Accession Number : ADA602614


Title :   An Interferometric Study of the Post-AGB Binary 89 Herculis. 1: Spatially Resolving the Continuum Circumstellar Environment at Optical and Near-IR Wavelengths with the VLTI, NPOI, IOTA, PTI, and the CHARA Array


Descriptive Note : Journal article


Corporate Author : NAVAL OBSERVATORY FLAGSTAFF AZ


Personal Author(s) : Hillen, M ; Verhoelst, T ; van Winckel, H ; Chesneau, O ; Hummel, C A ; Monnier, J D ; Farrington, C ; Tycner, C ; Mourard, D ; ten Brummelaar, T


Full Text : https://apps.dtic.mil/dtic/tr/fulltext/u2/a602614.pdf


Report Date : Jan 2013


Pagination or Media Count : 18


Abstract : Context. Binary post-asymptotic giant branch (post-AGB) stars are interesting laboratories to study both the evolution of binaries as well as the structure of circumstellar disks. Aims. A multiwavelength high angular resolution study of the prototypical object 89 Herculis is performed with the aim of identifying and locating the different emission components seen in the spectral energy distribution. Methods. A large interferometric data set, collected over the past decade and covering optical and near-infrared wavelengths, is analyzed in combination with the spectral energy distribution and flux-calibrated optical spectra. In this first paper only simple geometric models are applied to fit the interferometric data. Combining the interferometric constraints with the photometry and the optical spectra, we re-assess the energy budget of the post-AGB star and its circumstellar environment. Results. We report the first (direct) detection of a large (35-40%) optical circumstellar flux contribution and spatially resolve its emission region. Given this large amount of reprocessed and/or redistributed optical light, the fitted size of the emission region is rather compact and fits with(in) the inner rim of the circumbinary dust disk. This rim dominates our K band data through thermal emission and is rather compact, emitting significantly already at a radius of twice the orbital separation. We interpret the circumstellar optical flux as due to a scattering process, with the scatterers located in the extremely puffed-up inner rim of the disk and possibly also in a bipolar outflow seen pole-on. A non-local thermodynamic equilibrium gaseous origin in an inner disk cannot be excluded but is considered highly unlikely. Conclusions. This direct detection of a significant amount of circumbinary light at optical wavelengths poses several significant questions regarding our understanding of both post-AGB binaries and the physics in their circumbinary disks.


Descriptors :   *BINARY STARS , EMISSION , INTERFEROMETRY , SCATTERING , SPECTRAL ENERGY DISTRIBUTION


Subject Categories : Astrophysics


Distribution Statement : APPROVED FOR PUBLIC RELEASE