Accession Number : ADA578512


Title :   Morphodynamics of an Anthropogenically Altered Dual-Inlet System: John's Pass and Blind Pass, West-Central Florida, USA


Descriptive Note : Journal article


Corporate Author : ENGINEER RESEARCH AND DEVELOPMENT CENTER VICKSBURG MS COASTAL AND HYDRAULICS LAB


Personal Author(s) : Wang, Ping ; Beck, Tanya M


Full Text : https://apps.dtic.mil/dtic/tr/fulltext/u2/a578512.pdf


Report Date : Jan 2012


Pagination or Media Count : 17


Abstract : The morphodynamics of the John's Pass-Blind Pass dual inlet system were investigated based on hydrodynamic and morphology measurements, and numerical modeling. The co-existence of the dual inlets is realized by the dominance of mixed-energy John's Pass in terms of tidal prism and size of the ebb delta and the artificial maintenance of the wave-dominated migratory Blind Pass. Due to the secondary role of Blind Pass, the aggressive anthropogenic activities there do not seem to have a significant influence on the morphodynamics of John's Pass. On the other hand, the opening (in 1848) and subsequent evolution of John's Pass had substantial influence on Blind Pass, causing it to migrate rapidly to the south. In addition anthropogenic activities had much more influence on the morphodynamics of the secondary Blind Pass than that of the dominating John's Pass. Results from numerical modeling provide a semi-quantitative understanding of the hydrodynamics and morphodynamics of John's Pass and Blind Pass in association with cold front passages, which have substantial influences on inlet morphology. Two large eddies are modeled from the interactions between the southward longshore current and John's Pass ebb and flood flow, respectively. These eddies are closely related to the morphodynamics of the channel margin linear bar and longshore transport divergence at the downdrift side. Both are key features of a mixed-energy inlet. The shallow water and wave-breaking-induced longshore current and elevated sediment suspension along the ebb delta terminal lobe provide the pathway for sediment bypassing. The morphodynamics of Blind Pass are dominated by wave forcing. The weak ebb jet is not capable of forming a sizable ebb delta and tends to be deflected by the strong longshore current, causing elevated longshore transport along the downdrift beach.


Descriptors :   *INLETS(WATERWAYS) , DELTAS , FLOODING , FLOODS , FLORIDA , ISLANDS , NUMERICAL METHODS AND PROCEDURES , OCEAN TIDES , SEDIMENT TRANSPORT , WATER WAVES


Subject Categories : Hydrology, Limnology and Potamology
      Numerical Mathematics


Distribution Statement : APPROVED FOR PUBLIC RELEASE