UNCLASSIFIED

<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD010750</td>
</tr>
</tbody>
</table>

CLASSIFICATION CHANGES

TO: unclassified

FROM: confidential

LIMITATION CHANGES

TO:
Approved for public release, distribution unlimited

FROM:
Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; 02 JAN 1953. Other requests shall be referred to Office of Naval Research, Arlington, VA 22203.

AUTHORITY

31 Jan 1965, DoDD 5200.10; ONR ltr dtd 9 Nov 1977

THIS PAGE IS UNCLASSIFIED
Best Available Copy
APPLICATION OF CIRCULATION CONTROL TO
AN AIRPLANE OF MILITARY LIAISON TYPE

NOAA CONTRACTS 234(00) AND 856(00)
Cessna
Aircraft Company
Wichita, Kansas

PERIODIC PROGRESS REPORT

MODEL 309A & 319: REPORT NO. 4
APPLICATION OF CIRCULATION CONTROL TO AN AIRPLANE OF MILITARY LIASION TYPE.
MORE CONTRACTS 234(00) AND 656(00).

REPORT DATE: 2 January 1953
PREPARED BY: E. O. Blesser
WITNESSED BY: J. W. Fisher
APPROVED BY: A. E. Petroff
APPLICATION OF CIRCULATION CONTROL TO AN AIRPLANE OF MILITARY LIASON TYPE

This report covers the period from 2 November 1952 to 1 January 1953.

CESSNA MODEL 309-309A - CONTRACT NO. 234(00)

Analysis

Examination of data obtained during the flight test of the airplane with AirResearch Turbine as an injector pump for the BLC system revealed an error in the computation of CQ and CQs. This explains the poor performance of the Cessna installation as compared with German and French tests (which was previously attributed to low efficiency of the pumping system) and throws a different light on the performance of the AirResearch Turbine. Results of this study will be presented in the Report #1309-8: "Evaluation of Performance and Efficiency of the AirResearch Gas Turbine as an Injector Pump for the BLC System".

Meanwhile the corrected curves of CQ vs CQ and true air speed are attached to this report and will be distributed to be inserted as page 16 of the report 1309-3.

Pumping performance of the axial fan system in flight has been evaluated and flow coefficients, horsepower input and output, and duct efficiency determined. Results and conclusions not already reported are as follows:

1. As airplane speed increases flow quantity is reduced, and CQ falls off more rapidly than normally would be expected. This is caused by inability of the fans, presently installed, to operate at the same output, but against greater pressure losses. These losses increase with speed because the air entering the suction slot must be accelerated from rest to the velocity of the airplane.
2. Flow quantities also show an abrupt drop in the region of fan surge (blade stall). This occurs in both forward and aft ducts, but at lower indicated airspeeds in the forward duct. Losses in the forward duct were greater initially (static conditions) which accounts for the earlier surge in that duct. The effect of fan surge is to reduce BLC system output, but requires approximately the same power input.

3. Airplane power reduces the C_Q required to maintain a constant C_L (due to slip stream effect). This indicates the $\Delta C_{L_{max}}$ due to power is greater with BLC than without. Further results and conclusions pertaining to the BLC performance with axial fan system will be presented in report #1309-7: "Analysis of Boundary Layer Control Pumping Performance with Electrically Driven Fans".

Flight Tests

Tests to determine the reason for change in static longitudinal stability caused by the BLC system in action have been completed. In order to measure downwash angle and dynamic pressure at the tail, Kollsman angle of attack indicator was installed on the leading edge of the stabilizer. The results will be presented in report #1309-6: "Static Longitudinal Stability of the Model 309A with Axial Fans as BLC Pumping System".

Ground Tests

Several combinations of lead-acid batteries were tested at 360 amp. current discharge to obtain voltage drop vs time. Results of tests show
promise for intermittent service of 30 seconds at 5 minute intervals. (See
graph) The installation will consist of three or four 12 volt aircraft
batteries of 20-30 ampere hour rating weighing approximately 230-310 lbs.
Reading batteries Company agreed to test several combinations of batteries
at 360 amp. discharge rate. Meanwhile they will send us four T-38 aircraft
batteries to be installed on the airplane for flight testing.

A considerable scattering of points was observed in the process of
measuring quantity flow of air in the injection system. It was suspected that
this could be due to excessive turbulence which was causing irregular reading
of the meter. In order to verify this a simple bench test was performed
to study the effect of flow angularity upon the readings of total pressure
tubes. Air for the test was blown through a two inch straight nozzle at a
constant rate. The total pressure tubes were mounted one at a time six
inches from the nozzle and rotated about the nose as shown on the sketch of
Figure 1. The results indicate that round tubing with rounded nose is least
susceptible to annular flow.

Design and Drafting

A drawing of the installation of the hydrogen peroxide injection pump
in the 309C is now in progress. It will include the supply tanks, the in-
jector pump, firewalls and fire control system.

