SOME TWO SAMPLE TESTS BASED ON ORDERED OBSERVATIONS FROM THE EXPONENTIAL DISTRIBUTION

BY

BENJAMIN EPSTEIN AND CHIA KUOH TSAO

TECHNICAL REPORT NO. 7
DECEMBER 15, 1952

PREPARED UNDER CONTRACT N00038-65-E-001 (CC)
(NR-012-017)
FOR
OFFICE OF NAVAL RESEARCH

DEPARTMENT OF MATHEMATICS
WAYNE UNIVERSITY
DETROIT, MICHIGAN
THIS REPORT HAS BEEN DECLASSIFIED AND CLEARED FOR PUBLIC RELEASE.

DISTRIBUTION A
APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.
1. Introduction

Let \(x_{11} \leq x_{12} \leq \cdots \leq x_{1n_1} \) and \(x_{21} \leq x_{22} \leq \cdots \leq x_{2n_2} \) be two random samples \((S_{n_1} \text{ and } S_{n_2}) \) from populations having p.d.f.'s \(f(x; \lambda_1, \theta_1) \) and \(f(x; \lambda_2, \theta_2) \) respectively, where

\[
f(x; \lambda, \theta) = \frac{1}{\theta} \exp \left(\frac{-x}{\theta} \right).
\]

Let \(S_{r_1} \) and \(S_{r_2} \) be the sets of the first \(r_1 \) and \(r_2 \) smallest observations of \(S_{n_1} \) and \(S_{n_2} \) respectively. Then the p.d.f.'s of \(S_{r_1} \) and \(S_{r_2} \) are given, say, by

\[
g(x_{11}, \ldots, x_{1r_1}; \lambda_1, \theta_1) \quad \text{and} \quad g(x_{21}, \ldots, x_{2r_2}; \lambda_2, \theta_2),
\]

where

\[
g(x_1, x_2, \ldots, x_r; \lambda, \theta) = \frac{n!}{(n-r)!} \frac{1}{\theta^r} \exp \left\{ -\frac{r}{\theta} \left[\frac{\sum_{i=1}^{r} (x_i - \lambda) + (n-r)(\lambda - \lambda)}{\theta} \right] \right\}
\]

The likelihood ratio tests based on the complete sets, \(S_{n_1} \) and \(S_{n_2} \), are special cases of those obtained by Sukhatme [2,3]. It can be shown that similar likelihood ratio tests based on \(S_{r_1} \) and \(S_{r_2} \) may be obtained by following Sukhatme's procedure [2]. In this report these likelihood ratio tests are reduced to equivalent tests which are expressed in terms of the well-known Chi-square and Snedecor's F distributions. Furthermore, some of the tests obtained in this report can be extended to \(k \)-sample tests.
Since percentage points for the \(\chi^2 \) and \(t \) distributions are tabulated, tests involving these random variables are useful in application. We remark that the likelihood ratio test for the hypothesis \(H_2 \) (see Section 3) has been obtained by Paulson [1].

2. Preliminary lemmas.

We give several lemmas which were used to obtain the distributions of the reduced statistics. Lemmas 1-3 can be proved by the use of characteristic functions and their proofs are omitted. Proofs of lemmas 4-9 are given.

In lemmas 1, 2 and 3 below, we let \(x_1 \leq x_2 \leq \ldots \leq x_r \leq \ldots \leq x_n \) be a random sample from a population having p.d.f. (1) and we define statistics \(u, v, \) and \(h \) as,

\[
(3) \quad u = \frac{2}{\theta} \left[\sum_{i=1}^{r} (x_i - \lambda) + (n - r)(x_r - \lambda) \right].
\]

\[
(4) \quad v = \frac{2}{\theta} \left[\sum_{i=1}^{r} (x_i - x_1) + (n - r)(x_r - x_1) \right].
\]

\[
(5) \quad h = \frac{2v}{\theta} (x_1 - \lambda).
\]

Lemma 1. \(u \) is distributed as \(\chi^2(2r) \).

Lemma 2. \(v \) is distributed as \(\chi^2(2r-2) \).

