OFFICE OF NAVAL RESEARCH

Contract N7onr-35801

T. O. I.

NR-041-032

Technical Report No. 95

THREE-DIMENSIONAL PLASTIC FLOW UNDER UNIFORM STRESS

by

William Prager

GRADUATE DIVISION OF APPLIED MATHEMATICS

BROWN UNIVERSITY

PROVIDENCE, R. I.

August 1953
THREE-DIMENSIONAL PLASTIC FLOW UNDER UNIFORM STRESS*

by

William Prager
Brown University, Providence, R. I., U.S.A.

Abstract. In view of the role that regions of uniform stress play in the theory of plane plastic flow, the most general velocity field is investigated that is possible under a uniform state of stress at the yield limit. Two cases are distinguished according to whether all principal components of the stress deviation are different from zero ("regular case") or not ("degenerate case"). The analytical description of the velocity field involves two arbitrary functions in the degenerate case but no such functions in the regular case.

1. Introduction. The theory of the slip line field in plane plastic flow is one of the best developed branches of the mathematical theory of perfectly plastic solids. Among the problems that have been solved in this field, those involving rectilinear boundaries are predominant. In many of these problems, the slip line field contains finite regions of uniform stress. The most general velocity field possible in such a region is obtained by the superposition of two arbitrary shear flows in the directions of the maximum shearing stresses. The analytical description of this velocity field involves two arbitrary functions of one variable each.

Whereas fields of plane plastic flow have been studied systematically (see, for instance, Ref. 1, Chaps. 6-9, or Ref. 2, Chaps. 5-7), three-dimensional plastic flow is practically unexplored. Finzi (Ref. 3) and Thomas (Ref. 4) obtained some general

*The results presented in this paper were obtained in the course of research conducted under Contract N7onr-35801 between the Office of Naval Research and Brown University.
results, but did not construct examples of three-dimensional flows. De Simon (Ref. 5) attempted to construct a three-dimensional plastic flow field, but closer inspection of his example reveals this to be a field of plane flow referred to coordinate axes that are oblique to the plane of flow. A non-trivial and genuinely three-dimensional field of plastic flow is found in a paper by Hill (Ref. 6). This flow field describes the incipient plastic flow in a prismatic bar made of a plastic rigid material and subjected to combined tension, torsion, and bending. The equations for the velocity components (Ref. 6, Eqs. 17) contain an unknown function, however, and the non-linear differential equation for this function has not yet been solved. When this function is set equal to zero and the necessary adjustment of constants is made, Hill's flow field reduces to a special case of the "regular" field discussed in the present paper.

In view of the role that regions of uniform stress play in the theory of plane plastic flow, it seems worthwhile to investigate the most general three-dimensional flow field that is possible under a uniform state of stress at the yield limit. It will be seen that, contrary to what is the case for plane flow, the analytical description of the most general three-dimensional flow field possible under uniform stress does not, in general, involve any arbitrary functions.

2. Fundamental equations. Choose the rectangular axes X, Y, and Z, in the principal directions of the uniform stress field and denote the given principal components of the stress deviation by K, L, and M, and the unknown velocity components by
U, V, and W. According to Mises' theory of plasticity (Ref. 7), the components of the velocity strain at a generic point are proportional to the components of the stress deviation at this point, the non-negative factor of proportionality being a function of position. Applied to the present case, this flow rule leads to the following equations in which subscripts denote differentiation with respect to the coordinates:

\[
\begin{align*}
U_X &= \lambda K, \\
V_Y &= \lambda L, \\
W_Z &= \lambda M; \\
U_Y + V_X &= 0, \\
V_Z + W_Y &= 0, \\
W_X + U_Z &= 0.
\end{align*}
\]

(1) (2)

In these equations, \(\lambda \) denotes the non-negative factor of proportionality.

