UNCLASSIFIED

<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD029093</td>
</tr>
</tbody>
</table>

CLASSIFICATION CHANGES

TO: unclassified
FROM: restricted

LIMITATION CHANGES

TO:
Approved for public release, distribution unlimited

FROM:
Distribution authorized to U.S. Gov’t. agencies and their contractors; Foreign Government Information; JAN 1954. Other requests shall be referred to British Embassy, 3100 Massachusetts Avenue, NW, Washington, DC 20008.

AUTHORITY

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RECOGNIZED GOVERNMENT PROCUREMENT OPERATION, THE U.S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by
DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, OHIO

CONFIDENTIAL
NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE PROTECTION OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793. THE TRANSMISSION OR THE REVELATION OF ITS CONTENT IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED.
THE TORSIONAL RIGIDITY OF SOLID CYLINDERS OF DOUBLE-WEDGE SECTION

by

E.H. MANSFIELD, M.A.
The torsional rigidity of solid cylinders of double-wedge section

by

E. H. Mansfield, M.A.

R.A.E. Ref: Structures C13367/EM

SUMMARY

The torsional rigidity of solid cylinders of double-wedge section is considered theoretically. Minimum energy methods are used to determine close upper and lower limits to the rigidity. The results are presented in graphical form.
LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2 List of Symbols</td>
<td>3</td>
</tr>
<tr>
<td>3 Lower and upper limits for the torsional rigidity</td>
<td>4</td>
</tr>
<tr>
<td>4 Discussion of results</td>
<td>5</td>
</tr>
<tr>
<td>5 Conclusions</td>
<td>5</td>
</tr>
<tr>
<td>References</td>
<td>6</td>
</tr>
<tr>
<td>Advance Distribution</td>
<td>6</td>
</tr>
<tr>
<td>Detachable Abstract Cards</td>
<td>-</td>
</tr>
</tbody>
</table>

LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation of lower limit</td>
<td>I</td>
</tr>
<tr>
<td>Calculation of upper limit</td>
<td>II</td>
</tr>
</tbody>
</table>

LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure showing notation</td>
<td>1</td>
</tr>
<tr>
<td>The torsional rigidity of solid cylinders of double-wedge-section</td>
<td>2</td>
</tr>
</tbody>
</table>
1 Introduction

In this report the torsional rigidity of solid cylinders of double wedge section is considered theoretically. A lower limit for the rigidity has been obtained in a manner similar to that used by Duncan; a parabolic variation of the stress function across the thickness is assumed and the Ritz method is then used in conjunction with a variational technique to determine the rigidity. An upper limit has been obtained from the static analogue of Kelvin's theorem; a linear variation of the warping function across the thickness is assumed and a variational technique then used to determine the rigidity.

2 List of Symbols (See Figure 1)

<table>
<thead>
<tr>
<th>Structure properties</th>
<th>Non-dimensional parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c) = chord of section</td>
<td>(\beta =)</td>
</tr>
<tr>
<td>(t) = maximum thickness of section</td>
<td>(m_1 = \frac{m}{2\lambda})</td>
</tr>
<tr>
<td>(\lambda) = fraction of chord at which maximum thickness occurs</td>
<td>(m_2 = \frac{m}{2(1 - \lambda)})</td>
</tr>
<tr>
<td>(m = t/c) ratio</td>
<td>(r_1 = -4 m_1 + \sqrt{10 + 6 m_1^2})</td>
</tr>
<tr>
<td>(m_1 = \frac{m}{2\lambda})</td>
<td>(r_2 = -4 m_2 + \sqrt{10 + 6 m_2^2})</td>
</tr>
<tr>
<td>(m_2 = \frac{m}{2(1 - \lambda)})</td>
<td>(p_1 = -m_1 + \sqrt{3 + m_1^2})</td>
</tr>
<tr>
<td>(r_1 = -4 m_1 + \sqrt{10 + 6 m_1^2})</td>
<td>(p_2 = -m_2 + \sqrt{3 + m_2^2})</td>
</tr>
<tr>
<td>(r_2 = -4 m_2 + \sqrt{10 + 6 m_2^2})</td>
<td>(\frac{r_1 m_1^2}{1 - m_1^2} + \frac{r_2 m_2^2}{1 - m_2^2} - 5 (m_1 + m_2)^2)</td>
</tr>
<tr>
<td>(p_1 = -m_1 + \sqrt{3 + m_1^2})</td>
<td>(\alpha = \frac{r_1 + r_2 + 5 (m_1 + m_2)}{r_1 \frac{m_1^2}{1 - m_1^2} + \frac{r_2 m_2^2}{1 - m_2^2}})</td>
</tr>
<tr>
<td>(p_2 = -m_2 + \sqrt{3 + m_2^2})</td>
<td>(\beta = \frac{m_2 (1 + 3 m_2^2)}{(1 - m_2^2)^2} + \frac{m_1 (1 + 3 m_1^2)}{(1 - m_1^2)^2})</td>
</tr>
</tbody>
</table>
3 Lower and upper limits for the torsional rigidity

