Accession Number : ADA593067


Title :   Dynamics of Cavitation Clouds within a High-Intensity Focused Ultrasonic Beam


Descriptive Note : Journal article March 2012-May 2012


Corporate Author : AIR FORCE RESEARCH LAB EDWARDS AFB CA


Personal Author(s) : Lu, Yuan ; Katz, Joseph ; Prosperetti, Andrea


Full Text : https://apps.dtic.mil/dtic/tr/fulltext/u2/a593067.pdf


Report Date : Mar 2012


Pagination or Media Count : 29


Abstract : In this experimental study, we generate a 500 kHz high-intensity focused ultrasonic (HIFU) beam, with pressure amplitude in the focal zone of up to 1.9 MPa, in initially quiescent water. The resulting pressure field and behavior of the cavitation bubbles are measured using high-speed digital in-line holography. Variations in the water density and refractive index field are used for determining the spatial distribution of the acoustic pressure nonintrusively. Several cavitation phenomena occur within the acoustic partial standing wave caused by the reflection of sound from the wall of the test chamber. At all sound levels, bubbly layers form in the periphery of the focal zone in the pressure nodes of the partial standing wave. At high sound levels, clouds of vapor microbubbles are generated and migrate in the direction of the acoustic beam. Both the cloud size and velocity vary periodically, with the diameter peaking in the nodes and velocity in the antinodes. A simple model involving linearized bubble dynamics, Bjerknes forces, sound attenuation by the cloud, added mass, and drag is used to predict the periodic velocity of the bubble cloud, as well as qualitatively explain the causes for the variations in the cloud size. The analysis shows that the primary Bjerknes force and drag dominate the cloud motion, and suggests that the secondary Bjerknes force causes the oscillations in the cloud size.


Descriptors :   *HIGH INTENSITY , *ULTRASONICS , ACOUSTIC ATTENUATION , ACOUSTIC WAVES , BEHAVIOR , CLOUDS , VELOCITY


Subject Categories : Acoustics


Distribution Statement : APPROVED FOR PUBLIC RELEASE