Since \(K, L, \) and \(M, \) are constants, elimination of the velocity components between Eqs. (1) and (2) leads to the following differential equations for the unknown function \(\lambda \):

\[
\begin{align*}
K \lambda_{YY} + L \lambda_{XX} &= 0, \\
L \lambda_{ZZ} + M \lambda_{YY} &= 0, \\
M \lambda_{XX} + K \lambda_{ZZ} &= 0; \\
K \lambda_{YZ} &= 0, \\
L \lambda_{ZX} &= 0, \\
M \lambda_{XY} &= 0.
\end{align*}
\]

(3) (4)

These are the equations of compatibility (see, for instance, Ref. 8, p. 27, Eqs. 10,10) for the components of the velocity strain when these are expressed in terms of the components of the stress deviation and the factor \(\lambda \).

In discussing Eqs. (3) and (4), we must keep in mind that \(K, L, \) and \(M, \) are the principal components of the stress deviation. Accordingly,

\[
K + L + M = 0.
\]

(5)
The following two cases must be discussed separately.

1) None of the quantities \(K, L, \) and \(M \), vanishes. Equations (3) then yield

\[
\lambda_{XX} = \lambda_{YY} = \lambda_{ZZ} = 0; \tag{6}
\]

This will be called the regular case.

2) One of the quantities \(K, L, \) and \(M \), vanishes. If, for instance, \(M = 0 \), we have \(L = -K \), by (5), and Eqs. (3) and (4) furnish

\[
\lambda_{XX} - \lambda_{YY} = 0, \quad \lambda_{ZZ} = 0; \tag{7}
\]

\[
\lambda_{YZ} = 0, \quad \lambda_{ZX} = 0. \tag{8}
\]

This will be called the degenerate case.

For the regular case, Eqs. (4) and (5) yield

\[
\lambda = AX + BY + CZ + D, \tag{9}
\]

where \(A, B, C, \) and \(D \), are arbitrary constants. For the singular case, it follows from Eqs. (7) and (8) that \(\lambda \) has the form

\[
\lambda = f(X + Y) + g(X - Y) + CZ, \tag{10}
\]

where \(C \) again denotes an arbitrary constant.

3. **Regular velocity fields.** With \(\lambda \) as given by Eq. (9), integration of Eqs. (1) and (2) will yield a velocity field that is compatible with the considered uniform stress field. Since \(\lambda \) is non-negative, however, such a velocity field can be constructed only in the half-space in which the right-hand side of (9) is
non-negative. The following analysis is simplified by the introduction of new rectangular coordinates x, y, and s, that are chosen so that this half-space corresponds to $s \geq 0$.

Let k, l, and m, and p, q, and r, be the normal and shear components of the stress deviation with respect to the new coordinate axes, and u, v, and w, the components of the velocity. Equations (1) and (2) must now be replaced by

\begin{align*}
 u_x &= \lambda k, \\
 v_y &= \lambda l, \\
 w_z &= \lambda m; \\
 u_y + v_x &= 2\lambda p, \\
 v_z + w_y &= 2\lambda q, \\
 w_x + u_z &= 2\lambda r,
\end{align*}

where

\begin{equation}
 \lambda = cs, \quad (c > 0).
\end{equation}

To within a velocity field that corresponds to a rigid body motion, the most general velocity field compatible with theses equations is given by

\begin{equation}
 \begin{cases}
 u = c(kxz + pyz + rs^2), \\
 v = c(pxz + lyz + qz^2) \\
 w = -\frac{1}{2} c(kx^2 + ly^2 + 2pxy - mz^2),
 \end{cases} \quad (z > 0)
\end{equation}

This velocity field involves no arbitrary functions, in fact no arbitrary constants other than c.

For given values of the components of the stress deviation, the velocity field (14) is valid only in $z \geq 0$. Under certain conditions, it is possible, however, to continue this field into $z < 0$ by admitting different uniform states of stress on the two sides of the plane $z = 0$. We use the prime to distinguish
quantities in $z < 0$ from the corresponding quantities in $z > 0$.