The following drawings were released:

12309-05 - Booster Bungee System
-06 - Pressure Pick-Up Installation (Model 309C)
-07 - Wiring Diagram - Battery Operated Fan System
-08 - Wiring Diagram - Compressor, Battery and Generator
Operated Fan System
CESSNA MODEL 319 - CONTRACT NO. 856(00)

Analysis

In order to establish a specification for the design of the fan and the pumping system, a study was initiated to determine the effect of wing loading, coefficient of ground friction, and $C_{i_{\text{max}}}$ upon take-off distance. The results will determine a $C_{i_{\text{max}}}$ for the optimum take-off characteristics. Then, knowing duct losses and required values of C_{Q}, a curve of Δp across the fan vs quantity flow will be established. This, along with limiting physical dimensions and operating conditions, will govern the design of a pumping unit.

Preliminary analysis of take-off distance over 50 ft. obstacle indicated the following:

1. Substantial reduction of take-off distance at the same wing loading occurs with increased $C_{i_{\text{max}}}$ (due to BLC). The largest performance gain exists for take-off on a very soft turf (or sand) with smaller gains on a hard surface runway.

2. Proportionally larger gains can be expected with increased wing loading at the same $C_{i_{\text{max}}}$ (neglecting the weight of BLC system). If the airplane weight is increased to take account of BLC apparatus, smaller gains would exist. A reasonable estimation of weight chargeable to BLC awaits the results of a current survey of auxiliary power units as well as studies of electrical, hydraulic, and other systems.

3. Reduction of take-off distance for values of $C_{i_{\text{max}}}$ greater than 4.0 was found to be small, particularly for low wing loading and hard surfaced runways.
4. Power extracted from the engine to operate a BLC system reduced performance gain. An optimum C_l_{max} (for take-off distance) of approximately 4.0 was found for all runway conditions and wing loadings in the range of 20 to 25. For wing loadings of 15 to 20 the optimum value was 4.5.

5. If an amount of power equivalent to that required by BLC is added, instead of subtracted, take-off performance still remains inferior to that with BLC up to wing loadings of 20. This is true for C_l_{max} (due to BLC) up to 4.5 beyond which power required for BLC becomes quite large.

These conclusions are subject to verification by wind tunnel tests of the 0.6-scale model. Further results and conclusions will be presented at a later date.

Mock-Up of Suction Duct

Model 319 suction duct bench tests performed recently by the University of Wichita indicate that total pressure losses in the "vortex" type suction duct are very high - exceeding those of the ducts now installed in the Model 309A. In view of this the University has undertaken at their own expense, the design, construction (modification of present mock-up), and testing of another configuration which offers possibility of improvement.

Design and Drafting

Since the Model 319 is expected to be flight tested over a range of wing loadings from 15 to 25 lb/sq.ft., it was necessary to increase the
strength of the airplane in several critical points. Design work on the structural details of the wing are confined to areas forward of the front spar. This is due to the fact that the final duct design has not been confirmed by bench and wind tunnel tests (see section on suction duct mock-up tests).

The following drawings have been released:

1211-2 - Tail Skirt Modification
-9 - Bulkhead Contour Sta. 214-375 (loft)
-10 - Main Landing Gear Installation
EFFECT OF ANGULAR FLOW ON TOTAL PRESSURE TUBE READING IN CONSTANT VELOCITY TURBULENT FLOW

- $\frac{3}{4}''$ ROUND TUBE NOSE ROUNDED
- $\frac{1}{2}''$ ROUND TUBE NOSE SQUARE
- $\frac{5}{8}''$ FLAT TUBE VERTICAL NOSE ROUNDED
- $\frac{1}{2}''$ FLAT TUBE HORIZONTAL NOSE ROUNDED

TOTAL PRESSURE

FLOW ANGLE

FLOW ANGLE IN DEGREES

CONFIDENTIAL
CONFIDENTIAL

DISCHARGE CHARACTERISTICS

S-24 REBAT HEAVY DUTY

12 VOLT

27 A-HR (EST)

WT: 23 LB

FIGURE 2

LOAD

2 - RUN NO 1

A - RUN NO 2

NOTE:

FIVE MINUTE RECOVERY

TIME WAS ALLOWED

BETWEEN RUNS

VOLTAGE REQUIRED FOR PROPER

SYSTEM OPERATION

AMPS

VOLTS

0 1 2 3 4 5 6

0 5 10 15 20 25 30

TIME (SEC)

CONFIDENTIAL
Figure 2

FULL FLAPS &AILERON DROOP
SPEED POWER - FLT #6

C_D vs TAS

- \bigcirc BLOWING SLOT
- \triangle SUCTION SLOT

TAS - MPH

C_L vs C_D

- \bigcirc BLOWING SLOT
- \triangle SUCTION SLOT

$C_D \times 10^4$