(F(z))$$

for $0 \leq \arg z \leq \pi$. Observe that this formula continues $F(z)$ for $|z|$ sufficiently small into the sector $-\pi \leq \arg z \leq \pi$. Since $\Phi(\zeta)$ is regular for $|\zeta|$ sufficiently small and $\Phi(0) \neq 0$, we have

$$\Phi(\zeta) = \sum_{n=1}^{[r/k]} c \zeta^n o(\zeta^{r/k})$$

for $z \to 0$. Then with

$$\zeta = F(z) = z^\ell \left[\sum c z^{k+\ell\alpha} (\log z)^{m} o(z^{r-\alpha}) \right], \; (k \geq 0, \ell, \alpha \leq r-\alpha)$$

we have by (4.1) for $z \to 0, 0 \leq \arg z \leq \pi$,

$$\zeta^n = z^{n\alpha} \left[\sum c z^{k+\ell\alpha} (\log z)^{m} o(z^{r-\alpha}) \right]$$

where $k \geq 0, \ell \geq 0, k+\ell \alpha \leq r-\alpha$; m is limited as before. Also

$$o(\zeta^{r/k}) = o((o(z\alpha)^{r/k}) = o(z^{r})$$

as $z \to 0$. Consequently for $z \to 0, 0 \leq \arg z \leq \pi$,

$$F(\bar{z}) = \Phi(F(z)) = \sum c \bar{z}^{k+\ell\alpha} (\log \bar{z})^{m} o(z^{r})$$

where k, ℓ, m are restricted in the same way as in (4.1). But this means that $F(z)$ has a development of the same type as (4.1) for $-\pi \leq \arg z \leq 0$. This new development must coincide with that given by (4.1) since both hold for $z \to 0$ with $\arg z = 0$.

In the same way we can reflect across the line $\arg z = \pi$ and establish that (4.1) holds in the larger sector thus obtained. By induction we can prove that (4.1) holds in any finite sector $\theta_1 \leq \arg z \leq \theta_2$. Thus we see
that if Theorem 1 holds for $z \rightarrow 0$ in the sector $0 \leq \arg z \leq \pi$, it holds for $z \rightarrow 0$ in any finite sector.

5. Some Lemmas.

We now state some lemmas which will be used in the proof of Theorem 1. Lemmas 1 and 2 are special cases of Theorems 2.1 and 2.2 of [31]. The integrals are Lebesgue integrals extended over positive values of t. The range of z considered is $0 < |z| < A$, $-2\pi \leq \arg z \leq 0$. We take the branch of the analytic function of z, $\log (1-z/t)$ which is real for $0 < z < t$, $\arg z = 0$.

Lemma 1. Let A be a positive real number, μ a real number >-1, and n a non-negative integer; and let

$$\varphi(z) = \int_0^A t^\mu (\log t)^n \log (1-z/t) dt .$$

Then there is a power series $q(z)$, which converges for $|z| < A$, and a polynomial in $\log z$, $P(\log z)$, such that

$$\varphi(z) = z^{\mu+1} P(\log z) + q(z) .$$

If μ is an integer, the polynomial P is of degree $n+1$; and if μ is not an integer, it is of degree n.

Lemma 2. Let $\beta(t)$ be a measurable function, bounded absolutely for $0 < t < A$ and such that $\beta(t) \rightarrow 0$ as $t \rightarrow 0$ through positive real values. Let μ be a real number >-1 which is not an integer, and let

$$\beta_1(z) = \int_0^A \beta(t) t^\mu \log (1-z/t) dt .$$

Then there is a power series $q(z)$ such that for $z \rightarrow 0$

$$\beta_1(z) = q(z) + o(z^{\mu+1}) .$$
Lemma 3. Let \(\mu \) be a real number. Let \(\gamma(z) \) be an analytic function, regular for \(0 < |z| < R \), \(\varphi_1 \leq \arg z \leq \varphi_2 \) and such that \(\gamma(z) = o(z^\mu) \) for \(z \to 0 \) in the sector \(\varphi_1 \leq \arg z \leq \varphi_2 \). Then the derivative
\[
\gamma'(z) = o(z^{\mu-1})
\]
for \(z \to 0 \) in any sector in the interior of the sector \(\varphi_1 \leq \arg z \leq \varphi_2 \).

A proof of Lemma 3 is obtained by estimating a Cauchy integral with path a circle about \(z \) with radius \(\delta(z) \), \(\delta \) small. Details are given in the proof of Lemma 2.1 of [3].

Lemma 4. Let \(\lambda \) be a real number. Then for \(z \to 0 \) with \(|\arg z| \)
bounded, \(|z^{-\lambda} F(z)| \) tends to zero if \(\lambda < \alpha \) and tends to infinity if \(\lambda > \alpha \).

