THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
Reference No. 54-17

A Suggestion for the Correction of
Salinity Data Obtained with
the S-T-D Instrument

by

Arthur R. Miller

Technical Report
Submitted to Geophysics Branch, Office of Naval Research
Under Contract N6onr-27701 (NR-083-004)

March 1954

APPROVED FOR DISTRIBUTION [Signature]

Director
A SUGGESTION FOR THE CORRECTION OF SALINITY DATA OBTAINED WITH THE S-T-D INSTRUMENT

Anyone who has compared titrated salinity samples with the results of automatic devices which measure salinity or conductivity of sea water electronically, has been aware of inadequacies in the application of a constant correction to the data. The purpose of this article is to demonstrate a type of correction which varies according to temperature and salinity. This correction is easily applied to data obtained with the Salinity-Temperature-Depth instrument (Jacobson, 1913). By this means, reconciliation of STD data with corresponding salinity samples has been accomplished with marked success for a wide range of conditions and stringency in the region about Delaware Bay.

Certain difficulties in the reconciliation of STD data with independent observations may be ascribed to maladjustment or misalignment of the mechanical linkage between the temperature circuit and the salinity computing circuit. This fault may not be readily apparent unless fairly wide ranges of salinity and temperature are encountered. Errors due to misalignment are made manifest by small discrepancies between check samples and STD record when salinity is low and/or temperature is high, expanding to large discrepancies when salinity is high and/or temperature is low.

It is readily seen that this phenomenon could seriously affect interpretations of STD data. For instance, in the case of a subsurface lowering, with a check sample obtained only at the surface, the ordinary reconciliation might not take into account the possibility of an increasing anomaly as the instrument was lowered through colder and more saline water. Lack of accuracy of the data offsets the advantage and convenience of the STD for rapid surveying if discrepancies are large. It is extremely important that, once the instrument is calibrated, adjustments at sea be kept at a minimum and then only with great care. In the light of the following considerations and formulae, the STD instrument and its computing circuit has proven most accurate.

CHARACTERISTIC ERROR OF THE STD

The first consideration will be to show the relation which may appear between a titrated salinity sample and the recorded salinity as computed by the instrument. The empirical formula for the salinity computing circuit is

\[S = \frac{100,000}{25.86 - 0.073720T} - 348.87 \times 10^{-6} \] (1)
where S is salinity in parts per thousand, T the temperature in degrees Fahrenheit, C is specific conductance in mhos per centimeter cube (Jacobson, 1948). The formula is an approximation designed to give the least amount of error in ranges of salinity from 30 $^\circ$C to 35 $^\circ$C.

If sea water of a certain salinity and temperature is being measured by the instrument, conductivity of the sample must also be a certain value. Any error in the computed salinity, aside from some constant calibration error, will depend upon an error in temperature, assuming no change in conductivity. Thus,

$$\frac{dS}{dT} = \frac{-73720 \cdot 1.0916}{(.73720T + 25.661)^2}$$

or, approx.

$$\Delta S = -\frac{73720 \cdot 1.0916 \cdot \Delta T}{(.73720T + 25.661)^2}$$ \hfill (2)

The error in salinity, ΔS is proportional to the temperature error, ΔT.

Substituting for 1.0916 in (2)

$$\Delta S = -\frac{73720 S \Delta T}{2,336,373.75 + 60520.66T - 189.60T^2}$$

which can be simplified to approximately

$$\Delta S = \frac{389 S \Delta T}{(T - 35)(T + 35)}$$ \hfill (3)

The error in salinity is proportional to the true salinity, S, and is inversely related to temperature, T.

The salinity error can be serious if the computing temperature differs from the real temperature by only a small amount. The following table shows some calculations for ΔS for several salinities and temperatures based on an instrumental error of 1°F.
If the accuracy of the instrument is assumed to be comparable to that of titrated samples, the table above has real significance. To be comparable to titrated values, temperature must not be in error by more than 0.1°F. (the tabulated ΔS divided by 10). Even if the recorded temperature is reasonably accurate, it can be linked erroneously with the computing circuit; consequently, ΔT can be a large value without the observer being aware of the difficulty. Consequently, the greater the ΔT, the greater, also, will be the apparent randomness of the salinity error, as shown by the table and equation (3).#*

Since equation (3) requires simultaneous knowledge of the salinity error and temperature error to determine the true salinity of an observation, it is not adequate, except as a check, for reconciling STD data. The following discussion will attempt to develop an empirical method for the correction of STD data.

