Accession Number : AD1032082


Title :   RNA Futile Cycling in Model Persisters Derived from MazF Accumulation (Open Access)


Descriptive Note : Journal Article - Open Access


Corporate Author : PRINCETON UNIV NJ PRINCETON United States


Personal Author(s) : Mok,Wendy W ; Park,Junyoung O ; Rabinowitz,Joshua D ; Brynildsen,Mark P


Full Text : https://apps.dtic.mil/dtic/tr/fulltext/u2/1032082.pdf


Report Date : 17 Nov 2015


Pagination or Media Count : 13


Abstract : Metabolism plays an important role in the persister phenotype, as evidenced by the number of strategies that perturb metabolism to sabotage this troublesome subpopulation. However, the absence of techniques to isolate high-purity populations of native persisters has precluded direct measurement of persister metabolism. To address this technical challenge, we studied Escherichia coli populations whose growth had been inhibited by the accumulation of the MazF toxin, which catalyzes RNA cleavage, as a model system for persistence. Using chromosomally integrated, orthogonally inducible promoters to express MazF and its antitoxin MazE, bacterial populations that were almost entirely tolerant to fluoroquinolone and -lactam antibiotics were obtained upon MazF accumulation, and these were subjected to direct metabolic measurements. While MazF model persisters were nonreplicative, they maintained substantial oxygen and glucose consumption. Metabolomic analysis revealed accumulation of all four ribonucleotide monophosphates (NMPs). These results are consistent with a MazF-catalyzed RNA futile cycle, where the energy derived from catabolism is dissipated through continuous transcription and MazF-mediated RNA degradation. When transcription was inhibited, oxygen consumption and glucose uptake decreased, and nucleotide triphosphates (NTPs) and NTP/NMP ratios increased. Interestingly, the MazF-inhibited cells were sensitive to aminoglycosides, and this sensitivity was blocked by inhibition of transcription. Thus, in MazF model persisters, futile cycles of RNA synthesis and degradation result in both significant metabolic demands and aminoglycoside sensitivity.


Descriptors :   METABOLOMICS , cellular structures , cell physiological processes , mass spectrometry , nucleotides , metabolism , proteins , stress (physiology) , antibacterial agents , glycosides , energy levels , rna , antibiotics


Subject Categories : Biochemistry


Distribution Statement : APPROVED FOR PUBLIC RELEASE