Accession Number : AD1049066


Title :   Convergence of Ground and Excited State Properties of Divacancy Defects in 4H-SiC with Computational Cell Size


Descriptive Note : Technical Report,01 Oct 2017,01 Oct 2018


Corporate Author : US Army Research Laboratory Aberdeen Proving Ground


Personal Author(s) : Beste, Ariana ; Taylor,DeCarlos E


Full Text : https://apps.dtic.mil/dtic/tr/fulltext/u2/1049066.pdf


Report Date : 01 Mar 2018


Pagination or Media Count : 44


Abstract : Deep defect centers in semiconductors show electronic behavior that can be exploited in quantum computing applications. In particular, the neutral divacancy defect in 4H-SiC has been considered as a potential qubit material that is individually addressable in the near IR. To study the divacancy defect computationally, the behavior of properties relevant to the function of the material as a qubit with respect to computational parameters needs to be established. We used density functional theory to compute defect formation energies of the neutral and charged hh divacancy with corresponding charge transition levels, the position of the highest occupied, localized defect state within the band gap, and excitation energies for the 3A to 3E transition (absorption, zero phonon lines, and emission), which is essential for optical initialization and read-out. We investigated the convergence of these properties with respect to computational cell size and studied the effects of lattice relaxation and dispersion corrections. Based on our results, we recommend computational parameters for future computational work.


Descriptors :   density functional theory , absorption , emission , electronics , quantum computing , transitions


Subject Categories : Physical Chemistry
      Quantum Theory and Relativity


Distribution Statement : APPROVED FOR PUBLIC RELEASE