EMPIRICAL FORMULA FOR CORRECTING STD DATA

In the three coordinate system let $x = S_r$, the recorded salinity resulting from instrumental computation, with the condition that at $x = 0$,

$$S_r = 0 \text{ and } S = 0.$$

The difference, $S_r - S = \Delta S$, will be taken vertically along the y axis (as shown in Fig. 1). For a given temperature, T, the relation, $\Delta S / S$, will be constant for a constant temperature error, ΔT, in the computing circuit. Also, the ratio

The accuracy of the STD is claimed to be within 0.3 °/oo. The successful use of this method of correction in over a thousand stations suggests that the accuracy of the STD is much better than above. Indeed, it is possible that such latitude in the probable salinity error is due to inherent sensitivity in the calibration of the instrument and inadequate procedures for maintenance at sea.
\[\frac{\Delta S}{S + \Delta S} = \frac{\Delta S}{S_r} = \tan \theta = k \]

Consequently,

\[\Delta S_n = kS_{r_n} \]

Or

\[\Delta S_n = \frac{S_{r_n}}{S_{r_0}} \cdot k \cdot S_{r_0} \]

If \(S_{r_0} \) is used as a reference, for a set of data with a constant temperature error,

\[\Delta S_n = A \frac{S_{r_n}}{S_{r_0}} \]

for a given temperature, \(T_{r_0} \).

On the z axis let \(z = T_{r_0} - T_{r_n} \) where \(T_{r_0} \) is any temperature recorded by the STD, suitable for reference. The point \(z = 0, \Delta y = \Delta S, x = S_{r_0} \) applies to a known error of a recorded salinity at a particular temperature. If we assume that the temperature circuit is in good working order, \(\Delta T \) is a constant error in the computing circuit and \(T_{r} \approx T \). From equation (3), \(\Delta S \) is nearly inversely proportional to \(T_{r} \), the recorded temperature, or, \(T_r \), in the ranges 30° to 80°F.

Therefore, as temperature decreases from \(T_{r_0} \), \(\Delta S \) will increase. \(\Delta S \) at \(T_{r_0} - T_{r_n} \) will differ from \(\Delta S \) at \(T_{r_0} \), \(C \), by an amount, \(C' \) and

\[C' = (T_{r_0} - T_{r_n}) \tan \gamma \] (Figure 1)

Let

\[C = \Delta S - C' = A \frac{S_{r_n}}{S_{r_0}} \]
Without formal proof

\[\tan \gamma = \mathcal{L} S_r \tan \theta \]

where \(\mathcal{L} \) is a constant and \(\tan \theta = \frac{C}{S_{r_0}} \) at \(T_{r_0} \).

By substitution, then

\[\frac{C'}{T_{r_0} - T_{r_n}} = \mathcal{L} C \]

Or

\[C' = \mathcal{L} C (T_{r_0} - T_{r_n}) \]

and \(C' \) is proportional to \(C \) for any constant temperature.

Since

\[C = A \frac{S_{r_n}}{S_{r_0}} \]

Then

\[C' = \mathcal{L} A \frac{S_{r_n}}{S_{r_0}} (T_{r_0} - T_{r_n}) \]

Combining,

\[C + C' = \Delta S \]

\[\Delta S = \frac{S_{r_n}}{S_{r_0}} \left[A + B (T_{r_0} - T_{r_n}) \right] \quad (4) \]

where \(B = \mathcal{L} A \).

It is readily seen that as long as a reference \(S_r \) is maintained, the formula, (4), can be transposed to the proven formula, \(C = \Delta S \), by substituting \(T_{r_n} \) for \(T_{r_0} \).
For a set of STD data in which there are a number of calibration samples, formula (4) becomes

\[\Delta S = \frac{S_r}{S_r} \bar{\Delta S} + B (T_r - T_r) \]

Where \(S_r = S_{r0} \), the average \(S_r \) for which there are samples, \(T_r = T_{r0} \), the average \(T_r \) of the same samples, \(\bar{\Delta S} = A \), the average deviation of \(S_r \) from \(S \) in the set of data. Once \(B \) is known, \(\Delta S \) can be solved for any pair of values, \(S_r \) and \(T_r \).

