Accession Number : ADA503384


Title :   Metal Hydride Heat Storage Technology for Directed Energy Weapon Systems


Descriptive Note : Conference paper


Corporate Author : ADVANCED COOLING TECHNOLOGIES INC LANCASTER PA


Personal Author(s) : Park, Chanwoo ; Tang, Xudong ; Kim, Kwang J ; Gottschlich, Joseph ; Leland, Quinn


Full Text : https://apps.dtic.mil/dtic/tr/fulltext/u2/a503384.pdf


Report Date : 16 Nov 2007


Pagination or Media Count : 10


Abstract : Directed Energy Weapon (DEW) systems in a pulse operation mode dissipate excessively large, transient waste heat because of their inherent inefficiencies. The heat storage system can store such a pulsed heat load not relying on oversized systems and dissipate the stored heat over time after the pulse operation. A compressor-driven metal hydride heat storage system was developed for efficient, compact heat storage and dissipation of the transient heat from the DEW systems. The greater volumetric heat storage capacity of metal hydride material was realized into more compact design than conventional Phase Change Material (PCM) systems. Other exclusive advantages of the metal hydride system were fast thermal response time and active heat pumping capability required for precision temperature control and on-demand cooling. This paper presented the operating principle and heat storage performance results of the compressor-driven metal hydride heat storage system through system modeling and prototype testing. The modeling and test results showed that the metal hydride system can store the average heat of 4.4kW during the heat storage period of 250 seconds and release the stored heat during the subsequent regeneration period of 900 seconds.


Descriptors :   *DIRECTED ENERGY WEAPONS , *COOLING , SYMPOSIA , HIGH TEMPERATURE , HEAT SINKS , COMPRESSORS , HYDRIDES , SOLID STATE LASERS , PROTOTYPES


Subject Categories : Physical Chemistry
      Air Condition, Heating, Lighting & Ventilating
      Directed Energy Weapons
      Thermodynamics


Distribution Statement : APPROVED FOR PUBLIC RELEASE