Lemma 3. \(v \) and \(h \) are independently distributed as \(\chi^2(2r-2) \) and \(\chi^2(2) \) respectively.

Lemmas 1-3 deal with the case of two samples. The statistics \(u_1, v_1 \) and \(u_2, v_2 \) are defined as in (3) and (4). Three additional variables \(w_1, w_2, \) and \(w \) are defined in (6); \((\cdot)^2 := \langle \cdot \rangle^2 \).

\[
(6) \quad w_1 = \frac{2\theta}{\xi_1} (x_{11} - x_{12}), \quad \text{for} \quad x_{11} > x_{12}
\]
\(z_2 = \frac{n_2}{\theta_2} (x_{21} - x_{11}) \), for \(x_{21} > x_{11} \)

(8) \(w = w_2 \), when \(x_{11} > x_{21} \) and \(w = w_2 \), when \(x_{21} > x_{11} \).

Lemma 4. If \(A_1 = A_2 \), then

\[\Pr(x_{11} > x_{21}) = \frac{n_2/\theta_2}{n_1/\theta_1 + n_2/\theta_2} \]

and

\[\Pr(x_{21} > x_{11}) = \frac{n_1/\theta_1}{n_1/\theta_1 + n_2/\theta_2} \]

Proof:

\[\Pr(x_{11} > x_{21}) = \int_{A_1} \int_{A_1} \frac{n_1 n_2}{\theta_1 \theta_2} e^{-\frac{n_1}{\theta_1} (x_{11} - A_1)} - \frac{n_2}{\theta_2} (x_{21} - A_1) \, dx_{11} \, dx_{21} \]

\[= \frac{n_2/\theta_2}{n_1/\theta_1 + n_2/\theta_2} \]

Hence,

\[\Pr(x_{21} > x_{11}) = 1 - \Pr(x_{11} > x_{21}) = \frac{n_1/\theta_1}{n_1/\theta_1 + n_2/\theta_2} \]

Lemma 5. If \(A_1 = A_2 \), then both \(w_1 \) (given that \(x_{11} > x_{21} \)) and \(w_2 \) (given that \(x_{21} > x_{11} \)) are distributed as \(\chi^2(2) \).
Proof. Since \(A_1 = A_2 \), \(w_1 \) can be written as

\[
 w_1 = \frac{2n_1}{\theta_1} \left[(x_{11} - A_1) - (x_{21} - A_2) \right].
\]

Consequently,

\[
 x_{11} - A_1 = \frac{\theta_1}{2n_1} w_1 + (x_{21} - A_2).
\]

Let \(x_{11} - A_1 = y_1 \) and \(x_{21} - A_2 = y_2 \), then the condition that \(x_{11} > x_{21} \) is equivalent to \(y_1 > y_2 \). Since the joint distribution of \(y_1 \) and \(y_2 \) is, say

\[
 f(y_1, y_2) = \frac{n_1 n_2}{\theta_1 \cdot \theta_2} e^{-\frac{n_1}{\theta_1} y_1 - \frac{n_2}{\theta_2} y_2}, \quad y_1, y_2 > 0,
\]

we have

\[
 \Pr(w_1 \leq w | y_1 > y_2) = \frac{\Pr(w_1 \leq w, y_1 > y_2)}{\Pr(y_1 > y_2)}. \tag{12}
\]

According to lemma 1:

\[
 \Pr(y_1 > y_2) = \Pr(x_{11} > x_{21}) = \frac{n_2/\theta_2}{n_1/\theta_1 + n_2/\theta_2}.
\]

Further, it is readily verified that

\[
 \Pr(w_1 \leq w, y_1 > y_2) = \frac{n_2/\theta_2}{n_1/\theta_1 + n_2/\theta_2} \left[1 - e^{-w/2} \right]. \tag{13}
\]

Therefore,

\[
 \Pr(w_1 \leq w | y_1 > y_2) = 1 - e^{-w/2}. \tag{14}
\]
But, by (11)

\[
\Pr(w \leq w_{10}, x_{11} > x_{21}) = \Pr(x_{11} > x_{21}) \left[1 - e^{-\frac{w}{2w_{10}}} \right]
\]

and by lemma 2, \(\Pr(v_1 \leq v_{10})\) and \(\Pr(v_2 \leq v_{20})\) are cumulative \(\chi^2\)-distributions with \((2r_1 - 2)\) and \((2r_2 - 2)\) d.f.'s. Thus lemma 7 is proved.

