Accession Number : ADA179608


Title :   Mask Matching for Linear Feature Detection.


Descriptive Note : Technical rept.,


Corporate Author : MARYLAND UNIV COLLEGE PARK CENTER FOR AUTOMATION RESEARCH


Personal Author(s) : Netanyahu,Nathan S ; Rosenfeld,Azriel


Full Text : https://apps.dtic.mil/dtic/tr/fulltext/u2/a179608.pdf


Report Date : Jan 1987


Pagination or Media Count : 77


Abstract : Mask matching is a well known procedure (1) in which the detection of specific features in an image is carried out by matching a set of templates or masks with the neighborhood of each pixel in the image. This paper describes a set of 3 X 3 binary masks that can be used to extract thin features from an image. The masks are used to assign various labels to each pixel (each label corresponding t a particular mask), and to associate with each label a set of confidence measures based on the homogeneity of the foreground and background in the mask, and the difference between them. The idea of this approach is to record a large set of useful information at the pixel level, in order to efficiently make use of it at the later stages of the linear feature detection process. Given is a probabilistic analysis of the frequency of matches and their expected robustness for specific masks and classes of masks in white noise images. These results may help indicate whether or not a given image region should be considered interesting, as regards frequency of occurrence of line-like masks, for example.


Descriptors :   *IMAGE PROCESSING , *MASKS , EXPERIMENTAL DATA , DETECTION , PROBABILITY , WHITE NOISE , IMAGES , TEMPLATES , EXTRACTION , MATCHING , CONFIDENCE LEVEL


Subject Categories : Optics


Distribution Statement : APPROVED FOR PUBLIC RELEASE