A proof of Lemma 4 can be obtained by a study of the Poisson integral (see Gross [1, pp. 57-61]; the requirement that \(z \to 0 \) in an angle in the interior of \(0 \leq \arg z \leq \pi \) can be eliminated by using the fact that \(\Gamma_1 \) and \(\Gamma_2 \) are analytic curves).

This lemma also follows from the theorem of Lichtenstein mentioned in the introduction.

First we establish that the general case can be reduced to the special case in which the curve \(\Gamma_2 \) is an analytic curve tangent to the positive real axis and \(\Gamma_1 \) is a portion of the ray \(\arg \zeta = -\pi \alpha \) in the \(\zeta \) plane. Consider a function \(\Psi(\zeta) \), regular for \(|\zeta| \) sufficiently small, for which \(\Psi(0) = 0, \ \Psi'(0) \neq 0 \), and which takes the analytic curves \(\Gamma_1 \) into the line \(\arg \zeta = -\pi \alpha \). The function \(\Psi \) maps \(\Gamma_2 \) into an analytic curve tangent to the positive real axis. For the sake of simplicity of notation we carry through the proof in detail only for irrational \(\alpha \).
Suppose that we know Theorem 1 in the special case in which \(\Gamma_1 \) is the line \(\arg \zeta = -\pi \alpha \), then for \(z \to 0 \) we have

\[
\psi(F(z)) = z^{\alpha} \left\{ \sum_{k \in \mathbb{Z}} c_{k \ell z^k + o(z^\ell)} \right\}
\]

where the sum is extended over integers \(k \) and \(\ell \) for which \(k \geq 0, \ell \geq 0, k + \ell \alpha \leq r \). In addition, we can suppose that \(C_\infty \neq 0 \). Then since the inverse

\[
\psi^{-1}(\zeta) = \frac{\zeta}{b} + \sum_{n=2}^{N} c_{n \zeta^n + o(\zeta^n)}
\]
as \(\zeta \to 0 \), we have

\[
F(z) = \psi^{-1}(\psi(F(z))) = \frac{1}{b} z^{\alpha} \left\{ \sum_{k \in \mathbb{Z}} c_{k \ell z^k + o(z^\ell)} \right\} \cdot z^{2\alpha} \left\{ \sum_{l \in \mathbb{Z}} c_{l \ell z^l + o(z^{\ell})} \right\} + \ldots + z^{N\alpha} \left\{ \sum_{k \in \mathbb{Z}} c_{k \ell z^k + o(z^\ell)} \right\} + o(z^{N\alpha})
\]
for \(z \to 0 \). Hence by taking \(N \) large enough, we obtain

\[
F(z) = z^{\alpha} \left\{ \sum_{k \in \mathbb{Z}} c_{k \ell z^k + o(z^\ell)} \right\}
\]
where \(C_\infty = \frac{1}{b} C_\infty \neq 0 \). All of the sums considered are extended over integers \(k \geq 0, \ell \geq 0, k + \ell \alpha \leq r \). Thus we need consider only the special case in which \(\Gamma_1 \) is a portion of the line \(\arg \zeta = -\pi \alpha \).

Now we make another preliminary transformation. Let \(w = \zeta^{1/\alpha} \), so that the line \(\arg \zeta = -\pi \alpha \) goes into the negative real axis. The analytic curve \(\Gamma_2 \) goes into a curve \(\Gamma' \) tangent to the positive real axis. This new curve \(\Gamma' \) is not analytic at the origin; we will find it useful to have the equation of \(\Gamma' \).

Let \(\zeta = \tilde{\zeta}^{1/\alpha} + i \eta \). The analytic curve \(\Gamma_2 \) is given by an equation with real \(a_j \)

\[
\eta = a_2 \tilde{\zeta}^2 + a_3 \tilde{\zeta}^3 + a_4 \tilde{\zeta}^4 + \ldots
\]
for \(\tilde{\zeta} > 0 \), where the series is convergent for \(\tilde{\zeta} \) sufficiently small. Then on \(\Gamma' \) we have
Separating real and imaginary parts, we have with \(w = u + iv \)

\[
\begin{align*}
 u &= \zeta^{1/\alpha}(1 + \zeta + \zeta^2 + \ldots) \\
 v &= \zeta^{1/\alpha}(1 + \zeta + \zeta^2 + \ldots)
\end{align*}
\]

Consequently,

\[
 \zeta = u^\alpha + cu^2 + cu^3 + \ldots
\]

and thus

\[
 \zeta = u^\alpha + cu^2 + cu^3 + \ldots
\]

Hence we obtain finally that the curve \(\Gamma' \) is given by an equation of the form

\[
(6.1) \quad v = u \sum_{k=1}^{\infty} b_k u^k \alpha
\]

for \(u \geq 0 \), where the series converges for \(u \) sufficiently small.

