Accession Number : ADA522432


Title :   Global Gravity Wave Variances from Aura MLS: Characteristics and Interpretation


Descriptive Note : Journal article


Corporate Author : CALIFORNIA INST OF TECHNOLOGY PASADENA JET PROPULSION LAB


Personal Author(s) : Wu, Dong L ; Eckermann, Stephen D


Full Text : https://apps.dtic.mil/dtic/tr/fulltext/u2/a522432.pdf


Report Date : Dec 2008


Pagination or Media Count : 25


Abstract : The gravity wave (GW)-resolving capabilities of 118-GHz saturated thermal radiances acquired throughout the stratosphere by the Microwave Limb Sounder (MLS) on the Aura satellite are investigated and initial results presented. Because the saturated (optically thick) radiances resolve GW perturbations from a given altitude at different horizontal locations, variances are evaluated at 12 pressure altitudes between 21 and 51 km using the 40 saturated radiances found at the bottom of each limb scan. Forward modeling simulations show that these variances are controlled mostly by GWs with vertical wavelengths z 5 km and horizontal along-track wavelengths of y 100-200 km. The tilted cigar-shaped three-dimensional weighting functions yield highly selective responses to GWs of high intrinsic frequency that propagate toward the instrument. The latter property is used to infer the net meridional component of GW propagation by differencing the variances acquired from ascending (A) and descending (D) orbits. Because of improved vertical resolution and sensitivity, Aura MLS GW variances are 5?8 times larger than those from the Upper Atmosphere Research Satellite (UARS) MLS. Like UARS MLS variances, monthly-mean Aura MLS variances in January and July 2005 are enhanced when local background wind speeds are large, due largely to GW visibility effects. Zonal asymmetries in variance maps reveal enhanced GW activity at high latitudes due to forcing by flow over major mountain ranges and at tropical and subtropical latitudes due to enhanced deep convective generation as inferred from contemporaneous MLS cloud-ice data. At 21-28-km altitude (heights not measured by the UARS MLS), GW variance in the tropics is systematically enhanced and shows clear variations with the phase of the quasi-biennial oscillation, in general agreement with GW temperature variances derived from radiosonde, rocketsonde, and limb-scan vertical profiles.


Descriptors :   *MICROWAVES , *GRAVITY WAVES , *GLOBAL , SCIENTIFIC SATELLITES , RADIOSONDES , HIGH FREQUENCY , SIMULATION


Subject Categories : Mechanics
      Radiofrequency Wave Propagation


Distribution Statement : APPROVED FOR PUBLIC RELEASE