Since λ cannot be negative, the constant c' must be negative. If the velocity field (14) is to be valid throughout space, we must therefore set $k' = -k$, $l' = -l$, ..., $r' = -r$. Equilibrium between the tractions transmitted across $z = 0$ requires, however, that $q' = q$, $r' = r$. There is no such condition for m and m' because the normal stresses in the z direction are obtained by adding, to m and m', the respective mean normal stresses which do not appear elsewhere in our analysis. It follows from the preceding discussion that

$$q = q' = r = r' = 0.$$ \hspace{1cm} (15)

With this restriction, the velocity field (14) can be continued into $z < 0$. The plane $z = 0$ is then a discontinuity surface of the stress field (for a discussion of such discontinuity surfaces see Ref. 9). The application of this type of stress and velocity fields to a plastic plate under uniform bending and twisting moments is obvious.

4. Degenerate velocity fields. With λ as given by Eq. (10), integration of Eqs. (1) and (2) yields the following result: to within a velocity field that corresponds to a rigid body motion, the most general velocity field possible in the degenerate case is given by

$$U = K [F(X + Y) + G(X - Y) + CXZ],$$

$$V = -K[F(X + Y) - G(X - Y) + CYZ],$$ \hspace{1cm} (16)

$$W = -\frac{1}{2} CK(X^2 - Y^2),$$
where the functions F and G have as derivatives the functions f and g appearing in (10). This velocity field is, of course, restricted to the region in which λ as given by Eq. (10) is non-negative.

The known results for plane plastic flow under constant stress are obtained from (16) by setting $C = 0$. The general degenerate field (16) results from the superposition of the field of plane plastic flow represented by the functions F and G, and the field represented by the terms with C in Eqs. (16). The velocities of the latter field tend to tilt the planes $X = \text{const.}$ or $Y = \text{const.}$ about their intersections with the plane $Z = 0$ and to transform the planes $Z = \text{const.}$ into congruent hyperbolic paraboloids.
REFERENCES

APPROVED DISTRIBUTION LIST FOR UNCLASSIFIED TECHNICAL REPORTS

Issued by

BROWN UNIVERSITY
Contract N7onr-358, T. O. 1
NR 041 032

Office of Naval Research
Washington 25, D. C.
M-2 Attn: Mathematics Branch (Code 432)
M-1 Mechanics Branch (Code 438)
M-1 Physical Branch (Code 421)
M-1 Metallurgy Branch (Code 423)

M-2 Commanding Officer
Office of Naval Research Branch Office
150 Causeway Street
Boston 14, Massachusetts

M-1 Commanding Officer
Office of Naval Research Branch Office
346 Broadway
New York, New York

M-1 Commanding Officer
Office of Naval Research Branch Office
844 North Rush Street
Chicago 11, Illinois

M-1 Commanding Officer
Office of Naval Research Branch Office
1000 Geary Street
San Francisco 9, California

M-1 Commanding Officer
Office of Naval Research Branch Office
1030 East Green Street
Pasadena 1, California

M-17 Officer-in-Charge
Office of Naval Research
Navy #100
Fleet Post Office
New York, New York

M-9 Director
Naval Research Laboratory
Washington 20, D. C.
 Attn: Scientific Information Division

M-2 Library (Code 2021)
M-1 Applied Mathematics Branch (Code 3830)
M-1 Shock and Vibrations Section (Code 3850)
M-1 Structures Branch (Code 3860)
Pleatlnny Arsenal
Dover, New Jersey
M-1 Attn: Mr. L. Gilman

Commanding General
Air Materiel Command
Wright-Patterson Air Force Base
Dayton, Ohio

M-1 Attn: Chief, Materials Division (DCRTS)
R-1 Head, Structures Lab (MCREX-B)

Department of Commerce
Office of Technical Service
Washington 25, D. C.

M-1 Attn: Library Section

National Advisory Committee for Aeronautics
1724 F. Street NW
Washington 25, D. C.

M-1 Attn: Chief of Aeronautical Intelligence

National Advisory Committee for Aeronautics
Langley Aeronautical Laboratory
Langley Field, Virginia

M-1 Attn: Library

National Advisory Committee for Aeronautics
Lewis Flight Propulsion Laboratory
Cleveland Airport
Cleveland 11, Ohio

M-1 Attn: Library

National Bureau of Standards
Washington, D. C.

