Accession Number : ADA353762


Title :   Directional Irregular Wave Kinematics


Descriptive Note : Final rept.


Corporate Author : CALIFORNIA UNIV BERKELEY


Personal Author(s) : Barker, Christopher H. ; Sobey, Rodney J.


Full Text : https://apps.dtic.mil/dtic/tr/fulltext/u2/a353762.pdf


Report Date : SEP 1998


Pagination or Media Count : 184


Abstract : Coastal and ocean processes are heavily influenced by the kinematics of waves. In order to understand these processes, researchers place a variety of instruments in the sea in an attempt to measure the waves. These instruments all measure a small set of physical quantities at a small number of locations. The balance of the kinematics must be predicted through analysis of the measured records. Most of the currently used methods of analysis rely on the superposition of linear waves to recreate complex seas. These methods are compromised by linearizing approximations to the free surface boundary conditions. Fidelity in the interpretation of wave measurements is enhanced by insisting that the analysis satisfies the full nonlinear free surface boundary conditions. The Local Fourier method for irregular wave kinematics is introduced and expanded to include the interpretation of records from arrays of instruments. It is a local method, in that a separate solution is sought that fits the measured record(s) in a small local window in time, rather than attempting to find a single solution for a large segment of the record. Each window solution satisfies the full set of governing equations for gravity waves, including the nonlinear free surface boundary conditions. The solution in each window is a potential function whose form is based upon a Stokes style expansion for intersecting waves. The parameters of the potential function are found by a nonlinear optimization that seeks the solution that matches the measured record and satisfies the full free surface boundary conditions.


Descriptors :   *OCEAN WAVES , *COASTAL ENGINEERING , *GRAVITY WAVES , SURFACE WAVES , SEDIMENT TRANSPORT , WAVE PROPAGATION , ARMY CORPS OF ENGINEERS , SEA STATES , FOURIER ANALYSIS , WAVE EQUATIONS.


Subject Categories : PHYSICAL AND DYNAMIC OCEANOGRAPHY
      CIVIL ENGINEERING


Distribution Statement : APPROVED FOR PUBLIC RELEASE