\[B = \frac{\sum \left(\frac{\Delta S_n S_r}{S_{r_n}} - \bar{\Delta S} \right)}{n} \]

Ideally, there should be no difficulty solving for \(B \), but the sensitivity of the computing circuit to temperature is such that the accuracy needed to check the STD data is scarcely attainable at sea. For the most part, individual calculations of \(B \) are reasonably constant, except for \(T_{r0} - T_{r_n} < 1^\circ \), or, obviously inadequate sampling. The latter cases should not be included in the averaging of \(B \). With the completion of the equation, it is a simple matter to construct a nomogram (Fig. 2) for the range of values in the set of data and to apply the indicated corrections.

The validity of the calculations is dependent on the accuracy, number and range of the checking samples. If a hidden constant calibration error is included in the calculations, the accuracy of the formula is affected percentage-wise. It is a matter of judgment whether to apply the formula or not, depending on the apparent randomness of the error.

REFERENCE

$$\Delta S = \frac{S_{en}}{30.00} \left[1.13 + 0.39 (73.0 - T_{en}) \right]$$

$$= \frac{S_{en}}{30.00} (3.98 - 0.39 T_{en})$$

FIG. 2

- Temperature, °F
- Error in Salinity
- Salinity, %

Saliencies:
- 32°
- 31°
- 30°
- 29°
- 28°
<table>
<thead>
<tr>
<th>Copies</th>
<th>Addressee</th>
</tr>
</thead>
</table>
| 1 | Commanding Officer
Air Force Cambridge Research Center
230 Albany Street
Cambridge 39, Massachusetts
Attn: CRHSIL |
| 1 | Director
Air University Library
Maxwell AF Base, Alabama
Attn: CR-5110 |
| 1 | Allan Hancock Foundation
University of Southern California
Los Angeles 7, California |
| 5 | Armed Services Technical Information Center
Documents Service Center
Knott Building
Dayton 2, Ohio |
| 2 | Assistant Naval Attache for Research
American Embassy
Navy Number 100
Fleet Post Office
New York, New York |
| 1 | Assistant Secretary of Defense (R&D)
Pentagon Building
Washington 25, D.C.
Attn: Committee on Geophysics and Geography |
| 1 | Dr. William H. Sutcliffe, Director
Bermuda Biological Station for Research
St. George's, Bermuda |
| 1 | Head
Department of Oceanography
Brown University
Providence, Rhode Island |
| 1 | Librarian
California Fisheries Laboratory
Terminal Island Station
San Pedro, California |
| 1 | Director
Chesapeake Bay Institute
Box 426A
R. F. D. #2
Annapolis, Maryland |
<table>
<thead>
<tr>
<th>No.</th>
<th>Distribution List</th>
</tr>
</thead>
</table>
| 2 | Chief, Bureau of Ships
Department of the Navy
Washington 25, D. C.
Attn: Code 847 |
| 1 | Chief, Bureau of Yards and Docks
Department of the Navy
Washington 25, D. C. |
| 1 | Chief of Naval Operations (Op-533D)
Department of the Navy
Washington 25, D. C. |
| 3 | Chief of Naval Research
Department of the Navy
Washington 25, D. C.
Attn: Code 416 (2)
Code 466 (1) |
| 1 | Department of Conservation
Cornell University
Ithaca, New York
Attn: Dr. J. C. Ayers |
| 1 | Commanding General
Research and Development Division
Department of the Air Force
Washington 25, D. C. |
| 1 | Commanding General
Research and Development Division
Department of the Army
Washington 25, D. C. |
| 1 | The Oceanographic Institute
Florida State University
Tallahassee, Florida |
| 1 | Director
Lamont Geological Observatory
Torrey Cliff
Palisades, New York |
| 1 | Director
Narragansett Marine Laboratory
University of Rhode Island
Kingston, Rhode Island |
| 1 | National Research Council
2101 Constitution Avenue
Washington 25, D. C.
Attn: Committee on Undersea Warfare |
DISTRIBUTION LIST

1 Commanding Officer
Naval Ordnance Laboratory
White Oak
Silver Spring 19, Maryland

6 Director
Naval Research Laboratory
Washington 25, D.C.
Attn: Technical Information Officer

1 Office of Naval Research Branch Office
1030 East Green Street
Pasadena 1, California

1 Office of Naval Research Branch Office
1000 Geary Street
San Francisco 9, California

1 Office of Naval Research Branch Office
Tenth Floor, John Crerar Library Bldg.
86 East Randolph Street
Chicago 11, Illinois