Lemma 8. If \(A_1 = A_2\) then \(V_1, V_2\) and \(w\) are independently distributed as \(\chi^2(2r_1 - 2), \chi^2(2r_2 - 2)\) and \(\chi^2(2)\) respectively.

Proof. Since

\[
\Pr(v_1 \leq v_{10}, v_2 \leq v_{20}, w \leq w_0) = \Pr(v_1 \leq v_{10}, v_2 \leq v_{20}, w \leq w_0, x_{11} > x_{21}) + \Pr(v_1 \leq v_{10}, v_2 \leq v_{20}, w \leq w_0, x_{11} < x_{21})
\]

then by (17) lemma 8 follows.

3. Likelihood ratio tests and equivalent reduced tests.

The various hypotheses and their associated likelihood ratio and equivalent reduced tests are listed below. The details involved in obtaining the likelihood ratio will not be given here, since they are well known.

A. Statement of hypotheses:

a) \(H_1:\) To test \(\theta_1 = \theta_2\)

(assuming \(A_1\) and \(A_2\) are known).

b) \(H_2:\) To test \(\theta_1 = \theta_2\)

(assuming \(A_1 = A_2\)).

c) \(H_3:\) To test \(\theta_1 = \theta_2\).

\(H_4:\) To test \(\theta_1 = \theta_2\)

(assuming \(\theta_1\) and \(\theta_2\) are known).
a) H_0: To test $A_1 = A_2$
(assuming $\theta_1 = \theta_2$).

f) H_6: To test $A_1 = A_2$.

g) H_7: To test $A_1 = A_2$ and $\theta_1 = \theta_2$.

B. Likelihood ratio tests

In a), b) and c) below we let

$$k = \frac{2}{\chi^2} \left(\frac{r_1 + r_2}{r_1} \right)^{r_1}$$ \hspace{1cm} (19)

a) For H_1:

$$\lambda_1 = k \left[(1 + c_1) r_1 (1 + \frac{1}{c_1} r_2) \right]^{-1}$$ \hspace{1cm} (20)

where

$$c_1 = \frac{\sum_{j=1}^{r_2} (x_{2j} - A_2) + (n_2 - r_2)(x_{2r_2} - A_2)}{\sum_{j=1}^{r_1} (x_{1j} - A_1) + (n_1 - r_1)(x_{1r_1} - A_1)}$$ \hspace{1cm} (21)

b) For H_2:

$$\lambda_2 = k \left[(1 + c_2) r_1 (1 + \frac{1}{c_2} r_2) \right]^{-1}, \text{ if } x_{11} < x_{21}$$

$$\lambda_2 = k \left[(1 + \frac{1}{c_2}) r_1 (1 + c_2 r_2) \right]^{-1}, \text{ if } x_{21} < x_{11}$$

(22)

where
e) For H_5:

\begin{align}
\lambda_5 &= (1 + c_5)^{-(r_1 + r_2)} \quad \text{if } x_{11} > x_{21} \\
&= (1 + c_5)^{-(r_1 + r_2)} \quad \text{if } x_{11} < x_{21}
\end{align}

where

\begin{align}
c_5 &= \frac{\sum_{i=1}^{2} x_{ii} - x_{21}}{r_1 \sum_{i=1}^{2} x_{ii} - x_{21} + (n_i - r_i)(x_{i1} - x_{i11})} \\
&\quad + \sum_{i=1}^{2} \frac{r_i}{(n_i - r_i)(x_{i1} - x_{i11})}
\end{align}

f) For H_6:

\begin{align}
\lambda_6 &= (1 + c_6)^{-r_1} \quad \text{if } x_{11} > x_{21} \\
&= (1 + c_6)^{-r_2} \quad \text{if } x_{11} < x_{21}
\end{align}

where
\[c_6 = \frac{n_1(x_{11} - x_{21})}{\sum_{j=1}^{r_1} (x_{1j} - x_{11}) + (n_1 - r_1)(x_{1r_1} - x_{11})} \]

\[c_6 = \frac{n_2(x_{21} - x_{11})}{\sum_{j=1}^{r_2} (x_{2j} - x_{21}) + (n_2 - r_2)(x_{2r_2} - x_{21})} \]

(31)

g) For \(h_7 \):

\[\lambda_7 = \frac{2}{\prod_{i=1}^{r_1} \left(\frac{\hat{\xi}_i}{\xi_i} \right)} \]

where

\[\hat{\xi}_i = \frac{1}{r_1} \sum_{j=1}^{r_i} (x_{ij} - x_{i1}) + (n_i - r_i)(x_{i1} - x_{i1}) \]

\[\hat{\theta} = \frac{1}{r_1 + r_2} \sum_{i=1}^{r_i} \left[\frac{r_i}{\sum_{j=1}^{r_i} (x_{ij} - \hat{\lambda}) + (n_i - r_i)(x_{i1} - \hat{\lambda})} \right] \]

and where \(\hat{\lambda} = \min (x_{11}, x_{21}) \).

C. Reduced Tests

By the use of the lemmas in section 2, \(\lambda_1, \lambda_2, \ldots, \lambda_6 \) can be reduced to the following equivalent tests having the corresponding distributions (see Table 1). The authors have not succeeded in reducing \(\lambda_7 \) to a known test.
<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Equivalent reduced Tests</th>
<th>Distributions</th>
<th>Critical region</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_1</td>
<td>$f_1 = r_1 \frac{v}{r_2} c_1$</td>
<td>$F(2r_2, 2r_1)$</td>
<td>(2)</td>
</tr>
<tr>
<td>H_2</td>
<td>$f_2 = \frac{r_1-1}{r_2} c_2$, if $x_{11} < x_{21}$</td>
<td>$F(2r_2, 2r_{1-2})$</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>$f'2 = \frac{r_2-1}{r_1} c'2$, if $x{21} < x{11}$</td>
<td>$F(2r_1, 2r_{2-2})$</td>
<td>(2)</td>
</tr>
<tr>
<td>H_3</td>
<td>$f_3 = \frac{r_1-1}{r_2-1} c_3$</td>
<td>$F(2r_2-2, 2r_{1-2})$</td>
<td>(2)</td>
</tr>
<tr>
<td>H_4</td>
<td>$f_4 = c_4$</td>
<td>$\chi^2 (2)$</td>
<td>(1)</td>
</tr>
<tr>
<td>H_5</td>
<td>$f_5 = \frac{2r_1 + 2r_2 - 4}{2} c_5$, if $x_{11} > x_{21}$</td>
<td>$F(2, 2r_1 + 2r_2 - 4)$</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>$f'5 = \frac{2r_1 + 2r_2 - 4}{2} c'5$, if $x{21} > x{11}$</td>
<td>$F(2, 2r_1 + 2r_2 - 4)$</td>
<td>(1)</td>
</tr>
<tr>
<td>H_6</td>
<td>$f_6 = \frac{2r_2 - 2}{2} c_6$, if $x_{11} > x_{21}$</td>
<td>$F(2, 2r_1-2)$</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>$f'6 = \frac{2r_2 - 2}{2} c'6$, if $x{21} > x{11}$</td>
<td>$F(2, 2r_1-2)$</td>
<td>(1)</td>
</tr>
</tbody>
</table>
In Table 1 numbers in the "critical regions" column indicate that the reduced tests obtained may be either one-sided or two-sided. For example, consider the case where \(r_1 = r_2 = 10 \) and \(\alpha = .05 \). Then for the various \(H_i \), \(i = 1, 2, 3, 4, 5, 6 \) we have the following critical regions which are summarized for convenience in Table 2.