A lower limit for the rigidity has been found in Appendix I on the assumption that the stress function varies parabolically across the thickness; the rigidity is then determined by the Ritz method and a variational technique. An upper limit for the rigidity has been found in Appendix II on the assumption that the warping function varies linearly across the thickness; the rigidity is then determined from the static analogue of Kelvin's theorem and a variational technique. It follows that the torsional rigidity satisfies the inequality:

\[C_{\text{lower}} < C < C_{\text{upper}} \]

where

\[C_{\text{lower}} = \frac{G\sigma^3}{12} \left[\frac{\lambda}{1 - m_1^2} \right] \left(\frac{\alpha - (1 + \alpha) m_2^2}{1 + \frac{r_1}{8 m_1}} \right) + \left(\frac{1 - \lambda}{1 - m_2^2} \right) \left(\frac{\alpha - (1 + \alpha) m_2^2}{1 + \frac{r_2}{8 m_2}} \right) \]

(2)

and

\[C_{\text{upper}} = \frac{G\sigma^3}{12} \left(\frac{1}{m_1 + m_2} \right) \left[8 + 4 m_1 m_2 (p_1 B_1 + p_2 B_2) - 8 m_1 m_2 \left(\frac{B_1}{1 - m_1^2} + \frac{B_2}{1 - m_2^2} \right) \right] \]

(3)

These limits have been plotted in Figure 2 for various values of \(\lambda \) up to \(\frac{1}{\sqrt{c}} = 0.3 \). It will be seen that over the range considered the limits are close; the maximum error that can arise by taking the mean of the two limits is less than 1.6%.

Equations (2) and (3) may be simplified for the special cases in which the section becomes a diamond or a triangle.

3.1 Special case: diamond section (\(\lambda = 0.5 \))

For a diamond section equations (2) and (3) reduce to

\[C_{\text{lower}} = \frac{G\sigma^3}{12} \left[\frac{2 - 9 m_2 (1 + m_2) + 4 m_2 \sqrt{10 + 6 m_2}}{(2 + m_2)(1 - m_2)^2} \right] \]

(4)
Report No. Structures 163

and

\[C_{\text{upper}} = \frac{Gc t^3}{12} \left[\frac{1 - 5 m^2 - 4 m^4 + 4 m^3 \sqrt{3 + m^2}}{(1 - m^2)^2} \right] \] (5)

3.2 Special case: triangular section \((\lambda = 0 \text{ or } 1)\)

For a triangular section equations (2) and (3) reduce to

\[C_{\text{lower}} = \frac{Gc t^3}{12} \left[\frac{4 \left(20 + 11 m^2 - 4 m \sqrt{10 + 6 m^2}\right)}{5 (4 - m^2)^2} \right] \] (6)

and

\[C_{\text{upper}} = \frac{Gc t^3}{12} \left[\frac{-4 \left(12 + 5 m^2 - 4 m \sqrt{12 + m^2}\right)}{3 (4 - m^2)^2} \right] \] (7)

4 Discussion of Results

It will be seen from Figure 2 that when the maximum thickness is near the mid-chord (i.e. \(\lambda = 0.5\)) the torsional rigidity is practically independent of \(\lambda\), which is to be expected from considerations of symmetry. For a cylinder for which \(t/c < 0.05\) and \(0.2 < \lambda < 0.8\) the torsional rigidity is approximately \(Gc t^3/12\) which, for materials in which \(v = 1\), is 1.5 times the flexural rigidity.

For a given \(t/c\) ratio the lower and upper limits are closest when the section is a diamond and are furthest apart when the section is a triangle. If \(t/c = 1\) and \(\lambda = 0.5\) (corresponding to the limiting case of a square) the lower and upper limits are each in error by 3.6\%, and if \(t/c = 2/\sqrt{3}\) and \(\lambda = 0\) (corresponding to the limiting case of an equilateral triangle) the lower limit is correct and the upper limit in error by 12.6\%.