M-1 Attn: Dr. W. H. Ramberg

Director of Research
Sandia Corporation
Albuquerque, New Mexico

M-1 Attn: Dr. R. P. Peterson

Brooklyn Polytechnic Institute
85 Livingston Street
Brooklyn, New York
R-1 Attn: Dr. N. J. Hoff
R-1 Dr. H. Reissner
M-1 Dr. F. S. Shaw (Dept. Aero. Engrg. & Appl. Mech.)

Brown University
Providence 12, Rhode Island

M-1 Attn: Chairman, Graduate Division of Applied Mathematics

California Institute of Technology
Pasadena, California

R-1 Attn: Dr. J. G. Kirkwood
R-1 Dr. Pol Duwez
University of California
Berkeley, California
M-1 Attn: Dr. J. E. Dorn
R-1 Dr. H. Buntgren
R-1 Dr. G. C. Evans
M-1 Dr. C. F. Garland

University of California
Los Angeles, California
R-1 Attn: Dr. I. S. Sokolnikoff
R-1 Dr. D. Rosenthal

Carnegie Institute of Technology
Pittsburgh, Pennsylvania
R-1 Attn: Dr. J. S. Koehler
R-1 Dr. G. H. Handelman
M-1 Dr. E. Saibel
R-1 Dr. H. J. Greenberg
R-1 Dr. E. D’Appolonia

Case Institute of Technology
Cleveland, Ohio
M-1 Attn: Dr. W. M. Baldwin, Jr., Metals Research Laboratory
R-1 Dr. O. Hoffman

Catholic University of America
Washington, D. C.
M-1 Attn: Dr. F. A. Biberstein
R-1 Dr. K. Hertzfeld

University of Chicago
Chicago, Illinois
R-1 Attn: Dr. T. S. Ke
R-1 Dr. C. S. Barrett

Columbia University
New York, New York
M-1 Attn: Dr. R. D. Mindlin
M-1 Dr. H. Bleich

Cornell University
Ithaca, New York
R-1 Attn: Dr. H. S. Sack
R-1 Dr. A. Kantrowitz

University of Florida
Gainesville, Florida
M-1 Attn: Dr. C. G. Smith

Harvard University
Cambridge 38, Massachusetts
R-1 Attn: Dr. R. von Mises
R-1 Dr. F. Birch, Dunbar Laboratory
R-1 Dr. H. M. Westergaard
Illinois Institute of Technology
Chicago, Illinois
R-l
Attn: Dr. L. H. Donnell
R-l
Dr. L. van Griffis
M-l
Dr. E. Sternberg
R-l
Dr. W. Osgood
M-l
Dr. C. A. Eringen

University of Illinois
Urbana, Illinois
M-l
Attn: Dr. N. M. Newmark
R-1
Engineering
R-l
T. J. Dolan
R-l
Dr. F. Seitz, Department of Physics
M-l
Department of Theoretical and Applied Mathematics

Indiana University
Bloomington, Indiana
M-l
Attn: Dr. T. Y. Thomas

Institute for Advanced Study
Princeton, New Jersey
R-l
Attn: Dr. J. von Neumann

Iowa State College
Ames, Iowa
R-l
Attn: Dr. G/ Murphy
R-l
Dr. D. L. Hall

Johns Hopkins University
Baltimore, Maryland
M-l
Attn: Dr. W. H. Hoppman, II
M-l
Director, Applied Physics Laboratory
Johns Hopkins University
8621 Georgia Avenue
Silver Spring, Maryland

Lehigh University
Bethlehem, Pennsylvania
R-l
Attn: Mr. Lynn S. Beedle

Massachusetts Institute of Technology
Cambridge 39, Massachusetts
R-l
Attn: Dr. P. B. Hildebrand
R-l
Dr. C. W. MacGregor
R-l
Dr. J. M. Lessels
R-l
Dr. W. M. Murray
R-l
Dr. E. Reissner
R-l
Dr. H. S. Tsien
R-l
Dr. M. Cohen, Rm. 8-413, Department of Metallurgy
R-l
Dr. B. L. Averbach, Department of Metallurgy
R-l
Dr. J. T. Norton
R-l
Dr. E. Orowan
M-l
Dr. R. Bisplinghoff, Dept. Aero. Engr.
University of Michigan
Ann Arbor, Michigan