TABLE 2

Critical Regions

<table>
<thead>
<tr>
<th>(H_i)</th>
<th>(f_1 > 2.44) or (f_1 < \frac{1}{2.44})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_2)</td>
<td>(f_2 > 2.56) or (f_2 < \frac{1}{2.56}) when (x_{12} < x_{21})</td>
</tr>
<tr>
<td></td>
<td>or (f_2' > 2.56) or (f_2' < \frac{1}{2.56}) when (x_{22} < x_{11})</td>
</tr>
<tr>
<td>(H_3)</td>
<td>(f_3 > 2.60) or (f_3 < \frac{1}{2.60})</td>
</tr>
<tr>
<td>(H_4)</td>
<td>(f_4 > 5.99)</td>
</tr>
<tr>
<td>(H_5)</td>
<td>(f_5 > 3.26) when (x_{11} > x_{21})</td>
</tr>
<tr>
<td></td>
<td>(f_5' > 3.26) when (x_{21} > x_{11})</td>
</tr>
<tr>
<td>(H_6)</td>
<td>(f_6 > 3.57) when (x_{11} > x_{21})</td>
</tr>
<tr>
<td></td>
<td>(f_6' > 3.57) when (x_{21} > x_{11})</td>
</tr>
</tbody>
</table>
References:

Wayne University Technical Reports
No. 451(00)

DISTRIBUTION LIST

Dr. Edward Paulson 5
Head, Statistics Branch
Office of Naval Research
Department of the Navy
Washington 25, D.C.

Scientific Section 2
Office of Naval Research
Department of the Navy
1000 Geary Street
San Francisco 9, California

Director, Naval Research Laboratory 9
Washington 25, D.C.

Attn: Technical Information Officer

Chief of Naval Research 2
Office of Naval Research
Washington 25, D.C.

Attn: Code 432
(Mathematics Branch)

Office of the Assistant Naval Attache for Research 2
Naval Attache
American Embassy
Navy #100
Fleet Post Office
New York, N.Y.

Planning Research Division 1
Deputy Chief of Staff
Comptroller, U.S. Air Force
The Pentagon
Washington, D.C.

Commanding Officer 2
Signal Corps Procurement Agency
2800 South 20th Street
Philadelphia, Pennsylvania

Commanding General 2
Army Chemical Center
Quality Assurance Branch
Edgewood, Maryland

Dr. Clifford Maloney 1
Chief, Statistics Branch
Chemical Corps Biological Laboratories
Physical Sciences Division
Camp Detrick, Maryland

Commanding Officer 1
9926 Technical Service Unit
Armed Services Medical Procurement Agency, Inspection Division
61, Sands Street
Brooklyn, New York

Asst. Chief of Staff, O-4 1
United States Army
Procurement Division
Standards Branch
Washington 25, D.C.

Chairman, Munitions Board 2
Material Inspection Agency
Washington 25, D.C.

Chief of Ordnance 1
United States Army
Research and Development Division
Washington 25, D.C.

Attn: Brig. General L. E. Simon
Mr. Charles Bicking

Chief, Bureau of Ordnance 2
Department of the Navy
Quality Control Division
Washington 25, D.C.

Chief, Bureau of Aeronautics 2
Department of the Navy
Code 231
Washington 25, D.C.

Commanding Officer 1
Frankford Arsenal
Philadelphia 37, Pennsylvania
Los Angeles Engineering Field Office
Air Research and Development Command
5544 Hollywood Boulevard
Los Angeles 20, California
Attn: Captain Norman S. Nelson

Chief, Bureau of Ships
Asst. Chief for Research and Development - Code 373
Washington 25, D. C.

Commanding General
Air Materiel Command
Quality Control Division WCLXF
Wright-Patterson Air Force Base
Dayton, Ohio

Major M. H. Pardee
Director of Procurement
Statistical Quality Control Branch
Air Material Command
Wright-Patterson Air Force Base
Dayton, Ohio

Headquarters, USAF
Director of Research and Development
Washington 25, D. C.