5 Conclusions

The torsional rigidity of solid cylinders of double-wedge section has been considered theoretically. Minimum energy methods have been used to determine close upper and lower limits to the rigidity. The variation of the torsional rigidity with the \(t/c\) ratio and with the position at which the maximum thickness occurs has been investigated and the results presented in graphical form.
<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W.J. Duncan</td>
<td>Phil. Mag. Vol.16, 1933.</td>
</tr>
<tr>
<td>3</td>
<td>D. Williams</td>
<td>The use of the principle of minimum potential energy in problems of static</td>
</tr>
<tr>
<td></td>
<td></td>
<td>equilibrium R & M 1827.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>January 1938.</td>
</tr>
<tr>
<td>4</td>
<td>S. Timoshenko</td>
<td>Theory of Elasticity, 1934.</td>
</tr>
</tbody>
</table>

Attached:

Appendices I and II
Figs. 1, 2 Drgs. Nos. SME 75387/R, 75388/R
Detachable Abstract Cards

Advance Distribution:

CS(A)
PISR(A)
DARD
RMARD(RAF)
RMARD(RN)
AIR Structures
ADSR Records
TPA3/TIB

Director RAE
DDRAE(A)
Aero Dept
RAE Library
NAE

Action Copy

170
Additional Symbols used only in Appendices (See Figure 1)

\[\begin{align*}
Ox, Oy & \quad \text{Cartesian co-ordinates} \\
O_1x_1, O_1y_1 & \\
O_2x_2, O_2y_2 & \\
\bar{x}, \bar{y} & = \text{co-ordinates of centre of twist} \\
\phi & = \text{torsion stress function} \\
w & = \text{warping stress function} \\
c_1 & = \lambda c \\
c_2 & = (1-\lambda)c \\
K, H & = \text{surface integrals} \\
f_1, g_1 & = \text{functions of } x_1 \\
f_2, g_2 & = \text{functions of } x_2
\end{align*} \]
APPENDIX I

Calculation of lower limit

In the Ritz method a form for the stress function ϕ is chosen that vanishes on the boundary of the section and which may contain a number of arbitrary parameters. For unit twist per unit length the closest approximation to the stress function is that for which the surface integral

$$ K = \int \int \left[\left(\frac{\partial \phi}{\partial x} \right)^2 + \left(\frac{\partial \phi}{\partial y} \right)^2 - 4 \, G \, \phi \right] \, dA $$

is a minimum. When ϕ satisfies this condition we have

$$ C_{\text{lower}} = 2 \int \int \phi \, dA $$

The Ritz method will now be used in conjunction with a variational technique in a manner similar to that used by Duncan. The double-wedge section and the position of the origin and axes are shown in Figure 1. In considering the region O_1BB' it is convenient to have the origin at O_1, and similarly at O_2 for the region O_2BB'. A parabolic variation of the stress function across the thickness of the section is assumed, so that in the region O_1BB'

$$ \phi = (m_1^2 \, x_1^2 - y_1^2) \, G \, f_1 $$

and in the region O_2BB'

$$ \phi = (m_2^2 \, x_2^2 - y_2^2) \, G \, f_2 $$

In the above equations f_1 and f_2 are functions of x_1 and x_2 and they will be chosen to make the surface integral K a minimum.

Substituting equations (10) and (11) in equation (8) and integrating with respect to y across the thickness gives K as the sum of two integrals of x_1, f_1, f_1' and x_2, f_2, f_2'. Variations δf_1 in f_1 and δf_2 in f_2 will give rise to a variation δK, and for K to be a minimum δK must vanish, whence

$$ \frac{\partial K}{\partial K} = 0 $$

- 8 -
\[\delta K = \frac{16}{15} \sum_{1}^{3} \int_{0}^{1} x_{1}{\{5 (1-m_{1}^{2}) f_{1} - 10 m_{1}^{2} x_{1} f_{1} - 2 m_{1}^{2} x_{1} f_{1}'' - 5\}} \delta f_{1} \, dx_{1} \]

\[+ \frac{16}{15} \sum_{2}^{3} \int_{0}^{c_{2}} x_{2}{\{5 (1-m_{2}^{2}) f_{2} - 10 m_{2}^{2} x_{2} f_{2} - 2 m_{2}^{2} x_{2} f_{2}'' - 5\}} \delta f_{2} \, dx_{2} \]

\[+ \frac{\lambda}{15} \{5 m_{1} f_{1}(c_{1}) + t f_{1}'(c_{1})\} \delta f_{1}(c_{1}) + \{5 m_{2} f_{2}(c_{2}) + t f_{2}'(c_{2})\} \delta f_{2}(c_{2}) \]

\[= 0 \quad (12) \]

