Accession Number : ADA624235


Title :   Assessment and Methods for Supply-Following Loads in Modern Electricity Grids with Deep Renewables Penetration


Descriptive Note : Doctoral thesis


Corporate Author : CALIFORNIA UNIV BERKELEY DEPT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES


Personal Author(s) : Taneja, Jayant K


Full Text : https://apps.dtic.mil/dtic/tr/fulltext/u2/a624235.pdf


Report Date : 18 Dec 2013


Pagination or Media Count : 157


Abstract : We study three electricity grids: the state of California, the province of Ontario, and the country of Germany. To understand the effects of increasing renewables, we develop a methodology to scale renewables penetration. Analyzing these grids yields key insights about rigid limits to renewables penetration and their implications in meeting long-term emissions targets. We argue that to achieve deep penetration of renewables, the operational model of the grid must be inverted, changing the paradigm from load-following supplies to supply-following loads. To alleviate the challenge of supply-demand matching on deeply renewable grids, we first examine well-known techniques, including altering management of existing supply resources, employing utility-scale energy storage, targeting energy efficiency improvements, and exercising basic demand-side management. Then, we create several instantiations of supply-following loads - including refrigerators, heating and cooling systems, and laptop computers - by employing a combination of sensor networks, advanced control techniques, and enhanced energy storage. We examine the capacity of each load for supply-following and study the behaviors of populations of these loads, assessing their potential at various levels of deployment throughout the California electricity grid. Using combinations of supply-following strategies, we can reduce peak natural gas generation by 19% on a model of the California grid with 60% renewables. We then assess remaining variability on this deeply renewable grid incorporating supply-following loads, characterizing additional capabilities needed to ensure supply-demand matching in future sustainable electricity grids.


Descriptors :   *ELECTRIC POWER DISTRIBUTION , EFFICIENCY , ENERGY STORAGE , RENEWABLE ENERGY , THESES


Subject Categories : Electric Power Production and Distribution


Distribution Statement : APPROVED FOR PUBLIC RELEASE