Accession Number : ADA614666

Title :   Oxygen Generating Biomaterials Preserve Skeletal Muscle Homeostasis under Hypoxic and Ischemic Conditions

Descriptive Note : Journal article


Personal Author(s) : Ward, Catherine L ; Corona, Benjamin T ; Yoo, James J ; Harrison, Benjamin S ; Christ, George J

Full Text :

Report Date : 26 Aug 2013

Pagination or Media Count : 14

Abstract : Provision of supplemental oxygen to maintain soft tissue viability acutely following trauma in which vascularization has been compromised would be beneficial for limb and tissue salvage. For this application, an oxygen generating biomaterial that may be injected directly into the soft tissue could provide an unprecedented treatment in the acute trauma setting. The purpose of the current investigation was to determine if sodium percarbonate (SPO), an oxygen generating biomaterial, is capable of maintaining resting skeletal muscle homeostasis under otherwise hypoxic conditions. In the current studies, a biologically and physiologically compatible range of SPO (1 2 mg/mL) was shown to: 1) improve the maintenance of contractility and attenuate the accumulation of HIF1 , depletion of intramuscular glycogen, and oxidative stress (lipid peroxidation) that occurred following 30 minutes of hypoxia in primarily resting (duty cycle = 0.2 s train/120 s contraction interval 0.002) rat extensor digitorum longus (EDL) muscles in vitro (95% N 5% CO2, 37 C); 2) attenuate elevations of rat EDL muscle resting tension that occurred during contractile fatigue testing (3 bouts of 25 100 Hz tetanic contractions; duty cycle = 0.2 s/2 s = 0.1) under oxygenated conditions in vitro (95% O2 5% CO , 37 C); and 3) improve the maintenance of contractility (in vivo) and prevent glycogen depletion in rat tibialis anterior (TA) muscle in a hindlimb ischemia model (i.e., ligation of the iliac artery). Additionally, injection of a commercially available lipid oxygen-carrying compound or the components (sodium bicarbonate and hydrogen peroxide) of 1 mg/mL SPO did not improve EDL muscle contractility under hypoxic conditions in vitro. Collectively, these findings demonstrate that a biological and physiological concentration of SPO (1 2 mg/mL) injected directly into rat skeletal muscle (EDL or TA muscles) can partially preserve resting skeletal muscle homeostasis under hypoxic conditions.


Subject Categories : Biochemistry
      Anatomy and Physiology
      Medicine and Medical Research

Distribution Statement : APPROVED FOR PUBLIC RELEASE