7. **Obtaining the Asymptotic Expansion.**

Let \(D' \) be the image of \(D \) under the transformation \(w = \zeta^{1/\alpha} \); we can now assume that near the origin \(D' \) is bounded by the negative real axis and the curve \(\Gamma' \) given by the equation (6.1). We consider the function \(w = G(z) = (F(-z))^{1/\alpha} \) which is a univalent conformal mapping of a semineighborhood \(y < 0 \) of the \(z = x + iy \) plane into the domain \(D' \) of the \(w = u + iv \) plane.

Observe that \(G(0) = 0 \), a portion \(-A \leq x \leq 0\) of the negative \(x \)-axis is mapped into a portion of the negative \(u \)-axis, and a portion \(0 \leq x \leq A \) of the positive \(x \)-axis goes into \(\Gamma' \).

We will need an estimate for \(G(z) \) and its derivative \(G'(z) \). By Lemma 4 we have for \(z \to 0 \), \(|\arg z| \) bounded

\[
G(z) = [F(-z)]^{1/\alpha} = [a(z^\lambda)]^{1/\alpha}
\]

for any \(\lambda < \alpha \). Hence for any \(\varepsilon > 0 \)
(7.1) \[G(z) = o(z^{1-\epsilon}) \]
as \(z \to 0 \) with \(|\arg z| \) bounded. Using Lemma 3 we conclude further that
for \(z \to 0 \)
(7.2) \[G'(z) = o(z^{-\epsilon}) \]

Now we construct a certain function \(H(z) \) which differs from \(G(z) \) by a single-valued function. Observe that the function
\[G(z) = u(x,y) + iv(x,y) \]
can be continued across the negative real axis, \(\arg z = -\pi \), by the reflection principle. In particular, we have for \(\arg z = 0 \)
\[G(z) - G(ze^{-2\pi i}) = u(z,0) + iv(z,0) - [u(z,0) - iv(z,0)] \]
\[= 2iv(z,0) \]

Consider for \(-2\pi \leq \arg z \leq 0\) the analytic function
(7.3) \[H(z) = \frac{1}{\pi} \int_{0}^{A} \frac{\partial v(t,0)}{\partial t} \log(1-z/t) dt \]
where the integral is extended over positive real values and the branch of \(\log(1-z/t) \) considered is the one which is real for \(0 < z < t \), \(\arg z = 0 \).
That the integral converges follows from the estimate (7.2).

For \(\arg z = 0 \) we have
\[H(z) - H(ze^{-2\pi i}) = \frac{2\pi i}{\pi} \int_{0}^{z} \frac{\partial v(t,0)}{\partial t} dt = 2iv(z,0) \]
since
\[\log(1-z/t) - \log(1-ze^{-2\pi i}/t) = 2\pi i \quad \text{for} \ t < z , \]
\[= 0 \quad \text{for} \ t > z . \]
Thus the difference \(p(z) = G(z) - H(z) \) satisfies the condition \(p(z) = p(ze^{-2\pi i}) \)
for \(\arg z = 0 \). Furthermore \(p(z) \) is regular for \(0 < |z| < A \), \(-2\pi < \arg z < 0\); it is continuous as \(z \) approaches a point of the positive real axis for \(\arg z = 0 \) or \(\arg z = -2\pi \), and it is bounded for \(z \to 0 \). Hence by Riemann's
Theorem on removable singularities $p(z)$ is equal to a power series convergent for $|z| < A$.

From (6.1) and (7.3) we conclude that for $-2\pi \leq \arg z \leq 0$

$$G(z) = \frac{1}{2\pi} \int_0^A \left\{ \frac{\partial u(t,0)}{\partial t} \sum_{n=1}^\infty b_n(1+n\alpha)u^{n\alpha} \right\} \log(1-z/t) dt + p(z)$$

where $p(z)$ is a power series with constant term equal to zero.

By (7.1) and (7.2) we have $\frac{\partial u(t,0)}{\partial t} = o(t^{-\epsilon})$ and $u^{\alpha} = o(t^{(1-\epsilon)\alpha})$

for $t \to 0$, ϵ an arbitrary positive number. Hence for $t \to 0$

$$\frac{\partial u(t,0)}{\partial t} \sum_{n=1}^\infty b_n(1+n\alpha)u^{n\alpha} = o(t^{(1+\alpha)(1-\epsilon)-1})$$

Inserting this estimate in (7.4) and applying Lemma 2, we obtain for $z \to 0$,

$$-2\pi \leq \arg z \leq 0$$

$$G(z) = az + s^2 q(z) + o(z^{(1+\alpha)(1-\epsilon)})$$

where $q(z)$ is a power series in z which converges for $|z|$ sufficiently small. We conclude that $a \neq 0$ by applying Lemma 4 with λ slightly larger than α. Knowing this, we can conclude further that a is positive from the fact that $G(z)$ maps the positive real axis into Γ', a curve which at the origin makes an angle of π with the negative real axis. Since $G(z) = [F(-z)]^{1/\alpha}$ the result of Section 4 shows that the estimate (7.5) holds for $z \to 0$ in any finite sector, i.e., for $z \to 0$ with $|\arg z|$ bounded.

