Accession Number : AD1042292

Title :   Chiral Topological Orders in an Optical Raman Lattice (Open Source)

Descriptive Note : Journal Article - Open Access


Personal Author(s) : Liu, Xiong-Jun ; Liu,Zheng-Xin ; Law,K T ; Liu,W V ; Ng,T K

Full Text :

Report Date : 01 Mar 2016

Pagination or Media Count : 13

Abstract : We find an optical Raman lattice without spin-orbit coupling showing chiral topological orders for cold atoms. Two incident plane-wave lasers are applied to simultaneously generate a double-well square lattice and periodic Raman couplings, the latter of which drive the nearest-neighbor hopping and create a staggered flux pattern across the lattice. Such a minimal setup can yield the quantum anomalous Hall effect with a large gap-bandwidth ratio in the single particle regime, while in the interacting regime it achieves the J1-J2-K spin model, with the nearest-neighboring (J1) and next nearest-neightboring (J2) exchange coupling coefficients, and the three three-spin interacting parameter (K) is controllable. We show that the J1-J2-K spin model may support a chiral spin liquid phase. It is interesting that the quantum anomalous Hall state can be detected by only measuring the Bloch states in the two symmetric momentum points of the first Brillouin zone. Further, we also show that heating in the present optical Raman lattice can be essentially reduced compared with the conventional laser-assisted tunneling schemes. This suggests that the predicted topological states be reachable with the current experimental capability.

Descriptors :   optical lattices , atoms , raman lasers , crystal lattices

Subject Categories : Crystallography

Distribution Statement : APPROVED FOR PUBLIC RELEASE