Accession Number : AD1032783


Title :   Transcriptomic Modification in the Cerebral Cortex following Noninvasive Brain Stimulation: RNA-Sequencing Approach


Descriptive Note : Journal Article - Open Access


Corporate Author : AIR FORCE RESEARCH LAB WRIGHT-PATTERSON AFB OH HUMAN PERFORMANCE WING (711TH) - WRIGHT-PATTERSON AFB United States


Personal Author(s) : Holmes,Ben ; Jung,Seung Ho ; Lu,Jing ; Wagner,Jessica A ; Rubbi,Liudmilla ; Pellegrini,Matteo ; Jankord,Ryan


Full Text : https://apps.dtic.mil/dtic/tr/fulltext/u2/1032783.pdf


Report Date : 20 Apr 2017


Pagination or Media Count : 17


Abstract : Transcranial direct current stimulation (tDCS) has been shown to modulate neuroplasticity. Beneficial effects are observed in patients with psychiatric disorders and enhancement of brain performance in healthy individuals has been observed following tDCS. However, few studies have attempted to elucidate the underlying molecular mechanisms of tDCS in the brain. This study was conducted to assess the impact of tDCS on gene expression within the rat cerebral cortex. Anodal tDCS was applied at 3 different intensities followed by RNA-sequencing and analysis. In each current intensity, approximately 1,000 genes demonstrated statistically significant differences compared to the sham group. A variety of functional pathways, biological processes, and molecular categories were found to be modified by tDCS. The impact of tDCS on gene expression was dependent on current intensity. Results show that inflammatory pathways, antidepressant-related pathways (GTP signaling, calcium ion binding, and transmembrane/signal peptide pathways), and receptor signaling pathways (serotonergic, adrenergic, GABAergic, dopaminergic, and glutamate) were most affected. Of the gene expression profiles induced by tDCS, some changes were observed across multiple current intensities while other changes were unique to a single stimulation intensity. This study demonstrates that tDCS can modify the expression profile of various genes in the cerebral cortex and that these tDCS-induced alterations are dependent on the current intensity applied.


Descriptors :   blood vessel injuries , blood vessels , central nervous system , nervous system , rna sequence analysis , biological processes , immune system , cellular structures , metabolism , gene expression , brain , depressive disorder , carrier proteins , proteins , cell physiological processes , Mood disorders , Neurosciences , CEREBRAL CORTEX


Distribution Statement : APPROVED FOR PUBLIC RELEASE