Commanding Officer
Office of Naval Research
Branch Office
The John G. Crear Library Building
Tenth Floor, 86 E. Randolph St.
Chicago 1, Illinois

Commanding Officer
Office of Naval Research
Branch Office
346 Broadway
New York 13, N. Y.

Officer in Charge
Office of Naval Research
London Branch Office
Fleet Post Office - Navy 100
New York, N. Y.

Commanding Officer
Office of Naval Research
Branch Office
1030 East Green Street
Pasadena 1, California

Commanding Officer
Office of Naval Research
Branch Office
1997 Summer Street
Boston 10, Massachusetts

Chairman
Research and Development Board
The Pentagon
Washington 25, D. C.

Assistant Chief of Staff, G-4
for Research and Development
U. S. Army
Washington 25, D. C.

Chief of Naval Operations
Operations Evaluation Group - CP34Z2E
The Pentagon
Washington 25, D. C.

Commanding General
Air Proving Ground
Eglin Air Force Base
Eglin, Florida

Commander
U. S. Naval Proving Ground
Dahlgren, Virginia

Commander
U. S. Naval Ordnance Test Station
Inyokern, China Lake, Calif.

Commanding General
U. S. Army Proving Ground
Aberdeen, Maryland
Attn: Ballistics Research Lab.

Rand Corporation
1500 Fourth Street
Santa Monica, California

Office of Naval Research
Logistics Branch - Code H36
I-3 Building
Washington 25, D. C.

Logistics Research Project
George Washington University
707 - 22nd Street, N. W.
Washington 7, D. C.
Director of Research
Operations Research Office
U. S. Army
Fort McHenry
Washington 25, D. C.

Asst. for Operations Analysis
Headquarters U. S. Air Force
Washington 25, D. C.

Mr. Millard Rosenfield
Procurement Data Branch
Signal Corps Engineering Labs.
Watson Area
Fort Monmouth, New Jersey

Dr. J. R. Stearn
Sylvania Electric Products, Inc.
1740 Broadway
New York 19, N.Y.

Mr. Hamilton Brooks
Capacitor Section
Westinghouse Electric Corporation
East Pittsburgh, Pennsylvania

Mr. Leonard C. Johnson
General Motors Laboratories (M.E.I.)
General Motors Building
Detroit, Michigan

Professor H. A. Thomas, Jr.
Graduate School of Engineering
Cambridge, Massachusetts

Mr. George Thomson
Research Laboratory
Ethyl Corporation
Detroit, Michigan

Professor Karl Spangenberg
Department of Electrical Engineering
Stanford University
Stanford, California

Professor W. G. Shepherd
Dept. of Electrical Engineering
University of Minnesota
Minneapolis, Minnesota

U. S. Department of the Interior
Fish and Wildlife Service
1220 East Washington Street
Ann Arbor, Michigan
Attn: George F. Lumsden

U.S.N. Engineering Experiment Station
Annapolis, Maryland
Attn: Mr. Francis F. DelPiori

Mr. William E. Kane
Special Weapons Department
Northrop Aircraft, Inc.
Hawthorne, California

Mr. Alan A. Groesbeck
Sylvania Electric
70 Forsyth Street
Boston, Massachusetts

Dr. Eugene W. Pike
Applied Physics Section
Engineering Division
Raytheon Manufacturing Company
118 California Street
Newton, Massachusetts

Professor Andrew Schults, Jr.
Department of Industrial and Engineering Administration
Cornell University
Ithaca, New York

Dr. C. West Churchman
Case Institute of Technology
Cleveland, Ohio

Professor T. J. Dolan
Department of Theoretical and Applied Mechanics
University of Illinois
Urbana, Illinois

Professor Robert Beschrofer
Dept. of Industrial Engineering
Columbia University
New York, N.Y.

Chief of Naval Material
Code M553
Department of the Navy
Washington 25, D.C.

Mr. Mark S. Jones
Aeronautical Radio, Inc.
Military Contract Division
1520 New Hampshire Ave., N.W.
Washington 6, D.C.