Now we prove Theorem 1 by induction. We consider first the case in which α is irrational. We shall prove that there are constants $a_k \ell$ such that for every integer N,

$$G(z) = \sum_{k \ell \leq N} a_k \ell z^{k+\ell \alpha} + o(z^{N\alpha})$$

as $z \to 0$ with $|\arg z|$ bounded. We begin by noting that $G(z)$ has such a development for $N = N_0$ where N_0 is the integer for which $\frac{1}{\alpha} \leq N_0 < 1 + \frac{1}{\alpha}$.
This follows directly from (7.5) since for \(\varepsilon \) sufficiently small
\[(1 + \alpha)(1 - \varepsilon) \geq N_0 \alpha \] and hence \(o(z^{1+\alpha})(1 - \varepsilon) = o(z^{N_0 \alpha}) \). Consequently, to prove (7.6) by induction it will be sufficient to show that if \(G(z) \) has a
development of the type (7.6) with an error term \(o(z^{N \alpha}) \), then \(G(z) \) has
such a development with an error term \(o(z^{(N+1) \alpha}) \). In proving (7.6) by
induction we will simultaneously obtain a proof of Theorem 1 by using
the fact that \(F(z) = [G(-z)]^{\alpha} \).

By the induction hypothesis we have
\[
u(t,0) = \sum_{k+\ell \alpha \leq N \alpha} \text{Re} \left\{ a_{k,\ell} \right\} t^{k+\ell \alpha} o(t^{N \alpha}), \quad (k \geq 1, \ell \geq 0),
\]
and thus since \(a_{1,0} = a > 0 \)
\[
u(t,0) = st \left\{ 1 + \sum_{k+\ell \alpha \leq N \alpha} \text{Re} \left\{ a_{k+1,\ell} \right\} t^{k+\ell \alpha} o(t^{N \alpha-1}) \right\}
\]
where the sum is over \(k \geq 0, \ell \geq 0 \), for which \((k, \ell) \neq (0,0) \) and \(k+\ell \alpha \leq N \alpha - 1 \).

Using the binomial theorem, we find
\[
u^{\alpha} = a \alpha t^{\alpha} \sum_{k+\ell \alpha \leq N \alpha - 1} \left\{ \sum_{k+\ell \alpha \leq N \alpha - 1} \text{Re} \left\{ a_{k+1,\ell} \right\} t^{k+\ell \alpha} o(t^{N \alpha-1}) \right\}, \quad (k \geq 0, \ell \geq 0).
\]
Moreover, by Lemma 3 and the induction hypothesis we have for \(t \to 0 \)
\[rac{\partial \nu(t,0)}{\partial t} = \text{Re} \left\{ G'(t) \right\} = \sum_{k+\ell \alpha \leq N \alpha - 1} (k+1+\ell \alpha) \text{Re} \left\{ a_{k+1,\ell} \right\} t^{k+\ell \alpha} o(t^{N \alpha-1})
\]
where \(k \geq 0, \ell \geq 0 \). Inserting these estimates in (7.4), we obtain
\[
G(z) = p(z) \int_0^1 \left\{ \sum_{k+\ell \alpha \leq (N+1) \alpha - 1} \text{Re} \left\{ a_{k+1,\ell} \right\} t^{k+\ell \alpha} o(t^{N \alpha-1}) \right\} \log(1 - z/t) dt
\]
where the sum is over integers \(k \geq 0, \ell \geq 1 \), for which \(k+\ell \alpha \leq (N+1) \alpha - 1 \).

Now we apply Lemmas 1 and 2, observing that since \(\ell \geq 1 \) and \(\alpha \) is
irrational, \(k+\ell \alpha \) cannot be an integer. We find for \(z \to 0, -2 \pi \leq \arg z \leq 0 \),
\[
G(z) = \sum_{k+\ell \alpha \leq (N+1) \alpha} a_{k,\ell} z^{k+\ell \alpha} o(z^{(N+1) \alpha}), \quad (k \geq 1, \ell \geq 0).
\]
When \(k \) and \(l \) are integers for which \(k + l \alpha \leq N \alpha \), the coefficient \(a_{k,l} \) must, of course, be the same as that appearing in the development with error term \(o(z^{N \alpha}) \).

We wish to prove that (7.7) holds for \(z \rightarrow 0 \) in any finite sector.

We note that for \(z \rightarrow 0 \), \(0 \leq \arg z \leq 2\pi \)

\[
F(z) = [G(-z)^{\alpha} = a_{\alpha}(-z)^{\alpha} \left\{ 1 + \sum_{c} (-z)^{k+l \alpha} o(z^{(N+1) \alpha - 1}) \right\} \alpha
\]

where the sum is over \(k \geq 0, \ l \geq 0 \), for which \((k, l) \neq (0, 0)\) and \(k + l \alpha \leq (N+1) \alpha - 1 \). Hence by the binomial theorem

(7.8) \[
F(z) = \sum a_{k,l} z^{k+l \alpha} o(z^{(N+2) \alpha - 1})
\]

where the sum is extended over \(k \geq 0, \ l \geq 1 \), for which \(k + l \alpha \leq (N+2) \alpha - 1 \).