1 Office of Naval Research Branch Office
150 Causeway Street
Boston 14, Massachusetts

1 Office of Naval Research Branch Office
346 Broadway
New York 13, New York

2 Officer-in-Charge
Office of Naval Research London Branch Office
Navy Number 100
Fleet Post Office
New York, New York

1 Office of Technical Services
Department of Commerce
Washington 25, D.C.

1 Dr. Willard J. Pierson
New York University
New York 53, New York

1 Department of Zoology
Rutgers University
New Brunswick, New Jersey
Attn: Dr. H. H. Haskin

2 Director
Scripps Institution of Oceanography
La Jolla, California
<table>
<thead>
<tr>
<th>1</th>
<th>Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>Department of Oceanography</td>
</tr>
<tr>
<td></td>
<td>Texas A & M</td>
</tr>
<tr>
<td></td>
<td>College Station, Texas</td>
</tr>
<tr>
<td>1</td>
<td>Department of Engineering</td>
</tr>
<tr>
<td></td>
<td>University of California</td>
</tr>
<tr>
<td></td>
<td>Berkeley, California</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Hawaii Marine Laboratory</td>
</tr>
<tr>
<td></td>
<td>University of Hawaii</td>
</tr>
<tr>
<td></td>
<td>Honolulu, T. H.</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Marine Laboratory</td>
</tr>
<tr>
<td></td>
<td>University of Miami</td>
</tr>
<tr>
<td></td>
<td>Coral Gables 34, Florida</td>
</tr>
<tr>
<td>1</td>
<td>Head</td>
</tr>
<tr>
<td></td>
<td>Department of Oceanography</td>
</tr>
<tr>
<td></td>
<td>University of Washington</td>
</tr>
<tr>
<td></td>
<td>Seattle 5, Washington</td>
</tr>
<tr>
<td>1</td>
<td>U. S. Army Beach Erosion Board</td>
</tr>
<tr>
<td></td>
<td>5201 Little Falls Road, N. W.</td>
</tr>
<tr>
<td></td>
<td>Washington 16, D. C.</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>U. S. Coast and Geodetic Survey</td>
</tr>
<tr>
<td></td>
<td>Department of Commerce</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D. C.</td>
</tr>
<tr>
<td>1</td>
<td>Commandant (OFU)</td>
</tr>
<tr>
<td></td>
<td>U. S. Coast Guard</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D. C.</td>
</tr>
<tr>
<td>1</td>
<td>U. S. Fish and Wildlife Service</td>
</tr>
<tr>
<td></td>
<td>450 B Jordan Hall</td>
</tr>
<tr>
<td></td>
<td>Stanford University</td>
</tr>
<tr>
<td></td>
<td>Stanford, California</td>
</tr>
<tr>
<td>1</td>
<td>U. S. Fish and Wildlife Service</td>
</tr>
<tr>
<td></td>
<td>Fort Crockett</td>
</tr>
<tr>
<td></td>
<td>Galveston, Texas</td>
</tr>
<tr>
<td>1</td>
<td>U. S. Fish and Wildlife Service</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 3630</td>
</tr>
<tr>
<td></td>
<td>Honolulu, T. H.</td>
</tr>
<tr>
<td>1</td>
<td>U. S. Fish and Wildlife Service</td>
</tr>
<tr>
<td></td>
<td>Woods Hole</td>
</tr>
<tr>
<td></td>
<td>Massachusetts</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

2

Director
U. S. Fish and Wildlife Service
Department of the Interior
Washington 25, D. C.
Attn: Dr. L. A. Walford

1

Project Arowa
U. S. Naval Air Station, Bldg. R-48
Norfolk, Virginia

1

Department of Aerology
U. S. Naval Post Graduate School
Monterey, California

2

Director
U. S. Navy Electronics Laboratory
San Diego 52, California
Attn: Code 550
Code 552

8

Hydrographer
U. S. Navy Hydrographic Office
Washington 25, D. C.
Attn: Division of Oceanography

1

Bingham Oceanographic Foundation
Yale University
New Haven, Connecticut