Accession Number : ADA549417


Title :   A Defender-Attacker Optimization of Port Radar Surveillance


Corporate Author : NAVAL POSTGRADUATE SCHOOL MONTEREY CA DEPT OF OPERATIONS RESEARCH


Personal Author(s) : Brown, Gerald ; Carlyle, Matthew ; Abdul-Ghaffar, Ahmad ; Kline, Jeffrey


Full Text : https://apps.dtic.mil/dtic/tr/fulltext/u2/a549417.pdf


Report Date : Jan 2011


Pagination or Media Count : 14


Abstract : The U.S. Coast Guard, Customs and Border Patrol, Marine Corps, and Navy have deployed several hundred port patrol vessels to protect waterways, U.S. Navy ships and other high-value assets in ports world-wide. Each vessel has an armed crew of four, is relatively fast, and features a surface search radar, radios, and a machine gun. These vessels coordinate surveillance patrols in groups of two or four. We developed a mathematical model for advantageously positioning these vessels, and possibly shore-based radar too, to minimize the probability that an intelligent adversary in one or more speedboats will evade detection while mounting an attack. Attackers can use elevated obstructions to evade radar detection in their attack paths, and ports feature many such restrictions to navigation and observation. A key, but realistic assumption complicates planning: the attackers will be aware of defensive positions and capabilities in advance of mounting their attack. The defender-attacker optimization suggests plans here for a fictitious port, the port of Hong Kong, and the U.S. Navy Fifth Fleet Headquarters in Bahrain. In these cases, the defender can almost certainly detect any attack, even though the attacker, observing defender prepositioning, plans clever, and evasive attack tracks.


Descriptors :   *PATROLLING , *PORTS(FACILITIES) , *SECURITY , *SURVEILLANCE , ATTACK , COAST GUARD , FLEETS(SHIPS) , MACHINE GUNS , MARINE CORPS , MATHEMATICAL MODELS , NAVAL VESSELS , OPTIMIZATION , PATROL CRAFT , PLANNING , POSITION(LOCATION) , SEARCH RADAR


Subject Categories : Defense Systems


Distribution Statement : APPROVED FOR PUBLIC RELEASE