The variations \(\delta f_{1} \) and \(\delta f_{2} \) are quite arbitrary provided there is continuity at \(BB' \), i.e.

\[\begin{align*}
 f_{1}(c_{1}) &= f_{2}(c_{2}) \\
 \delta f_{1}(c_{1}) &= \delta f_{2}(c_{2})
\end{align*} \]

(13)

and the expressions under the integral signs in equation (12) must therefore vanish. Similarly the expression in square brackets in equation (12) must vanish subject to condition (13). The solution of these equations is:

\[f_{1} = \frac{1}{1 - m_{1}^{2}} + \left(a - \frac{m_{1}^{2}}{1 - m_{1}^{2}} \right) \left(\frac{x_{1}}{c_{1}} \right)^{r_{1}/2m_{1}} \]

(14)

\[f_{2} = \frac{1}{1 - m_{2}^{2}} + \left(a - \frac{m_{2}^{2}}{1 - m_{2}^{2}} \right) \left(\frac{x_{2}}{c_{2}} \right)^{r_{2}/2m_{2}} \]

Substitution of equation (14) in equations (9), (10) and (11) and integrating gives

\[C_{\text{lower}} = \frac{Gc_{3}}{12} \left[\frac{\lambda}{(1 - m_{1}^{2})} \left(1 + \frac{a - (1 + a) m_{1}^{2}}{1 - m_{1}^{2}} \right) + \frac{r_{1}}{8 m_{1}} \right] \}

(15)

\[+ \frac{\lambda}{15} \left[\frac{a - (1 + a) m_{2}^{2}}{8 m_{2}} \right] \]

- 9 -
Appendix II

Calculation of upper limit

The method for obtaining an upper limit is based on the static analogue of Kelvin's theorem: "The strain energy of a structure corresponding to a given deformation is less than if the freedom had been limited by the introduction of constraints". The given deformation is assumed to be a unit twist per unit length and the internal constraints are those necessary to impose a chosen warping \(w \) of the cross-section. The position of the centre of twist is arbitrary since it may be altered by a rigid body movement, but if it is chosen to be at the point \((x,y)\) the strain energy per unit length of cylinder is proportional to

\[
H = \int \int_A \left[\left(\frac{\partial w}{\partial x} - y - \frac{\partial w}{\partial y} \right)^2 + \left(\frac{\partial w}{\partial y} + x - \frac{\partial w}{\partial x} \right)^2 \right] \mathrm{d}A
\]

(16)

and the closest approximation to the warping function is that for which \(H \) is a minimum. When \(H \) satisfies this condition we have

\[
C_{\text{upper}} = GH
\]

(17)

The steps in the analysis are similar to those used in calculating the lower limit. It is convenient to let the section twist about the centre \(C \), but in considering the region \(O_1 BB' \) it is convenient to have the origin at \(O_1 \), and similarly at \(O_2 \) for the region \(O_2 BB' \). A linear variation of the warping function across the thickness of the section is assumed, so that in the region \(O_1 BB' \)

\[
w = y_1 g_1
\]

(18)

and in the region \(O_2 BB' \)

\[
w = y_2 g_2
\]

(19)

In the above equations \(g_1 \) and \(g_2 \) are functions of \(x_1 \) and \(x_2 \) and they will be chosen to make the surface integral \(H \) a minimum.

With the origins at \(O_1 \) and \(O_2 \) for the two parts of the double wedge, equation (16) becomes

...
\[
H = \int_0^{c_1} \int_{-m_1 x_1}^{m_1 x_1} \left[y_1^2 (g_1' - 1)^2 + (g_1 + x_1 - c_1)^2 \right] dx_1 \, dy_1 \\
+ \int_0^{c_2} \int_{-m_2 x_2}^{m_2 x_2} \left[y_2^2 (g_2' - 1)^2 + (g_2 + x_2 - c_2)^2 \right] dx_2 \, dy_2 \\
= \frac{2}{3} \int_0^{c_1} \left[m_1 x_1^3 (g_1' - 1)^2 + 3 x_1 (g_1 + x_1 - c_1)^2 \right] dx_1 \\
+ \frac{2}{3} \int_0^{c_2} \left[m_2 x_2^3 (g_2' - 1)^2 + 3 x_2 (g_2 + x_2 - c_2)^2 \right] dx_2
\]

on integrating with respect to \(y_1\) and \(y_2\).

