Accession Number : ADA606556


Title :   Wiring Zinc in Three Dimensions Re-writes Battery Performance - Dendrite-Free Cycling


Descriptive Note : Journal article


Corporate Author : NAVAL RESEARCH LAB WASHINGTON DC SURFACE CHEMISTRY BRANCH


Personal Author(s) : Parker, Joseph F ; Chervin, Christopher N ; Nelson, Eric S ; Rolison, Debra R ; Long, Jeffrey W


Full Text : https://apps.dtic.mil/dtic/tr/fulltext/u2/a606556.pdf


Report Date : Jan 2014


Pagination or Media Count : 14


Abstract : Zinc-based batteries offer a safe, inexpensive alternative to fire-prone lithium-based batteries, but zinc-based batteries do not exhibit sufficient rechargeability yet. Breaking through the centuries-old roadblock to zinc-based rechargeable batteries requires rethinking the electrode structure in order to control how zinc converts to zinc oxide during battery discharge and how the oxide is reversed back to metal upon recharging. We address the problems of inefficient zinc utilization and limited rechargeability by redesigning the zinc electrode as a porous, monolithic, three-dimensional (3D) aperiodic architecture. Utilization approaches 90% (728 mA h gZn -1) when the zinc sponge is used as the anode in a primary (single-use) zinc air cell. To probe rechargeability of the 3D Zn sponge, we cycled Zn vs. Zn symmetric cells and Ag Zn full cells under conditions that would otherwise support dendrite growth, and yet the Zn sponges remain dendrite-free after extensive cycling up to 188 mA h gZn-1. By using 3D-wired zinc architectures that innately suppress dendrite formation, all zinc-based chemistries can be reformulated for next-generation rechargeable batteries.


Descriptors :   *STORAGE BATTERIES , *ZINC , DENDRITIC STRUCTURE , ELECTRIC BATTERIES , ELECTRIC DISCHARGES , ELECTRODES , PERFORMANCE(ENGINEERING) , REPRINTS , THREE DIMENSIONAL , ZINC OXIDES


Subject Categories : Electrochemical Energy Storage
      Metallurgy and Metallography


Distribution Statement : APPROVED FOR PUBLIC RELEASE