UNCLASSIFIED

AD NUMBER

AD005187

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies and their contractors; Foreign Government Information; 30 SEP 1949. Other requests shall be referred to British Embassy, 501 Pennsylvania Avenue, NW, Washington, DC 20001.

AUTHORITY

DSTL, AVIA 26/1744, 14 Apr 2009

THIS PAGE IS UNCLASSIFIED
A METHOD OF MAKING TRACELESS SOLDER CONNECTIONS TO INSULATORS AND CARBON FILM RESISTORS FOR PRINTED WIRING TECHNIQUES

AUTHORS: W. R. CONWAY
R. BROOKES

Readers of this Memorandum are reminded that it expresses the personal view of the Author and does not necessarily present Official policy.

PATENTS
The reader is warned that the contents of this Report may form the subject of Patents or pending Patent applications, and that no attempt has been made to furnish in the Report complete information concerning such Patents or applications. Information regarding Government owned Patents and applications relevant to the contents of this Report may be had on application to the Ministry of Supply (Pats. 2), St. George’s Court, New Oxford St., London, W.C.1.

Crown Copyright Reserved.

T.R.E. Form 16
Best Available Copy
(1)

In parallel with the development of suitable flat resistors for printed circuit technique it has been necessary to find a method of making electrode connections directly to these carbon film resistors. It must be possible to solder to these electrodes. A satisfactory method has been developed and this has also been found useful in making solder connections to insulating strips, to glass groupboards and formers used for binding potentialmeter elements.

(2)

METHODS INVESTIGATED

The following methods of providing metallic contact to carbon film resistors have been tried and the results tabulated.

<table>
<thead>
<tr>
<th>Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Chemical reduction of metallic salt to form thin metal film.</td>
<td>Film not strongly adherent. Will not solder. Suitable as temporary contact.</td>
</tr>
<tr>
<td>2. Thickening of above film by electrolytic action.</td>
<td>Reduced metal film adhered to electrolytic film and both pooled off.</td>
</tr>
<tr>
<td>3. Spraying of copper, zinc and cadmium.</td>
<td>Impossible to solder. Suitable as pressure contact connection.</td>
</tr>
<tr>
<td>4. Copper foil bonding.</td>
<td>Connection uncertain and cumbersome to apply.</td>
</tr>
<tr>
<td>5. Formation of silver or other metal foil by hot pressing powdered metal.</td>
<td>Not adherent to carbon film.</td>
</tr>
<tr>
<td>7. Metallic dust mixed in synthetic resin to form a paste.</td>
<td>High resistance contact. Not possible to solder.</td>
</tr>
<tr>
<td>8. Metallic dust hot die-pressed on semi-polymerised synthetic resin.</td>
<td>Satisfactory connection and suitable for soldering.</td>
</tr>
</tbody>
</table>

This last method has been found to be completely satisfactory when carefully carried out and is described in detail below.

(3)

DESCRIPTION OF THE SUCCESSFUL PROCESS

The process is as follows: The areas where conductor lines are required are coated with a synthetic resin compost by brushing for simple lines, or by silk screen stencilling, offset printing or sprayin; through a mask for more complicated circuits. The film of compost must be made as thin as possible.
The metallic powder (precipitated silver has been most successful) is dusted by means of a fine mesh sieve over the circuit element to a sufficient density to assure the correct conductor separation. The powder is tapped off and the plate placed for about 10 minutes in an oven operating at about 80°C. This drives off most of the volatile solvent. The circuit element is then withdrawn from the oven and placed in a heated press; preferably using a heated circuit die, the temperature and pressure depending on the base material and the synthetic resin being used. The circuit element is withdrawn from the press when the resin is fully cured. The resin used for the experiments is Bakelite, Gumas 11095, heated to 140°C, for about half an hour; but with higher pressure under heated dies, shorter times have been found satisfactory, and the finish and adherence improved.

The heat and pressure cause the metallic particles to penetrate the resin and to embed themselves in the base material, at the same time providing a principally metallic outer layer suitable for soldering. In order to ascertain the reliability of the connection to the carbon film and the resistance per unit square, specimen sheets have been measured before and after the deposition of the electrodes. The measurement also provided an indication of the change in resistance of the film due to the load and pressure. The change in ohms per unit square should be less than five per cent providing that reasonable care is taken in the process.