Note further that \(A_{01} \neq 0 \). We have proved (7.8) for \(z \rightarrow 0 \) with \(0 \leq \arg z \leq 2\pi \), but by the result of Section 4 this formula must hold for \(z \rightarrow 0 \) in any finite sector. Consequently, from (7.8) by using the binomial theorem we can obtain (7.7) for \(z \rightarrow 0 \) in any finite sector. Thus \(G(z) \) has a development with error term \(o(z^{(N+1) \alpha}) \). Hence by induction (7.6) and also (7.8) hold for all \(N \). This proves Theorem 1 for irrational \(\alpha \).

Now we prove Theorem 1 for \(\alpha = \frac{p}{q} \), a fraction reduced to lowest terms. Let \(\gamma \) be a positive irrational number less than \(\alpha \). We shall prove that there are constants \(a_{k,l,m} \) such that for every integer \(N \), as \(z \rightarrow 0 \), \(|\arg z| \) bounded

(7.9) \[
G(z) = \sum a_{k,l,m} z^{k+l \alpha (\log z)^{m} o(z^{N \gamma})}
\]

where \(k \geq 1, \ 0 \leq l \leq q-1, \) and \(0 \leq m \leq \frac{k-1}{p} \). We begin by noting that \(G(z) \) has such a development for \(N = N_0 \) where \(N_0 \) is the integer for which \(\frac{1}{N_0} \leq N_0 < 1 + \frac{1}{\gamma} \), as can be seen directly from (7.5). Consequently, to prove (7.9) by induction it will be sufficient to show that if \(G(z) \) has a development of
the above type with error term \(o(z^{N\delta'})\), then it has such a development with error term \(o(z^{(N+1)\delta'})\).

By the induction hypothesis we have for positive \(t \to 0\)

\[
\sum_{k+\ell \alpha \leq N\delta'} \Re \left\{ a_k t^{k+\ell \alpha} (\log t)^m + o(t^{N\delta'}) \right\}
\]

where \(k \geq 1, 0 \leq \ell \leq q-1, 0 \leq m \leq k-1\). Since \(a_{100} = a \neq 0\), we have

\[
u(t,0) = at^{k+\ell \alpha} \left(\log t \right)^m + o(t^{N\delta'-1})
\]

where the sum is over integers for which

(7.10) \(k \geq 0; 0 \leq \ell \leq q-1; 0 \leq m \leq k/p; k+\ell \alpha \leq N\delta'-1 \)

Using the binomial theorem, we obtain

\[
u^{n\alpha} = a^{n\alpha} \left(\sum_{k+\ell \alpha \leq N\delta'} \sum_{m} c t^{k+\ell \alpha} (\log t)^m + o(t^{N\delta'-1}) \right)
\]

where \(k, \ell,\) and \(m\) are restricted by the conditions (7.10). Moreover, by Lemma 3 and the induction hypothesis we have

\[
\sum_{k+\ell \alpha \leq N\delta'} \sum_{m} c t^{k+\ell \alpha} (\log t)^m + o(t^{N\delta'-1})
\]

where again \(k, \ell,\) and \(m\) are restricted by the conditions (7.10).

Inserting these estimates in (7.4) we have, since

\[
o(t^{N\delta'+\alpha-1}) = o(t^{(N+1)\delta'-1})
\]

the formula

\[
G(z) = p(z) \cdot \int_0^A \left(\sum_{k+\ell \alpha \leq (N+1)\delta'-1} c t^{k+\ell \alpha} o(t^{(N+1)\delta'-1}) \right) \log(1-z/t) dt
\]

The sum in the integrand is extended over integers \(k, \ell,\) and \(m\) for which

(7.10) \(k \geq 0; 1 \leq \ell \leq q; 0 \leq m \leq k/p; k+\ell \alpha \leq (N+1)\delta'-1 \)

Now we apply Lemmas 1 and 2 to obtain a better development for \(G(z)\).