Attn: Dr. Bruce G. Johnston

Dr. Paul Nagdhi

Dr. N. Coburn

Dr. W. Kaplan

New York University
Institute for Mathematics & Mechanics
45 Fourth Avenue
New York 3, New York

Attn: Professor R. Courant

Dr. G. Hudson

New York University
New York 53, New York

Attn: Dr. C. T. Wang, Department of Aeronautics

Northwestern University
Evanston, Illinois

Attn: Dr. M. M. Hetenyi

University of Notre Dame
Notre Dame, Indiana

Attn: Dr. P. A. Beck

Ohio State University
Columbus, Ohio

Attn: Dr. B. A. Boley

Pennsylvania State College
State College, Pennsylvania

Attn: Dr. M. Gensamer

Dr. J. A. Sauer

Dr. Joseph Marin

Dr. J. W. Fredrickson

Princeton University
Princeton, New Jersey

Attn: Dr. S. Lefschetz

Dr. L. Lees

Dr. J. V. Charyk

Rensselaer Polytechnic Institute
Troy, New York

Attn: Library

Dr. Paul Leiber

Santa Clara University
Santa Clara, California

Attn: Dr. R. M. Hermes

Stanford University
Stanford, California

Attn: Dr. L. Jacobsen

Dr. A. Phillips, Department of Mechanical Engineering

Dr. J. M. Goodier
Stevens Institute of Technology
Hoboken, New Jersey
R-l
Attn: Dr. E. G. Schneider

Swarthmore College
Swarthmore, Pennsylvania
M-l
Attn: Capt. W. P. Roop

University of Texas
Austin 12, Texas
R-l
Attn: Dr. A. A. Topractasoglou

University of Utah
Salt Lake City, Utah
M-l
Attn: Dr. H. Eyring

Washington State College
Pullman, Washington
R-l
Attn: Dr. B. Fried

Wheaton College
Norton, Massachusetts
R-l
Attn: Dr. H. Geiringer

Aerojet, Inc.
Asusa, California
R-l
Attn: F. Zwicky

Aluminum Company of America
New Kensington, Pennsylvania
M-l
Attn: R. L. Templin

Armstrong Cork Company
Lancaster, Pennsylvania
R-l
Attn: J. W. Scott

Bell Telephone Laboratories
Murray Hill, New Jersey
R-l
Attn: C. Herring
R-l
J. M. Richardson
R-l
D. P. Ling
R-l
W. P. Mason

Corning Glass Company
Corning, New York
R-l
Attn: J. T. Littleton

E. I. DuPont de Nemours & Co., Inc.
Wilmington 98, Delaware
R-l
Attn: J. H. Faupel, Materials of Construction Section

General Electric Company
Schenectady, New York
R-l
Attn: H. Fehr
R-l
H. Poritsky
R-l
J. H. Hollomon
General Motors
Detroit, Michigan
R-1 Attn: J. O. Almen

Lockheed Aircraft Company
Department 72-25, Factory A-1, Building 66
Burbank, California
R-1 Attn: Engineering Library

Midwest Research Institute
Kansas City, Missouri
R-1 Attn: C. O. Dohrenwend
R-1 M. Golan

Pratt & Whitney Aircraft Corporation
East Hartford, Connecticut
R-1 Attn: R. Morrison

U. S. Rubber Company
Passaic, New Jersey
R-1 Attn: H. Smallwood

Welding Research Council
Engineering Foundation
29 West 39th Street
New York 18, New York
M-1 Attn: W. Spraragen, Director

Westinghouse Research Laboratories
East Pittsburgh, Pennsylvania
M-1 Attn: Dr. A. Nadai
R-1 Dr. E. A. Davis

Westinghouse Electric Corporation
Lester Branch P. O.
Philadelphia, Pennsylvania
R-1 Attn: R. P. Kroon, Mgr. of Engineering, AGT Division