Figure 1 explains the adherence of the metallic coating to the base layer. In figure 1(a) it will be seen that there is a resin-carbon phase between the metal-resin and carbon-resin phases. This is due to the penetration to the carbon-resin layer of some of the thin film of circuit line resin. The adherence of the metallic film is due to the presence of this transitional phase. The apparent disadvantage of such a mechanism is that a high resistive layer is interposed between the conductor and the resistor. Experiment has shown that, in resistors with up to 0.2 inch between electrodes, the increase in resistance is less than 5% from all causes involved in the process. The current density at the electrodes is not increased beyond that of the resistor area since all parts under the electrodes are at the same potential. On the other hand, Figure 1(b) shows how the chemical reduction, electrolytic and die-slimped metal foil process fail to assure adhesion. Figure 1(c) demonstrates the high resistance and difficulty of soldering the metal-resin paste films. Then attempting to solder such a film, the resin melts and flows between the metal and the solder connection.

METHODS OF OUTLINING ELECTRODE AREAS

As already mentioned, for simple test strips, the synthetic resin film can be deposited by brush or rubber roller, but for more complex circuits or areas it is necessary to use a mask or stencil. Experimental work has been carried out using silk screens and satisfactory results achieved. It is necessary to provide a stencil that is not affected by the solvents used to clean the synthetic resin off the silk screen. This can be accomplished by protecting the masked areas of the stencil with another synthetic resin which is insoluble in the solvents of the circuit line resin.

A second circuit-making method is to spray the thin resin film through an open stencil. For laboratory purposes this is more difficult to cut than a silk screen stencil but would probably be more suitable for automatic operation. Other methods of applying the resin suggest themselves, such as off-set and die printing or photo-mechanical means.

Apart from the use of the metallic dusting technique for printed circuits and resistors, it is suggested that the process would be useful for providing solderable contacts on the ends of wire-wound potentiometers and variable resistance formers, especially where a flat strip of resin impregnated paper or fabric is used. With toroidal formers, special jigs would be required to prevent the operation of pressing brushing the former. A further use for the process is to provide solder connections to components, so dispensing with eyelets and tags. Applications are illustrated in Figures 2 and 3.
CONCLUSIONS

The process has been successfully used on poor quality synthetic resin paper bonded material, fabric based materials, asbestos loaded and good quality pure resin boards. It is the only method among those tried in which successful soldered joints have been made to the carbon-resin coated fabric base material that it is intended to use for aspect ratio resistors (see T.H.E. Technical Note No.43: Aspect Ratio Resistors for Printed and Deposited Circuits).

ILLUSTRATIONS

Figure 1. Phases in Contact Mechanism - RET/41/6047
2. Photograph of Explodos - TRE - A5796
3. Application of Tactless Solder Connections - RET/6066.

AUTHORS: W. R. CONWAY
R. BROOKES

APPROVED: G. W. A. DUNGER

30th September, 1949
S. Fw. F.32
(1a) Powdered metal on resin method

(1b) Sprayed metal electrodes

(1c) Powdered metal in resin

Phases in contact mechanism.
3a. PRINTED METAL CONTACT FOR TAGLESS GROUP
BOARDS AND COIL FORMERS.

3b. METHOD OF PROVIDING SOLDERED TAPPING
POINTS ON CARBON FILM POTENTIOMETERS.

3c. METHOD OF MAKING CONNECTIONS TO
POTENTIOMETER FORMERS, INCLUDING
SOLDERED TAPPING ARRANGEMENT.

FIG. 3.
APPLICATIONS OF TAGLESS SOLDER
CONNECTIONS.
Title: Tagless solder connections to insulators and carbon film resistors for printed wiring techniques: method of making
Availability Open Document, Open Description, Normal Closure before FOI Act: 30 years
Former reference (Department) 159
Held by The National Archives, Kew

This document is now available at the National Archives, Kew, Surrey, United Kingdom.

DTIC has checked the National Archives Catalogue website (http://www.nationalarchives.gov.uk) and found the document is available and releasable to the public.

Access to UK public records is governed by statute, namely the Public Records Act, 1958, and the Public Records Act, 1967. The document has been released under the 30 year rule. (The vast majority of records selected for permanent preservation are made available to the public when they are 30 years old. This is commonly referred to as the 30 year rule and was established by the Public Records Act of 1967).

This document may be treated as UNLIMITED.