Note that \(k+\ell \alpha = k+\ell p/q\) cannot be an integer unless \(\ell = q\). Consequently terms of the form

\[
c t^{k+\ell \alpha} (\log t)^m
\]
in the integrand, with \(\ell \neq q \), produce besides a power series only terms of the form
\[
cz^{k+1+\ell q} (\log z)^{m'}
\]
with
\[
0 \leq m' \leq m \leq \frac{(k+1)-1}{p}
\]
in the development for \(G(z) \). On the other hand, when \(\ell = q \) they produce besides a power series only terms of the form
\[
cz^{k+1+q} (\log z)^{m'} = cz^{k+p+1} (\log z)^{m'}
\]
with
\[
0 \leq m' \leq m+1 \leq \frac{k+1}{p} = \frac{(k+p+1)-1}{p}
\]
In applying Lemma 2 we observe that \((N+1)^{\xi} - 1\) is not an integer because \(\xi \) is irrational. Hence we conclude that for \(z \to 0 \), \(-2\pi \leq \arg z \leq 0\),
\[
G(z) = \sum \limits_{k+\ell \leq (N+1)^{\xi}} a_{k\ell m} z^{k+\ell q} (\log z)^{m} + o(z(N+1)^{\xi})
\]
where \(k \geq 1 \), \(0 \leq \ell \leq q-1 \), and \(0 \leq m \leq k-1 \).

As in the case of irrational \(\alpha \) we obtain from this the result
\[
F(z) = \sum \limits_{\ell \leq q, 0 \leq m \leq k/p} A_{\ell m} z^{k+\ell q} (\log z)^{m} + o(z(N+1)^{\xi} + \alpha - 1)
\]
where the sum is over integers \(k \), \(\ell \), and \(m \) for which
\[
k \geq 0 , \ 1 \leq \ell \leq q , \ 0 \leq m \leq k/p ; \ k+\ell \alpha \leq (N+1)^{\xi} + \alpha - 1
\]
By (7.11) this result holds for \(z \to 0 \) with \(0 \leq \arg z \leq 2\pi \), but by the result of Section 4, it must hold for \(z \to 0 \) in any finite sector. From this we then obtain (7.11) for \(z \to 0 \) in any finite sector. Hence \(G(z) \) has a development with error term \(o(z(N+1)^{\xi}) \). Thus by induction (7.9) and also (7.12) hold for all \(N \). This completes the proof of Theorem 1.
We note finally that by Lemma 3 derivatives of $F(z)$ of arbitrary order have asymptotic expansions which can be obtained by differentiating the expansion for $F(z)$ termwise and then rearranging the terms in the new series in an appropriate order.
References

<table>
<thead>
<tr>
<th>Name and Position</th>
<th>Address</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief of Naval Research</td>
<td>Code 432, Office of Naval Research, Washington 25, D.C.</td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Office of Naval Research Branch Office, 1000 Geary Street, San Francisco 9, Calif.</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. J. D. Wilkes</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Technical Information Officer</td>
<td>Naval Research Laboratory, Washington 25, D.C.</td>
<td>6</td>
</tr>
<tr>
<td>Office of Technical Services</td>
<td>Department of Commerce, Washington 25, D.C.</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Eugene Lukacs, Head</td>
<td>Statistics Branch, Office of Naval Research Department of the Navy, Washington 25, D.C.</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Code 433</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Planning Research Division</td>
<td>Deputy Chief of Staff, Comptroller, U.S.A.F., The Pentagon, Washington 25, D.C.</td>
<td>1</td>
</tr>
<tr>
<td>Headquarters, U.S.A.F.</td>
<td>Director of Research and Development, Washington 25, D.C.</td>
<td>1</td>
</tr>
<tr>
<td>Asst. Chief of Staff, G-4 for Research and Development, U.S. Army, Washington 25, D.C.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Chairman</td>
<td>Research and Development Board, The Pentagon, Washington 25, D.C.</td>
<td>1</td>
</tr>
<tr>
<td>Chief of Naval Research Operations Evaluation Group-OP342E, The Pentagon, Washington 25, D.C.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Office of Naval Research Department of the Navy, Attn: Code 438</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Chief, Bureau of Ordnance, Department of the Navy</td>
<td>Attn: Re3d, Washington 25, D.C.</td>
<td>1</td>
</tr>
<tr>
<td>Re6a</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Chief, Bureau of Aeronautics, Department of the Navy</td>
<td>Washington 25, D.C.</td>
<td>1</td>
</tr>
<tr>
<td>Chief, Bureau of Ships</td>
<td>Asst. Chief for Research and Development, Department of the Navy, Washington 25, D.C.</td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Office of Naval Research Branch Office, 346 Broadway, New York 13, N.Y.</td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Office of Naval Research Branch Office, 1030 E. Green Street, Pasadena 1, Calif.</td>
<td>1</td>
</tr>
<tr>
<td>Address</td>
<td>Contact Person</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>Commanding Officer</td>
<td></td>
</tr>
<tr>
<td>Branch Office</td>
<td>Officer of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Navy No. 100</td>
<td>Branch Office</td>
<td></td>
</tr>
<tr>
<td>Fleet Post Office</td>
<td>Navy No. 100</td>
<td></td>
</tr>
<tr>
<td>New York, N.Y.</td>
<td>Branch Office</td>
<td></td>
</tr>
<tr>
<td>N.A.C.A</td>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>1724 F St., N.W.</td>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Attn: Chief, Office of Aeronautical Intelligence</td>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Hydrodynamics Laboratory National Research Lab. Ottowa, Canada</td>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Director Penn. State School of Engineering Ordnance Research Lab. State College, Pa.</td>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Statistical Laboratory Dept. of Mathematics University of Calif. Berkeley 4, Calif.</td>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Hydrodynamics Laboratory Calif. Inst. of Tech. 1201 E. California St. Pasadena 4, Calif.</td>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer Naval Ordnance Lab. White Oak Silver Spring 19, Md.</td>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Attn: Executive Committee</td>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Director, National Bureau of Standards Department of Commerce Washington 25, D.C.</td>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Attn: Natl. Hydraulics Lab.</td>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Commanding General U.S. Proving Grounds Aberdeen, Maryland</td>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Commander U.S. Naval Ordnance Test Station Inyokern China Lake, Calif.</td>
<td>Office of Naval Research</td>
<td></td>
</tr>
</tbody>
</table>
Mathematics Library
Syracuse University
Syracuse 10, N.Y. 1