Variations \(\delta g_1\) in \(g_1\) and \(\delta g_2\) in \(g_2\) will give rise to a variation \(\delta H\), and for \(H\) to be a minimum \(\delta H\) must vanish, whence

\[
\delta H = \frac{4}{3} \int_0^{c_1} \left[3 x_1^2 - 3 x_1 c_1 + 3 x_1 g_1 - m_1 x_1^2 \left(3 (g_1' - 1) + x_1 g_1'' \right) \right] \delta g_1 \, dx_1 \\
+ \frac{4}{3} \int_0^{c_2} \left[3 x_2^2 - 3 x_2 c_2 + 3 x_2 g_2 - m_2 x_2^2 \left(3 (g_2' - 1) + x_2 g_2'' \right) \right] \delta g_2 \, dx_2 \\
+ \frac{3}{6} \left[\{ g_1'(c_1) - 1 \} \, \delta g_1'(c_1) + \{ g_2'(c_2) - 1 \} \, \delta g_2'(c_2) \right]
\]

The variations \(\delta g_1\) and \(\delta g_2\) are quite arbitrary, apart from continuity at \(BB'\), so that each of the expressions in square brackets under the integral signs in equation (21) vanish. The last expression in square brackets in equation (21) will vanish provided there is continuity at \(BB'\), i.e. provided

\[
\begin{align*}
g_1'(c_1) &= -g_2'(c_2) \\
\delta g_1'(c_1) &= -\delta g_2'(c_2)
\end{align*}
\]

The minus signs in equation (22) are because of the reversed directions of \(y_1\) and \(y_2\).
The solution of these equations is

\[
\frac{g_1}{c_1} = 1 - \left(\frac{1 + m_2^2}{1 - m_1^2}\right) \frac{x_1}{c_1} + 2 m_1 B_1 \left(\frac{x_1}{c_1}\right)^{P_1/m_1} \tag{23}
\]

and

\[
- \frac{g_2}{c_2} = 1 - \left(\frac{1 + m_2^2}{1 - m_2^2}\right) \frac{x_2}{c_2} + 2 m_2 B_2 \left(\frac{x_2}{c_2}\right)^{P_2/m_2} \tag{24}
\]

where

\[
E_1 = \frac{(m_1 + m_2) \{m_1 - m_2 + p_2 (1 - m_1 m_2)\}}{(p_1 + p_2)(1 - m_1^2)(1 - m_2^2)} \]

and

\[
E_2 = \frac{(m_1 + m_2)\{m_2 - m_1 + p_1 (1 - m_1 m_2)\}}{(p_1 + p_2)(1 - m_1^2)(1 - m_2^2)}
\]

Substitution of equations (23) and (24) in equations (16) and (17) and integrating gives

\[
C_{\text{upper}} = G c \frac{3}{12} \left(\frac{1}{m_1 + m_2}\right) \left[\frac{m_2 (1 + 3 m_1^2)}{(1 - m_1^2)^2} + \frac{m_1 (1 + 3 m_2^2)}{(1 - m_2^2)^2}\right]
\]

\[
+ 4 m_1 m_2 \left(p_1 B_1^2 + p_2 B_2^2\right) - 8 m_1 m_2 \left(\frac{B_1}{1 - m_1^2} + \frac{B_2}{1 - m_2^2}\right) \tag{25}
\]
FIG. 1. FIGURE SHOWING NOTATION.
FIG. 2. THE TORSIONAL RIGIDITY OF SOLID CYLINDERS OF DOUBLE WEDGE SECTION.
The torsional rigidity of solid cylinders of double-wedge section is considered theoretically. Minimum energy methods are used to determine close upper and lower limits to the rigidity. The results are presented in graphical form.
This document is now available at the National Archives, Kew, Surrey, United Kingdom.

DTIC has checked the National Archives Catalogue website (http://www.nationalarchives.gov.uk) and found the document is available and releasable to the public.

Access to UK public records is governed by statute, namely the Public Records Act, 1958, and the Public Records Act, 1967. The document has been released under the 30 year rule. (The vast majority of records selected for permanent preservation are made available to the public when they are 30 years old. This is commonly referred to as the 30 year rule and was established by the Public Records Act of 1967).

This document may be treated as **UNLIMITED**.