Univ. of So. California Library
University Library
3518 University Ave.
Los Angeles 7, Calif. 1

Library
Calif. Inst. of Tech.
1201 E. California St.
Pasadena 4, Calif. 1

Engineering Societies Library
29 W. 39th St.
New York, N.Y. 1

John Crerar Library
Chicago 1, Ill. 1

National Bureau of Standards Library
3rd Floor, Northwest Building
Washington 25, D.C. 1

Library
Mass. Inst. of Tech.
Cambridge 39, Mass. 1

Louisiana State University Library
University Station
Baton Rouge 3, La. 1

Library
Fisk University
Nashville, Tenn. 1

Mrs. J. Henley Crosland
Director of Libraries
Georgia Inst. of Tech.
Atlanta, Ga. 1

Technical Report Collection
Room 303A, Pierce Hall
Harvard University
Cambridge 38, Mass. 1

Prof. L. V. Ahlfors
Mathematics Dept.
Harvard University
Cambridge 38, Mass. 1

Prof. P. G. Bergmann
Physics Dept.
Syracuse University
Syracuse 10, N.Y. 1

Prof. G. Birkhoff
Mathematics Dept.
Harvard University
Cambridge 38, Mass. 1

Prof. H. Busemann
Mathematics Dept.
Univ. of So. Calif.
Los Angeles 7, Calif. 1

Dr. Nicholas Chako
133 Cyprus St.
Brookline, Mass. 1

Dr. F. H. Clauser
Aeronautical Eng. Dept.
Johns Hopkins Univ.
Baltimore 18, Md. 1

Dr. Milton Clauser
Aeronautical Eng. Dept.
Purdue University
Lafayette, Indiana 1

Dr. E. P. Cooper
U.S. Naval Shipyard
U.S. Navy Radiological Defense Laboratory
San Francisco, Calif. 1
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>City</th>
<th>State</th>
<th>Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. R. Courant</td>
<td>Inst. of Mathematical Sciences</td>
<td>New York 3, N.Y.</td>
<td>New York University</td>
<td>1</td>
</tr>
<tr>
<td>Dr. A. Craya</td>
<td>Aeronautical Eng. Dept.</td>
<td>New York 27, N.Y.</td>
<td>Columbia University</td>
<td>1</td>
</tr>
<tr>
<td>Dr. K. S. M. Davidson</td>
<td>Experimental Towing Tank</td>
<td>Hoboken, N.J.</td>
<td>Stevens Inst. of Tech.</td>
<td>1</td>
</tr>
<tr>
<td>Prof. R. J. Duffin</td>
<td>Mathematics Dept.</td>
<td>Pittsburgh 13, Pa.</td>
<td>Carnegie Inst. of Tech.</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Carl Eckart</td>
<td>Scripps Inst. of Oceanography</td>
<td>La Jolla, Calif.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Prof. A. Erdélyi</td>
<td>Mathematics Dept.</td>
<td>Pasadena 4, Calif.</td>
<td>Calif. Inst. of Tech.</td>
<td>1</td>
</tr>
<tr>
<td>Prof. K. O. Friedrichs</td>
<td>Inst. of Mathematical Sciences</td>
<td>New York 3, N.Y.</td>
<td>New York University</td>
<td>1</td>
</tr>
<tr>
<td>Prof. D. Gilbarg</td>
<td>Grad. Inst. for Applied Math.</td>
<td>Bloomington, Indiana</td>
<td>Indiana University</td>
<td>1</td>
</tr>
<tr>
<td>Prof. S. Karlin</td>
<td>Mathematics Dept.</td>
<td>Calif. Inst. of Tech.</td>
<td>Pasadena 4, Calif.</td>
<td>1</td>
</tr>
<tr>
<td>Prof. J. R. Kline</td>
<td>Mathematics Dept.</td>
<td>Philadelphia 4, Pa.</td>
<td>Univ. of Pennsylvania</td>
<td>1</td>
</tr>
<tr>
<td>Dr. R. T. Knapp</td>
<td>Hydrodynamics Lab.</td>
<td>Pasadena 4, Calif.</td>
<td>Calif. Inst. of Tech.</td>
<td>1</td>
</tr>
<tr>
<td>Dr. C. F. Kossack</td>
<td>Director, Statistical Lab.</td>
<td>Lafayette, Indiana</td>
<td>Purdue University</td>
<td>1</td>
</tr>
<tr>
<td>Prof. P. A. Lagerstrom</td>
<td>Aeronautics Dept.</td>
<td>Pasadena 4, Calif.</td>
<td>Calif. Inst. of Tech.</td>
<td>1</td>
</tr>
<tr>
<td>Prof. B. Lepson</td>
<td>Mathematics Dept.</td>
<td>Washington 17, D.C.</td>
<td>Catholic University of America</td>
<td>1</td>
</tr>
<tr>
<td>Prof. H. Lewy</td>
<td>Mathematics Dept.</td>
<td>State College, Pa.</td>
<td>Penn. State College</td>
<td>1</td>
</tr>
<tr>
<td>Prof. H. Lewy</td>
<td>Mathematics Dept.</td>
<td>Berkeley 4, Calif.</td>
<td>Univ. of California</td>
<td>1</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>City, State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. P. E. Mohn</td>
<td>School of Engineering</td>
<td>Buffalo, N.Y.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. Z. Nehari</td>
<td>Mathematics Dept.</td>
<td>St. Louis, Mo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. L. Nirenberg</td>
<td>Inst. of Mathematical Sciences</td>
<td>New York 3, N.Y.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. C. D. Olds</td>
<td>Mathematics Dept.</td>
<td>San Jose 14, Calif.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. M. S. Plesset</td>
<td>Hydrodynamics Lab.</td>
<td>Pasadena 4, Calif.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. W. Prager</td>
<td>Mathematics Dept.</td>
<td>Providence 12, R.I.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. P. C. Rosenbloom</td>
<td>Mathematics Dept.</td>
<td>Minneapolis 14, Minn.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. A. E. Ross</td>
<td>Mathematics Dept.</td>
<td>Notre Dame, Indiana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. H. Rouse</td>
<td>State Inst. of Hydraulic Research</td>
<td>Iowa City, Iowa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. C. Saltzer</td>
<td>Case Inst. of Tech.</td>
<td>Cleveland 6, Ohio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. A. C. Schaeffer</td>
<td>Mathematics Dept.</td>
<td>Madison 6, Wis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. L. I. Schiff</td>
<td>Physics Dept.</td>
<td>Stanford, Calif.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. W. Sears</td>
<td>Grad. School of Aeronautical Engineering</td>
<td>Ithaca, N.Y.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. D. C. Spencer</td>
<td>Fine Hall</td>
<td>Princeton, N.J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. J. J. Stoker</td>
<td>Inst. for Mathematical Sciences</td>
<td>New York 3, N.Y.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. V. L. Streeter</td>
<td>Fundamental Mechanics Research</td>
<td>Ill. Inst. of Tech.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chicago 16, Ill.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Department</td>
<td>Institution</td>
<td>City</td>
<td>State</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>---</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Prof. C. A. Truesdell</td>
<td>Grad. Inst. for Applied Math.</td>
<td>Indiana University</td>
<td>Bloomington</td>
<td>Indiana</td>
</tr>
<tr>
<td>Prof. J. K. Vennard</td>
<td>Civil Engineering Dept.</td>
<td>Stanford University</td>
<td>Stanford</td>
<td>Calif.</td>
</tr>
<tr>
<td>Prof. K. J. Vitousek</td>
<td>Mathematics Dept.</td>
<td>University of Hawaii</td>
<td>Honolulu</td>
<td>T.H.</td>
</tr>
<tr>
<td>Prof. S. E. Warschawaski</td>
<td>Mathematics Dept.</td>
<td>University of Minnesota</td>
<td>Minneapolis</td>
<td>Minn.</td>
</tr>
<tr>
<td>Prof. A. Weinstein</td>
<td>Inst. for Fluid Dynamics and Applied Math.</td>
<td>University of Maryland</td>
<td>College Park</td>
<td>Md.</td>
</tr>
<tr>
<td>Prof. A. Zygmund</td>
<td>Mathematics Dept.</td>
<td>The University of Chicago</td>
<td>Chicago</td>
<td>Ill.</td>
</tr>
<tr>
<td></td>
<td>Mathematics Dept.</td>
<td>University of Colorado</td>
<td>Boulder</td>
<td>Colo.</td>
</tr>
<tr>
<td>Los Angeles Engineering</td>
<td>Field Office</td>
<td>5504 Hollywood Blvd.</td>
<td>Los Angeles</td>
<td>Calif.</td>
</tr>
<tr>
<td>Air Research & Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional copies for project leader and assistants and reserve for future requirements 50